首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium transients in cerebellar granule cell presynaptic terminals.   总被引:13,自引:1,他引:12       下载免费PDF全文
Calcium ions act presynaptically to modulate synaptic strength and to trigger neurotransmitter release. Here we detect stimulus-evoked changes in residual free calcium ([Ca2+]i) in rat cerebellar granule cell presynaptic terminals. Granule cell axons, known as parallel fibers, and their associated boutons, were labeled with several calcium indicators. When parallel fibers were extracellularly activated with stimulus trains, calcium accumulated in the terminals, producing changes in the fluorescence of the indicators. During the stimulus train, the fluorescence change per pulse became progressively smaller with the high affinity indicators Fura-2 and calcium green-2 but remained constant with the low affinity dyes BTC and furaptra. In addition, fluorescence transients of high affinity dyes were slower than those of low affinity indicators, which appear to accurately report the time course of calcium transients. Simulations show that differences in the observed transients can be explained by the different affinities and off rates of the fluorophores. The return of [Ca2+]i to resting levels can be approximated by an exponential decay with a time constant of 150 ms. On the basis of the degree of saturation in the response of high affinity dyes observed during trains, we estimate that each action potential increases [Ca2+]i in the terminal by several hundred nanomolar. These findings indicate that in these terminals [Ca2+]i transients are much larger and faster than those observed in larger boutons, such as those at the neuromuscular junction. Such rapid [Ca2+]i dynamics may be found in many of the terminals in the mammalian brain that are similar in size to parallel fiber boutons.  相似文献   

2.
3.
Synthesis of acetylcholine receptors (AChR) can be affected by calcium, but the role played by this cation is controversial. The effect of changes in extracellular calcium, [Ca2+]o, on AChR synthesis was examined in a cultured mouse muscle cell line, BC3H-1. Reduction of [Ca2+]o for long periods (approximately 22 h) leads to a decrease in total surface AChR levels, a finding that is consistent with inhibition of AChR synthesis. A half-maximal reduction in surface AChR levels is observed when [Ca2+]o is decreased from 1.8 to approximately 5o microM. Under these conditions, however, total protein synthesis is also largely inhibited, suggesting that the effect of [Ca2+]o on AChR synthesis may be relatively non-specific. Increasing [Ca2+]i by adding the Ca2+ ionophore, A23187 (in the presence of 1.8 mM [Ca2+]o) also gives similar and significant reductions of both AChR and protein synthesis. Since the time course of changes in intracellular calcium [( Ca2+]i) produced by these manoeuvres is unknown, we examined the effects of briefer (1-6 h) reductions in [Ca2+]o and achieved a more specific reduction in AChR synthesis. A direct measurement of the changes in [Ca2+]i resulting from changes in [Ca2+]o was made using the fluorescent indicator Fura-2 and video fluorescence microscopy. Our results show that in BC3H-1 muscle cells the resting intracellular calcium decreases reversibly over 20 min when [Ca2+]o is decreased. We suggest that a reduction of [Ca2+]i produced by the lower [Ca2+]o underlies the reduction in AChR synthesis observed in these experiments.  相似文献   

4.
The inositol triphosphate (IP3) that results from hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) is generally accepted to be responsible for the mobilization of intracellular calcium. However, some studies suggest that low concentrations of agonists elevate cytosolic free calcium concentration ([Ca2+]i) without IP3 formation. Thus, in the present studies, a comparison of the temporal response of inositol phosphates (IP3, IP2 and IP) and [Ca2+]i to a wide range of bradykinin concentrations was used to examine the relation of these two signal transduction events in cultured human skin fibroblasts (GM3652). In addition, the effects of alterations in internal or external calcium on the response of these second messengers to bradykinin were determined. Bradykinin stimulated accumulation of inositol phosphates and a rise of [Ca2+]i in a time- and dose-dependent manner. Decreasing the bradykinin concentration from 1 microM to 0.1 microM increased the time until the IP3 peak, and when the bradykinin concentration was reduced to 0.01 microM IP3 was not detected. [Ca2+]i was examined under parallel conditions. As the bradykinin concentration was reduced from 1 microM to 0.01 microM, the time to reach the peak of [Ca2+]i increased progressively, but the magnitude of the peak was unaltered. These two second messengers were variably dependent on external calcium. Although the bradykinin-stimulated initial spike of [Ca2+]i did not depend on extracellular calcium, the subsequent sustained levels of [Ca2+]i were abolished in calcium free medium. The bradykinin-stimulated inositol phosphate formation was not dependent on the extracellular calcium nor on the elevation of [Ca2+]i that was produced with Br-A23187. These results demonstrate that bradykinin-induced IP3 formation can be independent of [Ca2+]i and of external calcium, whereas changes in [Ca2+]i are partially dependent on external calcium.  相似文献   

