首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文应用从人类X柒色体Xp~(21)区不同部位分离得到的9种DNA探针,分析了100名正常中国人,38名DMD患者及其母亲X柒色体Xp~(21)区的14个限制性位点多态性(RSP;又称限制性片段长度多态性,RFLP)。发现正常的X染色体与携带DMD基因的X染色体Xp~(21)区的RFLP频率没有明显差别;在38例DMD患者中有7例的X染色体有DNA片段缺失;在本文分析的24例患者母杀中有17例是DMD基因携带者,她们在Xp~(21)区的RFLP均存在杂合的多态性,因此可以应用RFLP连锁分析对这些家系进行DMD的产前诊断。  相似文献   

2.
Restriction-fragment-length-polymorphism analysis was used to examine a female who is segregating for Duchenne muscular dystrophy (DMD) and a deletion of the DXS164 region of the X chromosome. The segregating female has no prior family history of DMD, and she has two copies of the DXS164 region in her peripheral blood lymphocytes. The following two hypotheses are proposed to explain the coincidence of the DMD phenotype and deletion of the DXS164 region in her offspring: (1) she may be a gonadal mosaic for cells with two normal X chromosomes and cells with one normal X chromosome and an X chromosome with a deletion of the DXS164 region; and (2) she may carry a familial X;autosome translocation in which the DXS164 region is deleted from one X chromosome and translocated to an autosome. The segregation of DMD and the DXS164 deletion in this family illustrates the importance of extended pedigree analysis when DXS164 deletions are used to identify female carriers of the DMD gene.  相似文献   

3.
Duchenne muscular dystrophy (DMD) is a severe, progressive, X-linked muscle-wasting disorder with an incidence of approximately 1/3,500 male births. Females are also affected, in rare instances. The manifestation of mild to severe symptoms in female carriers of dystrophin mutations is often the result of the preferential inactivation of the X chromosome carrying the normal dystrophin gene. The severity of the symptoms is dependent on the proportion of cells that have inactivated the normal X chromosome. A skewed pattern of X inactivation is also responsible for the clinical manifestation of DMD in females carrying X;autosome translocations, which disrupt the dystrophin gene. DMD may also be observed in females with Turner syndrome (45,X), if the remaining X chromosome carries a DMD mutation. We report here the case of a karyotypically normal female affected with DMD as a result of homozygosity for a deletion of exon 50 of the dystrophin gene. PCR analysis of microsatellite markers spanning the length of the X chromosome demonstrated that homozygosity for the dystrophin gene mutation was caused by maternal isodisomy for the entire X chromosome. This finding demonstrates that uniparental isodisomy of the X chromosome is an additional mechanism for the expression of X-linked recessive disorders. The proband's clinical presentation is consistent with the absence of imprinted genes (i.e., genes that are selectively expressed based on the parent of origin) on the X chromosome.  相似文献   

4.
5.
Duchenne muscular dystrophy (DMD) is the most common hereditary neuromuscular disease. It is inherited as an X-linked recessive trait in which males show clinical manifestations. In some rare cases, the disease can also be manifested in females. The aim of the present study was to determine the molecular alteration in two cases of nonrelated DMD symptomatic carriers with no previous history of DMD. Multiplex PCR is commonly used to search for deletion in the DMD gene of affected males. This method could not be used in females because the normal X chromosome masks the deletion of the mutated one. Therefore, we used a set of seven highly polymorphic dinucleotide (CA)(n) repeat markers that lie within the human dystrophin gene. The deletions were evidenced by hemizygosity of the loci under study. We localized a deletion in the locus 7A (intron 7) on the maternal X chromosome in one case, and a deletion in the region of introns 49 and 50 on the paternal X chromosome in the other. The use of microsatellite genotyping within the DMD gene enables the detection of the mutant allele in female carriers. It is also a useful method to provide DMD families with more accurate genetic counseling.  相似文献   

6.
There are over 20 females with Duchenne or Becker muscular dystrophy (DMD or BMD) who have X-autosome translocations that break the X chromosome within band Xp21. Several of these translocations have been mapped with genomic probes to regions throughout the large (approximately 2000 kb) DMD gene. In this report, a cDNA clone from the 5' end of the gene was used to further map the breakpoints in four X-autosome translocations. A t(X;21) translocation in a patient with BMD and a t(X;1) translocation in a patient with DMD were found to break within a large 110-kb intron between exons 7 and 8. Two other DMD translocations, t(X;5) and t(X;11), were found to break between the first and the second exon of the gene within a presumably large intron (greater than 100 kb). These results demonstrate that all four translocations have disrupted the DMD gene and make it possible to clone and sequence the breakpoints. This will in turn determine whether these translocations occur by chance in these large introns or whether there are sequences that predispose to translocations.  相似文献   

