首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract: Autosomal dominant familial amyotrophic lateral sclerosis (FALS) is associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Previous studies have implicated the involvement of metabolic dysfunction in ALS pathogenesis. To further investigate the biochemical features of FALS and sporadic ALS (SALS), we examined SOD activity and mitochondrial oxidative phosphorylation enzyme activities in motor cortex (Brodmann area 4), parietal cortex (Brodmann area 40), and cerebellum from control subjects, FALS patients with and without known SOD mutations, SALS patients, and disease controls (Pick's disease, progressive supranuclear palsy, diffuse Lewy body disease). Cytosolic SOD activity, predominantly Cu/Zn SOD, was decreased ∼50% in all regions in FALS patients with SOD mutations but was not significantly altered in other patient groups. Marked increases in complex I and II–III activities were seen in FALS patients with SOD mutations but not in SALS patients. We also measured electron transport chain enzyme activities in a transgenic mouse model of FALS. Complex I activity was significantly increased in the forebrain of 60-day-old G93A transgenic mice overexpressing human mutant SOD1, relative to levels in transgenic wild-type animals, supporting the hypothesis that the motor neuron disorder associated with SOD1 mutations involves a defect in mitochondrial energy metabolism.  相似文献   

2.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting motor neurons. Although most cases of ALS are sporadic, approximately 10% are inherited as an autosomal dominant trait. Mutations in the Cu/Zn superoxide dismutase gene (SOD 1) are responsible for a fraction of familial ALS (FALS). Screening our FALS kindreds by SSCP, we have identified mutations in 15 families, of which 9 have not been previously reported. Two of the new mutations alter amino acids that have never been implicated in FALS. One of them affects a highly conserved amino acid involved in dimer contact, and the other one affects the active-site loop of the enzyme. These two mutations reduce significantly SOD 1 enzyme activity in lymphoblasts. Our results suggest that SOD 1 mutations are responsible for > or = 13% of FALS cases.  相似文献   

3.
Abstract: Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease that is inherited as an autosomal dominant trait in ~ 10% of cases. Recently we and others identified several single-base mutations in the Cu/Zn superoxide dismutase (SOD1) gene in patients with familial ALS (FALS). Using single-strand conformational polymorphism, we studied the C to G mutation in exon 2 of the SOD1 gene (resulting in a leucine to valine substitution in position 38) in affected and unaffected members of a large Belgian family with FALS. We measured the SOD1 activity in red blood cell lysates in 14 members of this family, including the only surviving clinically affected patient. SOD1 activity of the family members carrying the mutation was less than half that of members without the mutation. In addition, in 11 patients with sporadic ALS and 11 age- and sex-matched controls, red blood cell SOD1 activity was normal. These studies indicate that SOD1 activity is reduced in these FALS patients but not in sporadic ALS patients. Moreover, this SOD1 enzyme abnormality is detectable years before onset of clinical ALS in carriers of this FALS mutation.  相似文献   

4.
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, adult-onset motor neuron disease that arises as a dominantly inherited trait in approximately 10% of ALS cases. Mutations in one gene, cytosolic Cu/Zn superoxide dismutase (SOD1), account for approximately 25% of familial ALS (FALS) cases. We have performed a genetic linkage screen in 16 pedigrees with FALS with no evidence for mutations in the SOD1 gene and have identified novel ALS loci on chromosomes 16 and 20. The analysis of these genes will delineate pathways implicated as determinants of motor-neuron viability and provide insights into possible therapies for ALS.  相似文献   

5.
Amyotrophic lateral sclerosis (ALS) is an adult-onset degenerative disorder characterized by the death of motor neurons in the cortex, brain stem, and spinal cord. Despite intensive research the basic pathophysiology of ALS remains unclear. Although most cases are sporadic, approximately 10% of ALS cases are familial (FALS). Mutations in the Cu/Zn superoxide dismutase (SOD1) gene cause approximately 20% of FALS. The gene(s) responsible for the remaining 80% of FALS remain to be found. Using a large European kindred without SOD1 mutation and with classic autosomal dominant adult-onset ALS, we have identified a novel locus by performing a genome scan and linkage analysis. The maximum LOD score is 4.5 at recombination fraction 0.0, for polymorphism D18S39. Haplotype analysis has identified a 7.5-cM, 8-Mb region of chromosome 18q21, flanked by markers D18S846 and D18S1109, as a novel FALS locus.  相似文献   