5.
D D Friel  R W Tsien 《Neuron》1992,8(6):1109-1125
Sympathetic neurons display robust [Ca2+]i oscillations in response to caffeine and mild depolarization. Oscillations occur at constant membrane potential, ruling out voltage-dependent changes in plasma membrane conductance. They are terminated by ryanodine, implicating Ca(2+)-induced Ca2+ release. Ca2+ entry is necessary for sustained oscillatory activity, but its importance varies within the oscillatory cycle: the slow interspike rise in [Ca2+]i requires Ca2+ entry, but the rapid upstroke does not, indicating that it reflects internal Ca2+ release. Sudden alterations in [Ca2+]o, [K+]o, or [caffeine]o produce immediate changes in d[Ca2+]i/dt and provide information about the relative rates of surface membrane Ca2+ transport as well as uptake and release by internal stores. Based on our results, [Ca2+]i oscillations can be explained in terms of coordinated changes in Ca2+ fluxes across surface and store membranes.  相似文献   

6.
In mammalian oocytes, fertilization-associated calcium [Ca2+]i oscillations are responsible for the activation of development. The mechanism(s) by which the sperm triggers the initial [Ca2+]i rise and supports long-lasting oscillations is not resolved. It has been proposed that the sperm may interact with receptors in the oocyte's plasma membrane and engage intracellular signaling pathways that result in Ca2+ release. A different line of investigation suggests that upon sperm-oocyte fusion, a sperm cytosolic factor is released into the oocyte which interacts with unknown cytosolic targets, and generates [Ca2+]i oscillations. We will discuss the most recent evidence for both lines of thought and demonstrate that injections of sperm crude extracts (SF) into mammalian oocytes trigger [Ca2+]i oscillations that support in vitro parthenogenetic development to the blastocyst stage.  相似文献   

7.
Osteoclast activity is thought to be regulated by calcitonin, as well as by the level of ionised calcium generated locally as a result of bone resorption. The exposure of isolated osteoclasts to elevated ambient calcium levels has been shown to lower resorptive activity and to reduce rates of enzyme release. We have attempted to determine whether these effects are mediated by a divalent cation-sensitive "calcium receptor," as has been reported for the parathyroid chief cells. Thus, we compared the effect of alkaline earth metal cations on osteoclast function using a morphometric measure of bone resorption and a spectrophotometric method for measuring the activity of the released enzyme, acid phosphatase. The exposure of resorbing osteoclasts to between 5 and 20 mM extracellular ionised calcium ([Ca2+]e) inhibited bone resorption and enzyme release to an extent similar to that seen with 0.1 to 10 microM ionomycin. The effect of combining submaximal concentrations of [Ca2+]e (15 mM) and ionomycin (0.1 microM) resulted in additivity, suggesting that the influence of [Ca2+]e on bone resorption was mediated by elevated intracellular calcium levels ([Ca2+]i). The other cations studied (Mg2+, Ba2+) were effective and elicited similar effects, although some required higher concentrations. Thus, whilst Ca2+ and Mg2+ were effective at 10 to 15 mM levels, Ba2+ was effective only at high (20 mM) concentrations. These findings are consistent with an influence of [Ca2+]e on osteoclast activity through an action on a surface membrane "calcium receptor" that can also bind other divalent cations, rather than by passive changes of [Ca2+]i with [Ca2+]e elevation.  相似文献   

8.
Temporal changes in the phosphorylation level of synaptosomal phosphoproteins following depolarization of synaptosomes were investigated under conditions restricting calcium influx. High-K+ depolarization in media of low [Na+]o (32 mM during preincubation and depolarization) at pH 6.5 resulted in a pronounced fall in the cytosolic free calcium concentration transient, and in a reduction in the initial K(+)-stimulated 45Ca2+ uptake and endogenous acetylcholine release relative to the values obtained with control synaptosomes (preincubated and depolarized in Na(+)-based media). This reduction was paralleled by a decrease in the rate of dephosphorylation of the synaptosomal protein P96. A slower dephosphorylation of P96 also was observed on exposure to 20 microM veratridine at 0.5 mM external calcium. Our results indicate that, similar to synapsin I phosphorylation, P96 dephosphorylation shows a graded response to the amount of calcium entering the presynaptic terminal. Depolarization of synaptosomes under conditions restricting the influx of calcium revealed a transient dephosphorylation (reversed within 10 s) of the phosphoprotein P65. The possible significance of this finding to the process of neurotransmitter release is discussed.  相似文献   

