首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The time dependence of magnetic field effects on light absorption by triplet-state and radical ions in quinone-depleted reaction centers of Rhodopseudomonas sphaeroides strain R-26 has been investigated. Measurements on the time scale of the hyperfine interaction in the radical pair [(BChl)2+. ...BPh-.)] provided kinetic data characterizing the recombination process. The results have been interpreted in terms of a recently proposed model that assumes an intermediate electron acceptor (close site) between the bacteriochlorophyll "special pair" (BChl)2 and the bacteriopheophytin BPh (distant site). Recombination is assumed to proceed through this intermediate acceptor. The experiments led to effective recombination rates for the singlet and triplet channel: k(Seff) = 3.9 . 107 s-1 and k(Teff) = 7.4 . 10(8) s-1. These correspond to recombination rates ks = 1 . 10(1) s-1 and kT = 7.1 . 10(11) s-1 in the close configuration. The upper bound of the effective spin dephasing rate k2eff approximately equal to 1 . 10(9) s-1 is identical with the rate of the electron hopping between the distant site of zero spin exchange interaction and the close site of large interaction. Interpretation of data for the case of direct recombination yields the recombination rates, spin dephasing rate, and exchange interaction in a straightforward way.  相似文献   

2.
Type I reaction centers (RCs) are multisubunit chlorophyll-protein complexes that function in photosynthetic organisms to convert photons to Gibbs free energy. The unique feature of Type I RCs is the presence of iron-sulfur clusters as electron transfer cofactors. Photosystem I (PS I) of oxygenic phototrophs is the best-studied Type I RC. It is comprised of an interpolypeptide [4Fe-4S] cluster, F(X), that bridges the PsaA and PsaB subunits, and two terminal [4Fe-4S] clusters, F(A) and F(B), that are bound to the PsaC subunit. In this review, we provide an update on the structure and function of the bound iron-sulfur clusters in Type I RCs. The first new development in this area is the identification of F(A) as the cluster proximal to F(X) and the resolution of the electron transfer sequence as F(X)-->F(A)-->F(B)-->soluble ferredoxin. The second new development is the determination of the three-dimensional NMR solution structure of unbound PsaC and localization of the equal- and mixed-valence pairs in F(A)(-) and F(B)(-). We provide a survey of the EPR properties and spectra of the iron-sulfur clusters in Type I RCs of cyanobacteria, green sulfur bacteria, and heliobacteria, and we summarize new information about the kinetics of back-reactions involving the iron-sulfur clusters.  相似文献   

3.
The bacterial reaction center couples light-induced electron transfer to proton pumping across the membrane by reactions of a quinone molecule Q(B) that binds two electrons and two protons at the active site. This article reviews recent experimental work on the mechanism of the proton-coupled electron transfer and the pathways for proton transfer to the Q(B) site. The mechanism of the first electron transfer, k((1))(AB), Q(-)(A)Q(B)-->Q(A)Q(-)(B), was shown to be rate limited by conformational gating. The mechanism of the second electron transfer, k((2))(AB), was shown to involve rapid reversible proton transfer to the semiquinone followed by rate-limiting electron transfer, H(+)+Q(-)(A)Q(-)(B) ifQ(-)(A)Q(B)H-->Q(A)(Q(B)H)(-). The pathways for transfer of the first and second protons were elucidated by high-resolution X-ray crystallography as well as kinetic studies showing changes in the rate of proton transfer due to site directed mutations and metal ion binding.  相似文献   

4.
The photosynthetic reaction center (RC) is the first membrane protein whose three-dimensional structure was revealed at the atomic level by X-ray crystallograph more than fifteen years ago. Structural information about RC made a great contribution to the understanding of the reaction mechanism of the complicated membrane protein complex. High-resolution structures of RCs from three photosynthetic bacteria are now available, namely, those from two mesophilic purple non-sulfur bacteria, Blastochloris viridis and Rhodobacter sphaeroides, and that from a thermophilic purple sulfur bacterium, Thermochromatium tepidum. In addition, a variety of structural studies, mainly by X-ray crystallography, are still being performed to give more detailed insight into the reaction mechanism of this membrane protein. This review deals with structural studies of bacterial RC complexes, and a discussion about the electron transfer reaction between RCs and electron donors is the main focus out of several topics addressed by these structural studies. The structural data from three RCs and their electron donors provided reliable models for molecular recognition in the primary step of bacterial photosynthesis.  相似文献   