6.
Abstract: Some cases of autosomal dominant familial amyotrophic lateral sclerosis (FALS) are associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1), suggesting that oxidative damage may play a role in ALS pathogenesis. To further investigate the biochemical features of FALS and sporadic ALS (SALS), we examined markers of oxidative damage to protein, lipids, and DNA in motor cortex (Brodmann area 4), parietal cortex (Brodmann area 40), and cerebellum from control subjects, FALS patients with and without known SOD mutations, SALS patients, and disease controls (Pick's disease, progressive supranuclear palsy, diffuse Lewy body disease). Protein carbonyl and nuclear DNA 8-hydroxy-2'-deoxyguanosine (OH8dG) levels were increased in SALS motor cortex but not in FALS patients. Malondialdehyde levels showed no significant changes. Immunohistochemical studies showed increased neuronal staining for hemeoxygenase-1, malondialdehyde-modified protein, and OH8dG in both SALS and FALS spinal cord. These studies therefore provide further evidence that oxidative damage may play a role in the pathogenesis of neuronal degeneration in both SALS and FALS.  相似文献   

7.
Abstract: Some cases of autosomal-dominant familial amyotrophic lateral sclerosis (FALS) have been associated with mutations in SOD1 , the gene that encodes Cu/Zn superoxide dismutase (Cu/Zn SOD). We determined the concentrations (µg of Cu/Zn SOD/mg of total protein), specific activities (U/µg of total protein), and apparent turnover numbers (U/µmol of Cu/Zn SOD) of Cu/Zn SOD in erythrocyte lysates from patients with known SOD1 mutations. We also measured the concentrations and activities of Cu/Zn SOD in FALS patients with no identifiable SOD1 mutations, sporadic ALS (SALS) patients, and patients with other neurologic disorders. The concentration and specific activity of Cu/Zn SOD were decreased in all patients with SOD1 mutations, with mean reductions of 51 and 46%, respectively, relative to controls. In contrast, the apparent turnover number of the enzyme was not altered in these patients. For the six mutations studied, there was no correlation between enzyme concentration or specific activity and disease severity, expressed as either duration of disease or age of onset. No significant alterations in the concentration, specific activity, or apparent turnover number of Cu/Zn SOD were detected in the FALS patients with no identifiable SOD1 mutations, SALS patients, or patients with other neurologic disorders. That Cu/Zn SOD concentration and specific activity are equivalently reduced in erythrocytes from patients with SOD1 mutations suggests that mutant Cu/Zn SOD is unstable in these cells. That concentration and specific activity do not correlate with disease severity suggests that an altered, novel function of the enzyme, rather than reduction of its dismutase activity, may be responsible for the pathogenesis of FALS.  相似文献   

8.
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disorder involving the motor neurons of cortex, brain stem, and spinal cord. About 10% of all ALS patients are familial cases (FALS), of which 20% have mutations in the Cu, Zn-superoxide dismutase (SOD1) gene. The murine model for FALS, which overexpresses a FALS variant of the SOD1 gene, exhibits progressive limbic paralysis followed by death. Treatment of FALS mice with WHI-P131, a specific inhibitor of Janus kinase 3 (JAK3), increased survival by more than two months, suggesting that specific inhibitors of JAK3 may be useful in the treatment of human ALS. These results uniquely establish JAK3 as a novel molecular target for the treatment of FALS.  相似文献   

9.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that primarily involves the motor neuron system. Of all patients with ALS, approximately 5%-10% of them are familial and most of the others are sporadic. Superoxide dismutase 1 (SOD1) gene mutations are shown to be associated with about 20% of familial ALS (FALS) patients. FALS is neuropathologically classified into two subtypes: classical FALS in which degeneration is restricted to only motor neurons and FALS which is characterized by the degeneration of the posterior column in addition to the lesion of the motor neuron system. The neuronal Lewy body-like hyaline inclusion (LBHI) is a characteristic neuropathological marker of mutant SOD1-linked FALS with posterior column involvement. Inclusions similar to the neuronal LBHIs have been discovered in astrocytes in certain patients with FALS exhibiting SOD1 gene mutations. The purpose of this review is to discuss the novel neuropathological significance of the astrocytic hyaline inclusions (Ast-HIs) and neuronal LBHIs in brain tissues from individuals with the posterior-column-involvement-type FALS with SOD1 gene mutations. In hematoxylin and eosin preparations, both Ast-HIs and neuronal LBHIs are eosinophilic inclusions and sometimes show eosinophilic cores with paler peripheral halos. Immunohistochemically, both inclusions are intensely positive for SOD1. At the ultrastructural level, both inclusions consist of approximately 15-25 nm-sized granule-coated fibrils and granular materials. Immunoelectron microscopically, these abnormal granule-coated fibrils and granular materials are positive for SOD1. Therefore, the FALS disease process originating from SOD1 gene mutations occurs in astrocytes as well as neurons and is involved in the formation of both inclusions.  相似文献   