9.
The relationship between thrombin-evoked changes in intracellular calcium concentration [( Ca2+]i) and aggregation was examined in Indo-1-loaded human platelets. The stimulus-induced intracellular calcium release and external calcium influx, as well as platelet aggregation, were studied in the same cell preparation. A close correlation between the sustained high [Ca2+]i level, depending on calcium entry, and the aggregation response was found. Gramicidin, at a concentration high enough to induce membrane depolarization, strongly inhibited the calcium influx and aggregation, but did not influence the thrombin-induced intracellular calcium release. We conclude that calcium influx through depolarization-inhibited calcium channels is a prerequisite of thrombin-induced platelet aggregation.  相似文献   

10.
Desrues L  Castel H  Malagon MM  Vaudry H  Tonon MC 《Peptides》2005,26(10):1936-1943
In frog melanotrope cells, gamma-aminobutyric acid (GABA) induces a biphasic effect, i.e. a transient stimulation followed by a more sustained inhibition of alpha-MSH release, and both phases of the GABA effect are mediated by GABAA receptors. We have previously shown that the stimulatory phase evoked by GABAA receptor agonists can be accounted for by calcium entry. In the present study, we have investigated the involvement of the chloride flux on GABA-induced [Ca2+]c increase and alpha-MSH release. We show that GABA evokes a concentration-dependent [Ca2+]c rise through specific activation of the GABAA receptor. The GABA-induced [Ca2+]c increase results from opening of voltage-activated L- and N-type calcium channels, and sodium channels. Variations of the extracellular Cl- concentration revealed that GABA-induced [Ca2+]c rise and alpha-MSH release both depend on the Cl- flux direction and driving force. These observations suggest for the first time that GABA-gated Cl- efflux provokes an increase in [Ca2+]c increase that is responsible for hormone secretion.  相似文献   

11.
Calcium and calcium-dependent processes have been hypothesized to be involved in the induction of epilepsy. It has been shown that epileptic neurons have altered calcium homeostatic mechanisms following epileptogenesis in the hippocampal neuronal culture (HNC) and pilocarpine models of epilepsy. To investigate the mechanisms causing these alterations in [Ca2+]i homeostatic processes following epileptogenesis, we utilized the HNC model of in vitro 'epilepsy' which produces spontaneous recurrent epileptiform discharges (SREDs). Using [Ca2+]i imaging, studies were initiated to evaluate the mechanisms mediating these changes in [Ca2+]i homeostasis. 'Epileptic' neurons required much longer to restore a glutamate induced [Ca2+]i load to baseline levels than control neurons. Inhibition of Ca2+ entry through voltage and receptor gated Ca2+ channels and stretch activated Ca2+ channels had no effect on the prolonged glutamate induced increase in [Ca2+]i in epileptic neurons. Employing thapsigargin, an inhibitor of the sarco/endoplasmic reticulum calcium ATPase (SERCA), it was shown that thapsigargin inhibited sequestration of [Ca2+]i by SERCA was significantly decreased in 'epileptic' neurons. Using Ca2+ induced Ca2+ release (CICR) cell permeable inhibitors for the ryanodine receptor (dantrolene) and the IP3 receptor (2-amino-ethoxydiphenylborate, 2APB) mediated CICR, we demonstrated that CICR was significantly augmented in the 'epileptic' neurons, and determined that the IP3 receptor mediated CICR was the major release mechanism altered in epileptogenesis. These data indicate that both inhibition of SERCA and augmentation of CICR activity contribute to the alterations accounting for the impaired calcium homeostatic processes observed in 'epileptic' neurons. The results suggest that persistent changes in [Ca2+]i levels following epileptogenesis may contribute to the long-term plasticity changes manifested in epilepsy and that understanding the basic mechanisms mediating these changes may provide an insight into the development of novel therapeutic approaches to treat epilepsy and prevent or reverse epileptogenesis.  相似文献   