7.
Duchenne/Becker型肌营养不良(DMD/BMD)是一类常见的X连锁隐性遗传病,多见于男性患者,女性携带者一般不发病,因为女性体内会发生随机的X染色体失活,而使体内呈现镶嵌型。目前,越来越多的文献报道DMD/BMD女性携带者发病的病例,其症状有轻有重,但发病机制尚不明了,大多数研究认为与X染色体的偏斜失活有关,即携带DMD突变的X染色体异常活化,使正常DMD基因弱或无表达,从而无法生成正常功能的dystrophin蛋白,表现为DMD/BMD。本文主要综述了X偏斜失活与DMD女性携带者发病相关性的研究进展。  相似文献   

8.
It has been demonstrated in animal studies that, in animals heterozygous for pericentric chromosomal inversions, loop formation is greatly reduced during meiosis. This results in absence of recombination within the inverted segment, with recombination seen only outside the inversion. A recent study in yeast has shown that telomeres, rather than centromeres, lead in chromosome movement just prior to meiosis and may be involved in promoting recombination. We studied by cytogenetic analysis and DNA polymorphisms the nature of meiotic recombination in a three-generation family with a large pericentric X chromosome inversion, inv(X)(p21.1q26), in which Duchenne muscular dystrophy (DMD) was cosegregating with the inversion. On DNA analysis there was no evidence of meiotic recombination between the inverted and normal X chromosomes in the inverted segment. Recombination was seen at the telomeric regions, Xp22 and Xq27-28. No deletion or point mutation was found on analysis of the DMD gene. On the basis of the FISH results, we believe that the X inversion is the mutation responsible for DMD in this family. Our results indicate that (1) pericentric X chromosome inversions result in reduction of recombination between the normal and inverted X chromosomes; (2) meiotic X chromosome pairing in these individuals is likely initiated at the telomeres; and (3) in this family DMD is caused by the pericentric inversion.  相似文献   

9.
A male patient with profound mental retardation, athetosis, nystagmus, and severe congenital hypotonia (Duchenne muscular dystrophy [DMD]) was previously shown to carry a pericentric inversion of the X chromosome, 46,Y,inv(X)(p21.2q22.2). His mother carried this inversion on one X allele. The patient's condition was originally misdiagnosed as cerebral palsy, and only later was it diagnosed as DMD. Because the DMD gene is located at Xp21.2, which is one breakpoint of the inv(X), and because its defects are rarely associated with severe mental retardation, the other clinical features of this patient were deemed likely to be associated with the opposite breakpoint at Xq22. Our precise molecular-cytogenetic characterization of both breakpoints revealed three catastrophic genetic events that had probably influenced neuromuscular and cognitive development: deletion of part of the DMD gene at Xp21.2, duplication of the human proteolipid protein gene (PLP) at Xq22.2, and disruption of a novel gene. The latter sequence, showing a high degree of homology to the Sec4 gene of yeast, encoded a putative small guanine-protein, Ras-like GTPase that we have termed "RLGP." Immunocytochemistry located RLGP at mitochondria. We speculate that disruption of RLGP was responsible for the patient's profound mental retardation.  相似文献   

10.
Duchenne muscular dystrophy (DMD) is a progressive and lethal neuromuscular disorder caused by a defective gene on the X chromosome. There is no effective treatment and the biochemical defect is yet unknown. Mapping of the DMD locus to band Xp21 in the short arm of the X chromosome has given rise to strategies to clone the gene from its known location in the chromosome. Two cloning strategies have led to the isolation of a gene that is the largest of any yet described. Portions of the gene are deleted in about 8% of affected males, and rare translocations that disrupt the gene cause the disease in females. The isolation of expressed sequences from the DMD locus will undoubtedly lead to isolation of the gene product and ultimately to an understanding of the basic defect. In the meantime, DNA probes from the DMD locus provide a new and accurate approach for carrier identification and prenatal diagnosis of this dreaded disease.  相似文献   

11.
The inheritance of two restriction fragment length polymorphisms (RFLPs) on the short arm of the human X chromosome has been studied relative to Duchenne muscular dystrophy. This provides a partial genetic map of the short arm of the human X chromosome between Xp110 and Xp223. The data were derived from the segregation between a RFLP located at Xp21-Xp223, the DMD locus, and a RFLP located at Xp110-Xp113. The genetic distance from Xp110 to Xp223 was found to be approximately 40 centimorgans (cM). This provides experimental confirmation that 1cM corresponds to approximately 1,000 kilobase pairs of DNA for this region of the human X chromosome. Our data confirm that the DMD mutation lies between Xp223 and Xp110. The availability of flanking probes surrounding the DMD locus will assist in the ordering of further DNA sequences relative to the mutation.  相似文献   