10.
The cause of neuronal death in amyotrophic lateral sclerosis (ALS) is unknown. Recently, it was found that some patients with autosomal-dominant familial ALS (FALS) have point mutations in the gene that encodes Cu/Zn superoxide dismutase (SOD1). In this study of postmortem brain tissue, we examined SOD activity and quantified protein carbonyl groups, a marker of oxidative damage, in samples of frontal cortex (Brodmann area 6) from 10 control patients, three FALS patients with known SOD1 mutations (FALS-1), one autosomal-dominant FALS patient with no identifiable SOD1 mutations (FALS-0), and 11 sporadic ALS (SALS) patients. Also, we determined the activities of components of the electron transport chain (complexes I, II-III, and IV) in these samples. The cytosolic SOD activity, which is primarily SOD1 activity, was reduced by 38.8% (p < 0.05) in the FALS-1 patients and not significantly altered in the SALS patients or the FALS-0 patient relative to the control patients. The mitochondrial SOD activity, which is primarily SOD2 activity, was not significantly altered in the FALS-1, FALS-0, or SALS patients. The protein carbonyl content was elevated by 84.8% (p < 0.01) in the SALS patients relative to the control patients. Finally, the complex I activity was increased by 55.3% (p < 0.001) in the FALS-1 patients relative to the control patients. These results from cortical tissue demonstrate that SOD1 activity is reduced and complex I activity is increased in FALS-1 patients and that oxidative damage to proteins is increased in SALS patients.  相似文献   

11.
Cu,Zn superoxide dismutase (SOD1) is an antioxidant enzyme that catalyzes the removal of superoxide radicals generated in various biological oxidations. Amyotrophic lateral sclerosis (ALS) is one of the most common neurodegenerative disorders, occurring in families (FALS) and sporadically (SALS). FALS and SALS are distinguishable genetically but not clinically. More than 100 point mutations in the human SOD 1 gene have been identified that cause FALS. In order to determine the effects of mutant SOD protein, we first cloned wild-type and A4V mutant human SOD1 into Schizosaccharomyces pombe. This study shows viabilities and some antioxidant properties including SOD, catalase, proteasomal activity, and protein carbonyl levels of transformants in SOD1 deleted strain (MN415); and its parental strain (JY741) at different stress conditions. There was no more oxidative damage in the human mutant SOD carrying the transformant strain compared with other strains. These results may help to explain whether ALS progresses as a consequence of cellular oxidative damage.  相似文献   

12.
Mutation of the ubiquitous cytosolic enzyme Cu/Zn superoxide dismutase (SOD1) is hypothesized to cause familial amyotrophic lateral sclerosis (FALS) through structural destabilization leading to misfolding and aggregation. Considering the late onset of symptoms as well as the phenotypic variability among patients with identical SOD1 mutations, it is clear that nongenetic factor(s) impact ALS etiology and disease progression. Here we examine the effect of Cys-111 glutathionylation, a physiologically prevalent post-translational oxidative modification, on the stabilities of wild type SOD1 and two phenotypically diverse FALS mutants, A4V and I112T. Glutathionylation results in profound destabilization of SOD1(WT) dimers, increasing the equilibrium dissociation constant K(d) to ~10-20 μM, comparable to that of the aggressive A4V mutant. SOD1(A4V) is further destabilized by glutathionylation, experiencing an ~30-fold increase in K(d). Dissociation kinetics of glutathionylated SOD1(WT) and SOD1(A4V) are unchanged, as measured by surface plasmon resonance, indicating that glutathionylation destabilizes these variants by decreasing association rate. In contrast, SOD1(I112T) has a modestly increased dissociation rate but no change in K(d) when glutathionylated. Using computational structural modeling, we show that the distinct effects of glutathionylation on different SOD1 variants correspond to changes in composition of the dimer interface. Our experimental and computational results show that Cys-111 glutathionylation induces structural rearrangements that modulate stability of both wild type and FALS mutant SOD1. The distinct sensitivities of SOD1 variants to glutathionylation, a modification that acts in part as a coping mechanism for oxidative stress, suggest a novel mode by which redox regulation and aggregation propensity interact in ALS.  相似文献   