12.
The intracellular mechanisms regulating the process of evoked neurotransmitter release were studied in the cloned neurosecretory cell line PC12. Various agents were employed that were known, from previous studies in other systems, to stimulate release in a manner either strictly dependent or independent of the concentration of extracellular Ca2+, [Ca2+]o. Three parameters were investigated in cells suspended in either Ca2+-containing or Ca2+-free Krebs-Ringer media: release of previously accumulated [3H]dopamine; average free cytoplasmic Ca2+ concentration, [Ca2+]i (measured by the quin2 technique); and cell ultrastructure, with special reference to the number and structure of secretion granules. The release induced by the ionophores transporting monovalent cations, X537A and monensin, occurred concomitantly with profound alterations of secretory granule structure (swelling and dissolution of the dense core). These results suggest that the effect of these drugs is due primarily to leakage of dopamine from granules to the cytoplasm and extracellular space. In contrast, the changes induced by other stimulatory drugs used concerned not the structure but the number of secretory granules, indicating that with these drugs stimulation of exocytosis is the phenomenon underlying the increased transmitter release. The release response induced by the Ca2+-ionophore ionomycin was dependent on [Ca2+]o, occurred rapidly, was concomitant with a marked rise of [Ca2+]i, and ceased after 1-2 min even though [Ca2+]i remained elevated for many minutes. 12-O-tetradecanoylphorbol, 13-acetate and diacylglycerol (both of which are known as activators of protein kinase C) induced slow responses almost completely independent of [Ca2+]o and not accompanied by changes of [Ca2+]i. Combination of an activator of protein kinase C with a low concentration of ionomycin failed to modify the [Ca2+]i rise induced by the ionophore, but elicited a marked potentiation of the release response, which was two- to fourfold larger than the sum of the responses elicited separately by either drugs. Thus, activation of protein kinase C seems to play an important role in the regulation of exocytosis in neurosecretory cells, possibly by increasing and maintaining the sensitivity to Ca2+ of the intracellular apparatus regulating granule discharge by exocytosis.  相似文献   

13.
A role for glycine in the gating of plant NMDA-like receptors   总被引:2,自引:0,他引:2  
The amino acid glycine has a well-established role in signalling in the mammalian central nervous system. For example, glycine acts synergistically with the major excitatory neurotransmitter, glutamate, to regulate the influx of ions such as calcium, through N-methyl-d-aspartate (NMDA) receptors. Plants possess NMDA-like receptors, generically referred to as glutamate receptors (GLRs), named on the basis of their presumed ligand, glutamate. Previously, glycine has not been implicated in plant GLR activity or any other aspect of plant signalling. Using transgenic Arabidopsis seedlings expressing aequorin to monitor ligand-mediated changes in the cytosolic concentration of Ca2+ ([Ca2+]cyt), the data presented herein show that glutamate and glycine act synergistically to control ligand-mediated gating of calcium in plants. Glutamate and glycine synergism also regulates hypocotyl elongation. Transient increases in [Ca2+]cyt mediated by glutamate and glycine, as well as hypocotyl elongation, were inhibited by 6,7-dinitroquinoxaline-2,3 dione (DNQX), a competitive inhibitor of animal GLRs. Using a multiscale docking algorithm in combination with a molecular model of the ligand-binding domain of plant GLRs, evidence is provided indicating that glycine, and not glutamate, is likely to be the natural ligand for most plant GLR subunits. These findings uncover a hitherto unconsidered role for glycine signalling in plants, and suggest that the synergistic action of glutamate and glycine at NMDA-like receptors predates the divergence of plants and animals.  相似文献   

14.
Cytosolic free calcium and ATP in synaptosomes after ischemia   总被引:1,自引:0,他引:1  
Elevations in cytosolic free calcium ([Ca2+]i) precede electrophysiological alterations due to ischemia in vivo. An in vitro model of these changes would help to elucidate their molecular basis. A model of postdecapitative ischemia was used to study these interactions. Nerve endings (i.e. synaptosomes) were isolated either immediately after decapitation or at various time periods after decapitation. Synaptosomal [Ca2+]i and ATP concentrations were determined during a basal period and following depolarization. K(+)-depolarization produced an initial spike of [Ca2+]i that was followed by a new equilibrium value. Ischemia elevated the basal [Ca2+]i and the new equilibrium [Ca2+]i after KCl but suppressed the [Ca2+]i spike. However, the difference between the basal [Ca2+]i and the new equilibrium [Ca2+]i after K(+)-depolarization did not vary with ischemia. Although ischemia reduced ATP, K(+)-depolarization did not alter ATP concentrations in either the controls or the ischemia group, which suggests that synaptosomal mitochondria can meet an energy demand after ischemia. ATP was inversely related to the basal or the new equilibrium [Ca2+]i following depolarization. These changes in [Ca2+]i may underlie the alterations in neurotransmitter release and cell death following ischemia. This appears to be a useful model in which to study the molecular basis of ischemia induced changes in [Ca2+]i.  相似文献   

