首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Young lean (Fa/?) and obese (fa/fa) rats were treated with the thermogenic beta-adrenoceptor agonist, BRL 26830, for 3 weeks. In lean rats this treatment had no effect on body weight but there was a marked increase in the insulin sensitivity of soleus muscle strips with respect to glycolytic rate. Treatment of obese rats with BRL 26830 produced a small but not significant decrease in body weight but the sensitivity of both glycolysis and glycogen synthesis to insulin was increased so that muscles of treated obese rats showed similar insulin sensitivity to untreated lean rats. It is suggested that such changes are unlikely to be merely a secondary consequence of an anti-obesity action.  相似文献   

3.
The genetically obese Zucker rat has a reduced capacity to deposit dietary protein in skeletal muscle. To determine whether amino acid uptake by muscle of obese Zucker rats is impaired, soleus strip (SOL) and epitrochlearis (EPI) muscles from 10-wk-old lean and obese Zucker rats were studied in vitro by use of [14C]alpha-aminoisobutyric acid (AIB). Muscles from fasted rats were incubated under basal conditions at rest or after a 1-h treadmill run at 8% grade. To equate total work completed, lean and obese rats ran at 27 and 20 m/min, respectively. Muscles were pinned at resting length, preincubated for 30 min at 37 degrees C in Krebs-Ringer bicarbonate buffer containing 5 mM glucose under 95% O2-5% CO2, and then incubated up to 3 h in Krebs-Ringer bicarbonate with 0.5 mM AIB, [14C]AIB, and [3H]inulin as a marker of extracellular fluid. Basal AIB uptake in EPI and SOL from obese rats was significantly reduced by 40 and 30% (P less than 0.01), respectively, compared with lean rats. For both lean and obese rats, exercise increased (P less than 0.05) basal AIB uptake in EPI and SOL, but the relative increases were greater in the obese rats (EPI 54% and SOL 71% vs. EPI 32% and SOL 37%). These results demonstrate that genetically obese Zucker rats have reduced basal skeletal muscle amino acid uptake and suggest that physical inactivity may partially contribute to this defect.  相似文献   

4.
The present study examined the level of GLUT-4 glucose transporter protein in gastrocnemius muscles of 36 week old genetically obese Zucker (fa/fa) rats and their lean (Fa/-) littermates, and in obese Zucker rats following 18 or 30 weeks of treadmill exercise training. Despite skeletal muscle insulin resistance, the level of GLUT-4 glucose transporter protein was similar in lean and obese Zucker rats. In contrast, exercise training increased GLUT-4 protein levels by 1.7 and 2.3 fold above sedentary obese rats. These findings suggest endurance training stimulates expression of skeletal muscle GLUT-4 protein which may be responsible for the previously observed increase in insulin sensitivity with training.  相似文献   

5.
1. The effect of insulin (0.5, 10 and 50 munits/ml of perfusate) on glucose uptake and disposal in skeletal muscle was studied in the isolated perfused hindquarter of obese (fa/fa) and lean (Fa/Fa) Zucker rats and Osborne-Mendel rats. 2. A concentration of 0.5 munit of insulin/ml induced a significant increase in glucose uptake (approx. 2.5 mumol/min per 30 g of muscle) in lean Zucker rats and in Osborne-Mendel rats, and 10 munits of insulin/ml caused a further increase to approx. 6 mumol/min per 30 g of muscle; but 50 munits of insulin/ml had no additional stimulatory effect. In contrast, in obese Zucker rats only 10 and 50 munits of insulin/ml had a stimulatory effect on glucose uptake, the magnitude of which was decreased by 50-70% when compared with either lean control group. Since under no experimental condition tested was an accumulation of free glucose in muscle-cell water observed, the data suggest an impairment of insulin-stimulated glucose transport across the muscle-cell membrane in obese Zucker rats. 3. The intracellular disposal of glucose in skeletal muscle of obese Zucker rats was also insulin-insensitive: even at insulin concentrations that clearly stimulated glucose uptake, no effect of insulin on lactate oxidation (nor an inhibitory effect on alanine release) was observed; [14C]glucose incorporation into skeletal-muscle lipids was stimulated by 50 munits of insulin/ml, but the rate was still only 10% of that observed in lean Zucker rats. 4. The data indicate that the skeletal muscle of obese Zucker rats is insulin-resistant with respect to both glucose-transport mechanisms and intracellular pathways of glucose metabolism, such as lactate oxidation. The excessive degree of insulin-insensitivity in skeletal muscle of obese Zucker rats may represent a causal factor in the development of the glucose intolerance in this species.  相似文献   