5.
During photosynthesis light energy is converted into energy of chemical bonds through a series of electron and proton transfer reactions. Over the first ultrafast steps of photosynthesis that take place in the reaction center (RC) the quantum efficiency of the light energy transduction is nearly 100%. Compared to the plant and cyanobacterial photosystems, bacterial RCs are well studied and have relatively simple structure. Therefore they represent a useful model system both for manipulating of the electron transfer parameters to study detailed mechanisms of its separate steps as well as to investigate the common principles of the photosynthetic RC structure, function, and evolution. This review is focused on the research papers devoted to chemical and genetic modifications of the RCs of purple bacteria in order to study principles and mechanisms of their functioning. Investigations of the last two decades show that the maximal rates of the electron transfer reactions in the RC depend on a number of parameters. Chemical structure of the cofactors, distances between them, their relative orientation, and interactions to each other are of great importance for this process. By means of genetic and spectral methods, it was demonstrated that RC protein is also an essential factor affecting the efficiency of the photochemical charge separation. Finally, some of conservative water molecules found in RC not only contribute to stability of the protein structure, but are directly involved in the functioning of the complex.  相似文献   

6.
This review presents a broad overview of the research that enabled the structure determination of the bacterial reaction centers from Blastochloris viridis and Rhodobacter sphaeroides, with a focus on the contributions from Duysens, Clayton, and Feher. Early experiments performed in the laboratory of Duysens and others demonstrated the utility of spectroscopic techniques and the presence of photosynthetic complexes in both oxygenic and anoxygenic photosynthesis. The laboratories of Clayton and Feher led efforts to isolate and characterize the bacterial reaction centers. The availability of well-characterized preparations of pure and stable reaction centers allowed the crystallization and subsequent determination of the structures using X-ray diffraction. The three-dimensional structures of reaction centers revealed an overall arrangement of two symmetrical branches of cofactors surrounded by transmembrane helices from the L and M subunits, which also are related by the same twofold symmetry axis. The structure has served as a framework to address several issues concerning bacterial photosynthesis, including the directionality of electron transfer, the properties of the reaction center-cytochrome c 2 complex, and the coupling of proton and electron transfer. Together, these research efforts laid the foundation for ongoing efforts to address an outstanding question in oxygenic photosynthesis, namely the molecular mechanism of water oxidation.  相似文献   

7.
The core of the photosynthetic reaction center from the purple non-sulfur bacterium Rhodobacter sphaeroides is a quasi-symmetric heterodimer, providing two potential pathways for transmembrane electron transfer. Past measurements have demonstrated that only one of the two pathways (the A-side) is used to any significant extent upon excitation with red or near-infrared light. Here, it is shown that excitation with blue light into the Soret band of the reaction center gives rise to electron transfer along the alternate or B-side pathway, resulting in a charge-separated state involving the anion of the B-side bacteriopheophytin. This electron transfer is much faster than normal A-side transfer, apparently occurring within a few hundred femtoseconds. At low temperatures, the B-side charge-separated state is stable for at least 1 ns, but at room temperature, the B-side bacteriopheophytin anion is short-lived, decaying within approximately 15 ps. One possible physiological role for B-side electron transfer is photoprotection, rapidly quenching higher excited states of the reaction center.  相似文献   

8.
The efficiency of triplet energy transfer from the special pair (P) to the carotenoid (C) in photosynthetic reaction centers (RCs) from a large family of mutant strains has been investigated. The mutants carry substitutions at positions L181 and/or M208 near chlorophyll-based cofactors on the inactive and active sides of the complex, respectively. Light-modulated electron paramagnetic resonance at 10 K, where triplet energy transfer is thermally prohibited, reveals that the mutations do not perturb the electronic distribution of P. At temperatures > or = 70 K, we observe reduced signals from the carotenoid in most of the RCs with L181 substitutions. In particular, triplet transfer efficiency is reduced in all RCs in which a lysine at L181 donates a sixth ligand to the monomeric bacteriochlorophyll B(B). Replacement of the native Tyr at M208 on the active side of the complex with several polar residues increased transfer efficiency. The difference in the efficiencies of transfer in the RCs demonstrates the ability of the protein environment to influence the electronic overlap of the chromophores and thus the thermal barrier for triplet energy transfer.  相似文献   