15.
Release of preaccumulated, tritium-labeled dopamine ([3H]DA) from preparations of isolated nerve terminals (synaptosomes) of rat median eminence (ME) and corpus striatum (CS) was examined over short time intervals (1-20 s). In both preparations, basal efflux of [3H]DA was linear with time. Depolarization with high K+ resulted in an initial rapid release of [3H]DA which stabilized by 20 s, whereas veratridine elicited an increased rate of release over basal levels that was linear over the first 20 s. The calculated rate constants of release for both the initial phase of K+- and the veratridine-stimulated release were approximately threefold greater in CS than in ME synaptosomes. The major component of the high K+-induced release of [3H]DA from both synaptosome preparations increased as a graded function of [Ca2+]o. However, a smaller component, independent of external Ca2+, existed in both ME and CS synaptosomes. Increasing the [Mg2+] in the external solution resulted in a right shift of both the [K+]o and the [Ca2+]o dose-response curves, consistent with actions of Mg2+ on screening surface membrane charges and blocking voltage-dependent Ca2+ channels. In all studies, steady-state uptake of the [3H]DA was about twofold greater into CS than into ME synaptosomes. Moreover, the fraction of incorporated [3H]DA released by stimulation from the CS was much greater than that released from ME synaptosomes. These data are consistent with differences between these two types of dopaminergic terminals with respect to packaging and/or distribution of the accumulated neurotransmitter in intraneuronal pools, as well as marked differences in the apparent kinetics of DA release.  相似文献   

16.
The biochemical basis of Ca2+ mobilization after anti-Ig binding to B cell Ag-R has been further characterized by flow cytometric analysis of indo-1-loaded B cells. The ability to distinguish intracellular Ca2+ release from extracellular Ca2+ influx by using an extracellular calcium depletion-repletion approach has allowed us to study the relationship between the mobilization of Ca2+ from these sources. Studies involving manipulation of the Ca2+ gradient across the plasma membrane indicate that a significant portion of the Ca2+ mobilization response is preserved even when the normal inwardly directed Ca2+ gradient is reversed. In the presence of an extracellular calcium concentration ([Ca2+]o) of 10 microM, the response to anti-Ig is not blocked by the organic Ca2+ channel blockers. This response is not reduced by further depletion of [Ca2+]o by EGTA Ca2+-binding buffers. Thus, the Ca2+ response that occurs when [Ca2+]o less than or equal to 10 microM represents intracellular calcium release. Analysis of B cells stimulated with anti-Ig in low Ca2+ medium ([Ca2+]o = less than 10 microM) followed by repletion of [Ca2+]o to 1 to 5 mM reveals that a significant increase in permeability of the plasma membrane to Ca2+ develops in the stimulated cells. The resultant Ca2+ influx is nimodipine (20 microM) sensitive. Both intracellular Ca2+ release and Ca2+ influx are reduced in parallel as the concentration of anti-Ig stimulus is decreased, suggesting that Ca2+ influx may be coupled to the release of intracellular stores. Neomycin blocks anti-Ig-stimulated formation of inositol trisphosphate, which mediates release of Ca2+ from the endoplasmic reticulum. It also blocks the anti-Ig-induced release of intracellular Ca2+ stores as well as Ca2+ influx, indicating that both responses may be dependent upon phosphatidylinositol 4,5-bisphosphate hydrolysis.  相似文献   