12.
Duchenne muscular dystrophy (DMD) is a lethal inherited muscle disorder. Pathological characteristics of DMD skeletal muscles include, among others, abnormal Ca(2+) homeostasis and cell signalling. Here, in the mdx mouse model of DMD, we demonstrate significant P2X7 receptor abnormalities in isolated primary muscle cells and cell lines and in dystrophic muscles in vivo. P2X7 mRNA expression in dystrophic muscles was significantly up-regulated but without alterations of specific splice variant patterns. P2X7 protein was also up-regulated and this was associated with altered function of P2X7 receptors producing increased responsiveness of cytoplasmic Ca(2+) and extracellular signal-regulated kinase (ERK) phosphorylation to purinergic stimulation and altered sensitivity to NAD. Ca(2+) influx and ERK signalling were stimulated by ATP and BzATP, inhibited by specific P2X7 antagonists and insensitive to ivermectin, confirming P2X7 receptor involvement. Despite the presence of pannexin-1, prolonged P2X7 activation did not trigger cell permeabilization to propidium iodide or Lucifer yellow. In dystrophic mice, in vivo treatment with the P2X7 antagonist Coomassie Brilliant Blue reduced the number of degeneration-regeneration cycles in mdx skeletal muscles. Altered P2X7 expression and function is thus an important feature in dystrophic mdx muscle and treatments aiming to inhibit P2X7 receptor might slow the progression of this disease.  相似文献   

13.
Mutations in the dystrophin gene cause an X‐linked genetic disorder: Duchenne muscular dystrophy (DMD). Stem cell therapy is an attractive method to treat DMD because a small number of cells are required to obtain a therapeutic effect. Here, we discussed about multiple types of myogenic stem cells and their possible use to treat DMD. The identification of a stem cell population providing efficient muscle regeneration is critical for the progression of cell therapy for DMD. We speculated that the most promising possibility for the treatment of DMD is a combination of different approaches, such as gene and stem cell therapy. J. Cell. Physiol. 221: 526–534, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Summary A novel procedure is presented to estimate the ratio of male to female mutation rates for Duchenne muscular dystrophy (DMD). X-specific restriction fragment length polymorphisms are used to establish DNA haplotypes in three-generation DMD families. From the proportion of DMD patients who have inherited their maternal grandfather's X chromosome, the ratio of mutation rates can be calculated. In contrast to classical methods, the proposed procedure is not restricted to sporadic or familiar cases nor is any information on the carrier status of female relatives required.  相似文献   

15.
Background information. DMD (Duchenne muscular dystrophy) is a devastating X‐linked disorder characterized by progressive muscle degeneration and weakness. The use of cell therapy for the repair of defective muscle is being pursued as a possible treatment for DMD. Mesenchymal stem cells have the potential to differentiate and display a myogenic phenotype in vitro. Since liposuctioned human fat is available in large quantities, it may be an ideal source of stem cells for therapeutic applications. ASCs (adipose‐derived stem cells) are able to restore dystrophin expression in the muscles of mdx (X‐linked muscular dystrophy) mice. However, the outcome when these cells interact with human dystrophic muscle is still unknown. Results. We show here that ASCs participate in myotube formation when cultured together with differentiating human DMD myoblasts, resulting in the restoration of dystrophin expression. Similarly, dystrophin was induced when ASCs were co‐cultivated with DMD myotubes. Experiments with GFP (green fluorescent protein)‐positive ASCs and DAPI (4′,6‐diamidino‐2‐phenylindole)‐stained DMD myoblasts indicated that ASCs participate in human myogenesis through cellular fusion. Conclusions. These results show that ASCs have the potential to interact with dystrophic muscle cells, restoring dystrophin expression of DMD cells in vitro. The possibility of using adipose tissue as a source of stem cell therapies for muscular diseases is extremely exciting.  相似文献   

16.
One of female MZ twins presented with muscular dystrophy. Physical examination, creatine phosphokinase levels, and muscle biopsy were consistent with Duchenne muscular dystrophy (DMD). However, because of her sex she was diagnosed as having limb-girdle muscular dystrophy. With cDNA probes to the DMD gene, a gene deletion was detected in the twins and their mother. The de novo mutation which arose in the mother was shown by novel junction fragments generated by HindIII, PstI, or TaqI when probed with cDNA8. Additional evidence of a large gene deletion was given by novel SfiI junction fragments detected by probes p20, J-Bir, and J-66 on pulsed-field gel electrophoresis (PFGE). Immunoblot analysis of muscle from the affected twin showed dystrophin of normal size but of reduced amount. Immunofluorescent visualization of dystrophin revealed foci of dystrophin-positive fibers adjacent to foci of dystrophin-negative fibers. These data indicate that the affected twin is a manifesting carrier of an abnormal DMD gene, her myopathy being a direct result of underexpression of dystrophin. Cytogenetic analysis revealed normal karyotypes, eliminating the possibility of a translocation affecting DMD gene function. Both linkage analysis and DNA fingerprint analysis revealed that each twin has two different X chromosomes, eliminating the possibility of uniparental disomy as a mechanism for DMD expression. On the basis of methylation differences of the paternal and maternal X chromosomes in these MZ twins, we propose uneven lyonization (X chromosome inactivation) as the underlying mechanism for disease expression in the affected female.  相似文献   

17.