13.
Cyclooxygenase-2 (COX-2) is a key molecule in the inflammatory pathway in amyotrophic lateral sclerosis (ALS). Cytosolic phospholipase A (cPLA2) is an important enzyme providing substrate for cyclooxygenases. We therefore examined cPLA2 expression in human ALS and mutant Cu/Zn superoxide dismutase (SOD1) transgenic mice and its relation to COX-2. Immunohistochemistry and real-time RT-PCR revealed elevated cPLA2 protein and its mRNA levels in the lumbar spinal cord of mutant SOD1 mice. COX-2 immunoreactivity was increased in lumbar spinal cord sections from both familial ALS (FALS) and sporadic ALS (SALS) as compared to controls, and cPLA2 immunoreactivity was increased in a patient with FALS. Oral administration of the non-selective cyclooxygenase (COX) inhibitor, sulindac, extended the survival (by 10%) of G93A SOD1 mice as compared to littermate controls. Sulindac, as well as the selective COX-2 inhibitors, rofecoxib and celecoxib reduced cPLA2 immunoreactivity in the lumbar spinal cord of G93A transgenic mice. Sulindac treatment preserved motor neurons, and reduced microglial activation and astrocytosis, in the spinal cord of G93A SOD1 transgenic mice. These results suggest that cPLA2 plays an important role in supplying arachidonic acid to the COX-2 driven inflammatory pathway in ALS associated with SOD1 mutations.  相似文献   

14.
Following the mutation screening of genes known to cause amyotrophic lateral sclerosis (ALS) in index cases from 107 familial ALS (FALS) kindred, a point mutation was identified in vesicle-associated membrane protein-associated protein B (VAPB), or VAMP-associated protein B, causing an amino acid change from threonine to isoleucine at codon 46 (T46I) in one FALS case but not in 257 controls. This is an important finding because it is only the second mutation identified in this gene that causes ALS. In order to investigate the pathogenic effects of this mutation, we have used a motor neuron cell line and tissue-specific expression of the mutant protein in Drosophila. We provide substantial evidence for the pathogenic effects of this mutation in abolishing the effect of wild type VAPB in the unfolded protein response, promoting ubiquitin aggregate formation, and activating neuronal cell death. We also report that expression of the mutant protein in the Drosophila motor system induces aggregate deposition, endoplasmic reticulum disorganization, and chaperone up-regulation both in neurons and in muscles. Our integrated analysis of the pathogenic effect of the T46I mutation and the previously identified P56S mutation indicate extensive commonalities in the disease mechanism for these two mutations. In summary, we show that this newly identified mutation in human FALS has a pathogenic effect, supporting and reinforcing the role of VAPB as a causative gene of ALS.  相似文献   

15.
Lessons from models of SOD1-linked familial ALS   总被引:5,自引:0,他引:5  
Ten years ago, the linkage between mutations in the gene coding for the antioxidant enzyme Cu,Zn superoxide dismutase (SOD1) and the neurodegenerative disease known as familial amyotrophic lateral sclerosis (FALS) was established. This finding has prompted a myriad of new studies in experimental models aimed at investigating the toxic function of the mutant enzymes. The cellular functions that are impaired in motoneurons as a consequence of molecular alterations induced by the expression of FALS SOD1 converge on pathways that might be activated in sporadic ALS by other toxic factors. Recent data demonstrate that, although motoneurons are lost in patients, other cell types are also affected and actively contribute to the pathogenesis of the disease.  相似文献   

16.
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease, with astrocytes implicated as contributing substantially to motor neuron death in familial (F)ALS. However, the proposed role of astrocytes in the pathology of ALS derives in part from rodent models of FALS based upon dominant mutations within the superoxide dismutase 1 (SOD1) gene, which account for <2% of all ALS cases. Their role in sporadic (S)ALS, which affects >90% of ALS patients, remains to be established. Using astrocytes generated from postmortem tissue from both FALS and SALS patients, we show that astrocytes derived from both patient groups are similarly toxic to motor neurons. We also demonstrate that SOD1 is a viable target for SALS, as its knockdown significantly attenuates astrocyte-mediated toxicity toward motor neurons. Our data highlight astrocytes as a non-cell autonomous component in SALS and provide an in vitro model system to investigate common disease mechanisms and evaluate potential therapies for SALS and FALS.  相似文献   