9.
In photosynthetic organisms, the utilization of solar energy to drive electron and proton transfer reactions across membranes is performed by pigment-protein complexes including bacterial reaction centers (BRCs) and photosystem II. The well-characterized BRC has served as a structural and functional model for the evolutionarily-related photosystem II for many years. Even though these complexes transfer electrons and protons across cell membranes in analogous manners, they utilize different secondary electron donors. Photosystem II has the unique ability to abstract electrons from water, while BRCs use molecules with much lower potentials as electron donors. This article compares the two complexes and reviews the factors that give rise to the functional differences. Also discussed are the modifications that have been performed on BRCs so that they perform reactions, such as amino acid and metal oxidation, which occur in photosystem II.  相似文献   

10.
The reorganization energy (lambda) for electron transfer from the primary electron donor (P*) to the adjacent bacteriochlorophyll (B) in photosynthetic bacterial reaction centers is explored by molecular-dynamics simulations. Relatively long (40 ps) molecular-dynamics trajectories are used, rather than free energy perturbation techniques. When the surroundings of the reaction center are modeled as a membrane, lambda for P* B --> P+ B- is found to be approximately 1.6 kcal/mol. The results are not sensitive to the treatment of the protein's ionizable groups, but surrounding the reaction center with water gives higher values of lambda (approximately 6.5 kcal/mol). In light of the evidence that P+ B- lies slightly below P* in energy, the small lambda obtained with the membrane model is consistent with the speed and temperature independence of photochemical charge separation. The calculated reorganization energy is smaller than would be expected if the molecular dynamics trajectories had sampled the full conformational space of the system. Because the system does not relax completely on the time scale of electron transfer, the lambda obtained here probably is more pertinent than the larger value that would be obtained for a fully equilibrated system.  相似文献   

11.
The absorption changes that occur in reaction centers of the photosynthetic bacterium Rhodopseudomonas sphaeroides during the initial photochemical electron-transfer reaction have been examined. Measurements were made between 740 and 1300 nm at 295 and 80 K by using a pulse-probe technique with 610-nm, 0.8-ps flashes. An excited singlet state of the bacteriochlorophyll dimer P* was found to give rise to stimulated emission with a spectrum similar to that determined previously for fluorescence from reaction centers. The stimulated emission was used to follow the decay of P*; its lifetime was 4.1 +/- 0.2 ps at 295 K and 2.2 +/- 0.1 ps at 80 K. Within the experimental uncertainty, the absorption changes associated with the formation of a bacteriopheophytin anion, Bph-, develop in concert with the decay of P* at both temperatures, as does the absorption increase near 1250 nm due to the formation of the cation of P, P+. No evidence was found for the formation of a bacteriochlorophyll anion, Bchl-, prior to the formation of Bph-. This is surprising, because in the crystal structure of the Rhodopseudomonas viridis reaction center [Deisenhofer, J., Epp, O., Miki, K., Huber, R., & Michel, H. (1984) J. Mol. Biol. 180, 385-398] a Bchl is located approximately in between P and the Bph. It is possible that Bchl- (or Bchl+) is formed but, due to kinetic or thermodynamic constraints, is never present at a sufficient concentration for us to observe. Alternatively, a virtual charge-transfer state, such as P+Bchl-Bph or PBchl+Bph-, could serve to lower the energy barrier for direct electron transfer between P* and the Bph.  相似文献   

12.
The magnitudes of inter-chromophore interactions in bacterial photosynthetic reaction centers are investigated by measuring absorption and Stark spectra of reaction centers in which monomeric chromophores are modified and in a novel triplet mutant which lacks the special pair. The circular dichroism spectrum of the triple mutant reaction center was also measured. Only small changes in the spectroscopic properties are observed, as has also been found for several types of reaction centers in which the absorption or chemical properties of a chromophore are altered by site-specific mutations. We conclude that the electronic absorption, circular dichroism and Stark features of the special pair and the monomeric chromophores in the reaction center are relatively insensitive to inter-chromophore interactions.  相似文献   