17.
We report here that exposing cultured chromaffin cells to a low ionic strength medium (with sucrose in place of NaCl to maintain osmolarity) can induce a marked elevation in cytosolic Ca2+ concentration ([Ca2+]i) and catecholamine (CA) release. To determine the underlying mechanism, we first studied the effects of low [Na+]o on single cell [Ca2+]i (using fluo-3 as Ca2+ indicator) and CA release from many cells. In a Mg2+ and Ca2+-deficient medium, lowering the external concentration of Na2+ ([Na+]o) evoked CA secretion preceded by a transitory [Ca2+]i rise, the amplitude of which was inversely related to [Na+]o. By contrast, in the presence of either [Ca2+]o (2 mM) and [Mg2+]o (1.4 mM) or [Mg2+]o alone (3.4 mM), lowering the ionic strength was without effect. Furthermore, in a physiologic [Na+]o, [Ca2+]o and [Mg2+]o medium, two or three consecutive applications of the cholinergic agonist oxotremorine-M (oxo-M) consistently evoked a substantial [Ca2+]i rise. By contrast, consecutive applications of oxo-M in a Ca2+-deficient medium failed to evoke a rise in [Ca2+]i after the first exposure to the agonist. To clarify the underlying mechanism, we measured and compared the effects of low [Na+]o and the cholinergic agonists nicotine and oxo-M on changes in [Ca2+]i; we studied the effects of these agonists on both membrane potential, Vm (under current clamp conditions), and [Ca2+]i by single cell microfluorimetry (indo-1 as Ca2+ indicator). We observed that, in the presence of [Ca2+]o and [Mg2+]o, lowering [Na+]o had no effect on Vm. In a Ca2+-deficient medium, lowering [Na+]o depolarized the membrane from ca. –60 to –10 mV. As expected, we found that nicotine (10 M) depolarized the membrane (from ca. –60 to –20 mV) and simultaneously evoked a substantial [Ca2+]i rise that was [Ca2+]o-dependent. However, contrary to our expectations, we found that the muscarinic agonist oxo-M (50 M) also depolarized the membrane and induced an elevation in [Ca2+]i. Furthermore, both signals were blocked by D-tubocurarine, insinuating the nicotinic character of oxo-M in adrenal chromaffin cells from bovine. These results suggest that both nicotine and oxo-M stimulate Ca2+ entry, probably through voltage-gated Ca2+-channels. We also show here that oxo-M (and not low [Na+]o) stimulates phosphoinositide turnover.  相似文献   

18.
The modulation of the intrasynaptosomal concentration of Ca2+, [Ca2+]i, by Na+/Ca2+ exchange was studied using Indo-1 fluorescence. The electrochemical gradient of Na+ was manipulated by substituting Li+ or choline for Na+ in the external medium and, then, the influx of 45Ca2+ and the [Ca2+]i were measured. It was found that the increase in [Ca2+]i induced by K+ depolarization is lower if the value of [Ca2+]i has been previously raised by Na+/Ca2+ exchange, suggesting that Ca2+ entering by Na+/Ca2+ exchange reduces the Ca2+ entering by voltage-dependent calcium channels. Our results show that a value of [Ca2+]i of about 650 nM induced by Na+/Ca2+ exchange reduces by 50% the Ca2+ entering due to K+ depolarization and no Ca2+ enters through the channels if the [Ca2+]i is previously raised above about 800 nM. Furthermore, predepolarization of the synaptosomes in a Ca-free medium also inhibits by at least 40% the [Ca2+]i rise through Ca2+ channels. Thus, the results suggest that both predepolarization and [Ca2+]i rise due to Na+/Ca2+ exchange decrease the Ca2+ entering by voltage-sensitive Ca2+ channels. The Ca2+ entering by Na+/Ca2+ exchange might contribute to the regulation of neurotransmitter release. Our results also show that the presence of Li+ in the external medium decreases the buffering capacity of synaptosomes, probably by releasing Ca2+ from mitochondria by Li+/Ca2+ exchange.  相似文献   

19.
20.
Quantitation of lymphocyte intracellular free calcium signals using indo-1   总被引:2,自引:0,他引:2  
C S Owen 《Cell calcium》1988,9(3):141-147
The calcium-responsive fluorescent dye indo-1 has been used in lymphocyte suspensions to measure changes in internal free calcium concentration, [Ca2+]i, in response to crosslinking of cell surface immunoglobulin. The quantitation of [Ca2+]i requires that indo-am ester used to load the cells be completely hydrolyzed to the indo-1 form inside the cells. This is shown to be greatly facilitated in the lymphocyte by the detergent Pluronic F-127. The quantitation of [Ca2+]i transients also requires an estimate of the fraction of the cells which contribute to the observed changes. The use of excessive amounts of intracellular dye can buffer [Ca2+]i transients and this effect has been used to estimate the size of the pool of calcium which is available for release when the B cell is stimulated by anti-immunoglobulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号