17.
Familial amyotrophic lateral sclerosis (FALS) is linked to over 90 point mutations in superoxide dismutase-1 (SOD1), a dimeric metalloenzyme. The postmortem FALS brain is characterized by SOD1 inclusions in the motor neurons of regions in which neuronal loss is most significant. These findings, together with animal modeling studies, suggest that aggregation of mutant SOD1 produces a pathogenic species. We demonstrate here that a mutant form of SOD1 (A4V) that is linked to a particularly aggressive form of FALS aggregates in vitro, while wild-type SOD1 (WT) is stable. Some A4V aggregates resemble amyloid pores formed by other disease-associated proteins. The WT dimer is significantly more stable than the A4V dimer, suggesting that dimer dissociation may be the required first step of aggregation. To test this hypothesis, an intersubunit disulfide bond between symmetry-related residues at the A4V dimer interface was introduced. The resultant disulfide bond (V148C-V148C') eliminated the concentration-dependent loss of enzymatic activity of A4V, stabilized the A4V dimer, and completely abolished aggregation. A drug-like molecule that could stabilize the A4V dimer could slow the onset and progression of FALS.  相似文献   

18.
Niu YF  Xiong HL  Wu JJ  Chen Y  Qiao K  Wu ZY 《遗传》2011,33(7):720-724
应用PCR技术结合DNA直接测序方法对8例临床确诊为家族性肌萎缩侧索硬化(Familiar amyotrophic lateral sclerosis,FALS)家系的先证者进行铜锌超氧化物歧化酶基因(SOD1)的突变筛查,在3例先证者中检出2种SOD1基因突变,其中,2例携带了位于4号外显子的错义突变Cys111Tyr(c.332G>A),另1例携带了位于5号外显子的错义突变Gly147Asp(c.440G>A),这2种突变在中国ALS患者中属首次报道。该结果扩大了中国FALS患者的SOD1基因突变谱,对研究中国FALS患者SOD1基因突变特点和分布规律有一定帮助。分析携带这2个突变患者的临床特点,提示Cys111Tyr突变导致的临床表型相对温和,而Gly147Asp突变可导致病情进展较快。该结果有待在更多的病例中进行证实。  相似文献   

19.
A growing body of evidence suggests that mitochondrial dysfunctions play a crucial role in the pathogenesis of various neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting both upper and lower motor neurons. Although ALS is predominantly a sporadic disease, approximately 10% of cases are familial. The most frequent familial form is caused by mutations in the gene encoding Cu/Zn superoxide dismutase 1 (SOD1). A dominant toxic gain of function of mutant SOD1 has been considered as the cause of the disease and mitochondria are thought to be key players in the pathogenesis. However, the exact nature of the link between mutant SOD1 and mitochondrial dysfunctions remains to be established. Here, we briefly review the evidence for mitochondrial dysfunctions in familial ALS and discuss a possible link between mutant SOD1 and mitochondrial dysfunction.  相似文献   

20.

Background

Multiple cellular functions are compromised in amyotrophic lateral sclerosis (ALS). In familial ALS (FALS) with Cu/Zn superoxide dismutase (SOD1) mutations, the mechanisms by which the mutation in SOD1 leads to such a wide range of abnormalities remains elusive.

Methodology/Principal Findings

To investigate underlying cellular conditions caused by the SOD1 mutation, we explored mutant SOD1-interacting proteins in the spinal cord of symptomatic transgenic mice expressing a mutant SOD1, SOD1Leu126delTT with a FLAG sequence (DF mice). This gene product is structurally unable to form a functional homodimer. Tissues were obtained from both DF mice and disease-free mice expressing wild-type with FLAG SOD1 (WF mice). Both FLAG-tagged SOD1 and cross-linking proteins were enriched and subjected to a shotgun proteomic analysis. We identified 34 proteins (or protein subunits) in DF preparations, while in WF preparations, interactions were detected with only 4 proteins.

Conclusions/Significance

These results indicate that disease-causing mutant SOD1 likely leads to inadequate protein-protein interactions. This could be an early and crucial process in the pathogenesis of FALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号