13.
H.-J. Apell  M. Snozzi  R. Bachofen 《BBA》1983,724(2):258-277
(1) Reaction center-lipid complexes were extracted into octane solutions. Different methods for generating an assymetric membrane distribution of reaction centers are discussed, which allow the measurement of electrical signals upon illumination. (2) The dichroism of the chromophoric groups in the reaction centers was investigated in planar lipid bilayers and the angle β between each transition moment and the normal to the membrane could be determined to be β(757 nm) = 29.5 ± 1.2, β(801 nm) = 34 ± 1.0 and β(860 nm) = 41.3 ± 0.9°. (3) The kinetics of the reaction centers from Rhodopseudomonas sphaeroides were analysed by electrical measurements and the relevant rate constants could be determined. In addition, the interaction between reaction centers and the intramembrane, ubiquinone-containing pool was investigated and described in a kinetic model. (4) The interaction between the electron-donating ferrocytochromes exhibited two distinguishable sources, a fast accessible, membrane-bound pool, which is limited by diffusion, and a pool consisting of an aqueous solution of ferrocytochrome c, which is accessible with a slower rate constant.  相似文献   

14.
Light-induced structural changes in photosynthetic reaction centers from Rhodobacter sphaeroides were investigated using two approaches. Cu2+ was used as a paramagnetic structural probe. The EPR spectrum of Cu2+ incorporated into the metal-depleted reaction centers was affected by 1,10-phenanthroline, an electron transfer inhibitor substituting QB, which suggests a localization of Cu2+ in a vicinity of the Q B site. However, the spectrum was not influenced by low temperature (77 K) illumination of the sample which suggests that the copper ion position is not exactly the same as that of the iron ion. Freezing the reaction centers under illumination in the presence of potassium ferricyanide and 1,10-phenanthroline caused a change in the shape of the Cu2+ EPR spectrum in comparison to that of a sample frozen in darkness. These data indicate a change of the Cu2+ ligand symmetry owing to light-induced structural changes which are probably located near the acceptor side of the reaction center. Partial trypsinolysis of reaction centers was also used to locate the structural changes. Trypsin treatment in the dark and under illumination resulted in different peptide patterns as detected by gel electrophoresis and reverse-phase high-performance liquid chromatography. Partial amino-acid sequence analysis of a number of peptides, characteristic of either light- or dark-treated reaction centers, showed that they originated from the acceptor sides of the H and M subunits. The occurrence of light-induced structural differences in the H-subunit is consistent with the suggestion that it may be involved in regulating electron transfer in this part of the reaction center.  相似文献   

15.
The initial electron transfer steps in pigment modified reaction centers, where bacteriopheophytin is replaced by plant pheophytin (R26.Phe-a RCs) have been investigated over a wide temperature range by femtosecond time-resolved spectroscopy. The experimental data obtained in the maximum of the bacteriochlorophyll anion band at 1020 nm show the existence of a high and long-lived population of the primary acceptor P+BA even at 10 K. The data suggest a stepwise electron transfer mechanism with BA as primary acceptor also in the low temperature domain. A detailed data analysis suggests that the pigment modification leads to a situation with almost isoenergetic primary and secondary acceptor levels, approximately 450 cm–1 below P*. A Gaussian distribution (with = 400 cm –1) of the G values has to be assumed to account for the strong dispersive character of the kinetics in this sample. Based on these assumptions, a model is presented that reproduces the observed kinetics, heterogeneity and temperature dependence.  相似文献   

16.
Measurements were made of the extended x-ray absorption fine structure (EXAFS) of the iron site in photosynthetic reaction centers from the bacterium Rhodopseudomonas sphaeroides. Forms with two quinones, two quinones with added o-phenanthroline, and one quinone were studied. Only the two forms containing two quinones maintained their integrity and were analyzed. The spectra show directly that the added o-phenanthroline does not chelate the iron atom. Further analysis indicates that the iron is octahedrally coordinated by nitrogen and/or oxygen atoms located at various distances, with the average value of about 2.14 A. The analysis suggests that most of the ligands are nitrogens and that three of the nitrogen ligands belong to histidine rings. This interpretation accounts for several unusual features of the EXAFS spectrum. We speculate that the quinones are bound to the histidine rings in some manner. Qualitative features of the absorption edge spectra also are discussed and are related to the Fe-ligand distance.  相似文献   