Duchenne muscular dystrophy (DMD) patients, having mutations of the DMD gene, present with a range of neuropsychiatric disorders, in addition to the quintessential muscle pathology. The neurobiological basis remains poorly understood because the contributions of different DMD gene products (dystrophins) to the different neural networks underlying such symptoms are yet to be fully characterised. While full-length dystrophin clusters in inhibitory synapses, with inhibitory neurotransmitter receptors, the precise subcellular expression of truncated DMD gene products with excitatory synapses remains unresolved. Furthermore, inflammation, involving P2X purinoceptor 7 (P2RX7) accompanies DMD muscle pathology, yet any association with brain dystrophins is yet to be established. The aim of this study was to investigate the comparative expression of different dystrophins, alongside ionotropic glutamate receptors and P2RX7s, within the cerebellar circuitry known to express different dystrophin isoforms. Immunoreactivity for truncated DMD gene products was targeted to Purkinje cell (PC) distal dendrites adjacent to, or overlapping with, signal for GluA1, GluA4, GluN2A, and GluD2 receptor subunits. P2X7R immunoreactivity was located in Bergmann glia profiles adjacent to PC-dystrophin immunoreactivity. Ablation of all DMD gene products coincided with decreased mRNA expression for Gria2, Gria3, and Grin2a and increased GluD2 immunoreactivity. Finally, dystrophin-null mice showed decreased brain mRNA expression of P2rx7 and several inflammatory mediators. The data suggest that PCs target different dystrophin isoforms to molecularly and functionally distinct populations of synapses. In contrast to muscle, dystrophinopathy in brain leads to the dampening of the local immune system.

  相似文献   

18.
Employing pulsed field gradient electrophoresis, we constructed a 4.5 million bp (Mb) Sfil restriction map of the human X-chromosomal region p21, harboring genes for Duchenne (DMD) and Becker Muscular Dystrophy. In a DMD patient with additional chronic granulomatosis and retinitis pigmentosa, the proximal 3.5 Mb is deleted. Another DMD patient, with additional glycerol kinase deficiency and adrenal hypoplasia, lacks at least 3.3 Mb in the middle region, including marker C7 but not B24, placing C7 closer to DMD. Another DMD patient has a partial pERT-87 deletion of minimally 140 kb. Truncated Sfil fragments in a female X:21 translocation patient place the junction probe XJ1.1 115 kb from the distal end of the normal fragment. Probe pERT-84 maps to the same fragment, within 750 kb of XJ1.1.  相似文献   

19.
Summary We report two male cousins with Duchenne muscular dystrophy (DMD) in whom cytogenetic studies have shown a small interstitial deletion at Xp21. The lesion is readily detectable in patients and carriers by flow cytometry which indicates that approximately 6000 kb of DNA are deleted in each case. The DNA markers OTC, C7, and B24 are present in the deleted X chromosome but 87-8, 87-1, and 754 are absent. Despite apparently identical deletions one affected boy has profound mental handicap while the other is only mildly retarded. The results confirm the assignment of familial DMD to Xp21 and illustrate the value of flow cytometry in improving the precision of chromosome analysis. We have also undertaken flow cytometry in a cell line from a previously reported DMD patient with a de novo Xp21 deletion who had, in addition, chronic granulomatous disease, retinitis pigmentosa, and the McLeod syndrome. The results indicate that the amount of DNA deleted from the X is similar in both families despite the striking differences in phenotype.  相似文献   

20.
By cloning the endpoints of a DMD-associated deletion, we have "jumped" 1100 kb from pERT87-1 (DSX164) to a new locus designated J66 (DXS268), mapping distally within the Duchenne muscular dystrophy (DMD) gene. Both J66 and JBir are mapped by field-inversion gel electrophoresis and detect abnormal SfiI fragments in DMD patients and distal DMD-associated X; autosome translocations. Our long-range map extends the physical map of the DMD gene from 800 to 2000 kb (2 Mb) and increases the mapped portion of Xp21 to approximately 8 Mb. The position of the glycerol kinase gene and the adrenal hypoplasia locus are further confined to the region between J66 and the nearest distal probe L1-4. This region spans at least 1.5 Mb. The multiallelic J66 polymorphism has immediate application in the diagnosis of DMD and generally appears to be distal to DMD mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号