17.
Transduction of free-energy by Rhodobacter sphaeroides reaction-center-light-harvesting-complex-1 (RCLH1) was quantified. RCLH1 complexes were reconstituted into liposomal membranes. The capacity of the RCLH1 complex to build up a proton motive force was examined at a range of incident light intensities, and induced proton permeabilities, in the presence of artificial electron donors and acceptors. Experiments were also performed with RCLH1 complexes in which the midpoint potential of the reaction center primary donor was modified over an 85-mV range by replacement of the tyrosine residue at the M210 position of the reaction center protein by histidine, phenylalanine, leucine or tryptophan. The intrinsic driving force with which the reaction center pumped protons tended to decrease as the midpoint potential of the primary donor was increased. This observation is discussed in terms of the control of the energetics of the first steps in light-driven electron transfer on the thermodynamic efficiency of the bacterial photosynthetic process. The light intensity at which half of the maximal proton motive force was generated, increased with increasing proton permeability of the membrane. This presents the first direct evidence for so-called backpressure control exerted by the proton motive force on steady-state cyclic electron transfer through and coupled proton pumping by the bacterial reaction center.  相似文献   

18.
The nuclear wavepacket formed by 20-fs excitation on the P* potential energy surface in native and mutant (YM210W and YM210L) reaction centers of Rhodobacter (Rb.) sphaeroides and Chloroflexus (C.) aurantiacus RCs was found to be reversibly transferred to the P+BA- surface at 120, 380, and 640-fs delays (monitored by measurements of BA- absorption at 1020-1028 nm). The reaction centers of YM210W(L) mutant show the most simple pattern of fs oscillations with a period of 230 fs in stimulated emission from P* and in the product P+BA-. The mechanisms of the electron transfer pathway between P* and BA and of the stabilization of the state P+BA- in bacterial reaction centers are discussed.  相似文献   

19.
Ginet N  Lavergne J 《Biochemistry》2000,39(51):16252-16262
The apparent equilibrium constant K'(2) for electron transfer between the primary (Q(A)) and secondary (Q(B)) quinone acceptors of the reaction center was measured in chromatophores of Rhodobacter capsulatus. In the presence of the oxidized primary donor P(+), we obtained a value of K'(2)(P(+)) approximately 100 at pH 7.2, based on the rates of recombination from P(+)Q(A-) and P(+)Q(B-). K'(2) was also measured in the presence of reduced P, from the damping of semiquinone oscillations during a series of single turnover flashes. A 5-fold smaller value, K'(2)(P) approximately 20, was found. Additional information on the interactions between the donor and acceptor sides was obtained by measuring the shift of the midpoint potential of P caused by the presence of Q(B-) or Q(A-)S (where S indicates the presence of the inhibitor stigmatellin). A stabilization of the oxidized state P(+) was observed in both instances, by 10 mV for Q(B-) and 30 mV for Q(A-)S. The larger stabilization of P(+)Q(A-)S with respect to P(+)Q(B-) does not account for the effect of P(+)/P on K'(2). Analysis of these results indicates that the interactions between P(+)/P and Q(A)/Q(A)(-) are markedly modified depending on the occupancy of the Q(B) pocket by ubiquinone or by stigmatellin. We propose that the large value of K'(2)(P(+)) results essentially from a conformational destabilization of the P(+)Q(A-) state, that is relieved when the proximal site of the Q(B) pocket is occupied by stigmatellin.  相似文献   

20.
We studied the accumulation of long-lived charge-separated states in reaction centers isolated from Rhodobacter sphaeroides, using continuous illumination, or trains of single-turnover flashes. We found that under both conditions a long-lived state was produced with a quantum yield of about 1%. This long-lived species resembles the normal P(+)Q(-) state in all respects, but has a lifetime of several minutes. Under continuous illumination the long-lived state can be accumulated, leading to close to full conversion of the reaction centers into this state. The lifetime of this accumulated state varies from a few minutes up to more than 20 min, and depends on the illumination history. Surprisingly, the lifetime and quantum yield do not depend on the presence of the secondary quinone, Q(B). Under oxygen-free conditions the accumulation was reversible, no changes in the normal recombination times were observed due to the intense illumination. The long-lived state is responsible for most of the dark adaptation and hysteresis effects observed in room temperature experiments. A simple method for quinone extraction and reconstitution was developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号