6.
The effect of dietary protein content on the uncoupling proteins (UCP) 1, 2 and 3 expression in a number of tissues of Zucker lean and obese rats was studied. Thirty-day-old male Zucker lean (Fa/?) and obese (fa/fa) rats were fed on hyperproteic (HP, 30% protein), standard (RD, 17% protein) or hypoproteic (LP, 9% protein) diets ad libitum for 30 days. Although dietary protein intake affected the weights of individual muscles in lean and obese animals, these weights were similar. In contrast, huge differences were observed in brown adipose tissue (BAT) and liver weights. Lean rats fed on the LP diet generally increased UCP expression, whereas the HP group had lower values. Obese animals, HP and LP groups showed higher UCP expression in muscles, with slight differences in BAT and lower values for UCP3 in subcutaneous adipose tissue. The mean values of UCP expression in BAT of obese rats were lower than in their lean counterpart, whereas the expression in skeletal muscle was increased. Thus, expression of UCPs can be modified by dietary protein content, in lean and obese rats. A possible thermogenic function of UCP3 in muscle and WAT in obese rats must be taken into account.  相似文献   

7.
The male obese Wistar Diabetic Fatty (WDF) rat is a genetic model of obesity and non-insulin dependent diabetes (NIDDM). The obese Zucker rat shares the same gene for obesity on a different genetic background but is not diabetic. This study evaluated the degree of insulin resistance in both obese strains by examining the binding and post binding effects of muscle insulin receptors in obese, rats exhibiting hyperinsulinemia and/or hyperglycemia. Insulin receptor binding and affinity and tyrosine kinase activity were measured in skeletal muscle from male WDF fa/fa (obese) and Fa/? (lean) and Zucker fa/fa (obese) and Fa/Fa (homozygous lean) rats. Rats were fed a high sucrose (68% of total Kcal) or Purina stock diet for 14 weeks. At 27 weeks of age, adipose depots were removed for adipose cellularity analysis and the biceps femoris muscle was removed for measurement of insulin binding and insulin-stimulated receptor kinase activity. Plasma glucose (13.9 vs. 8.4 mM) and insulin levels (14,754 vs. 7440 pmoI/L) were significantly higher in WDF obese than in Zucker obese rats. Insulin receptor number and affinity and TK activity were unaffected by diet. Insulin receptor number was significantly reduced in obese WDF rats (2.778 ± 0.617 pmol/mg protein), compared to obese Zucker rats (4.441 ± 0.913 pmol/mg potein). Both obese strains exhibited down regulation of the insulin receptor compared to their lean controls. Maximal tyrosine kinase (TK) activity was significantly reduced in obese WDF rats (505 ± 82 fmol/min/mg protein) compared to obese Zucker rats (1907 ± 610 fmol/min/mg protein). Only obese WDF rats displayed a decrease in TK activity per receptor. These observations establish the obese WDF rat as an excellent model for exploring mechanisms of extreme insulin resistance, particularly post-receptor tyrosine kinase-associated defects, in non-insulin dependent diabetes.  相似文献   

8.
BESSESEN, DANIEL H, CONNIE L RUPP AND ROBERT H ECKEL. Dietary fat is shunted away from oxidation, toward storage in obese zucker rats. Obes Res. 1995;3:179–189. Previous measurements of lipoprotein lipase (LPL) activity in adipose tissue (ATLPL) of lean and obese Zucker rats have consistently documented increased activity in obese rats relative to lean. Since LPL is considered to be rate limiting for the delivery of triglyceride fatty acids (TGFA) to muscle and adipose tissue, these data have been used to suggest that the metabolic partitioning of TGFA favors storage over oxidation in obese rats. To document the partitioning of TGFA directly, the fate of 14C labeled oleic acid (42nmols) was fed to lean, obese, and obese Zucker rats fed a hypocaloric diet designed to chronically reduce weight 25% below that of obese controls (reduced-obese). The amount of 14C recovered in CO2 over 6 hours following ingestion was significantly less in obese rats compared to lean (0.45 ± 0.06 vs. 0.88 ± 0.09nmols, p=.0004) and less still in the reduced obese group (0.34 ± 0.06nmols p=.00003). Six hours after ingestion, the quantity of label found in adipose tissue was significantly greater in the obese rats compared to lean (14.51 ± 1.92 vs. 1.38 ± 0.29nmols p<.00001), but was intermediate in the reduced-obese group (9.23 ± 0.98nmols p=.0003). At 2.2 hours there was significantly more label in skeletal muscle of lean rats compared to either obese or reduced-obese (2.33 ± 0.24; 1.35 ± 0.04nmols p=.01; 1.41 ± 0.27nm p=.02). However, at 6 hours these differences between groups were no longer present. These findings Indicate that dietary fat is shunted away from oxidation toward storage in obese Zucker rats. Additionally it appears that there may be a relative block in the oxidation of TGFA that is taken up by skeletal muscle in obese rats. Finally the relative normalization of this partitioning defect in reduced-obese rats is at variance with what was suggested by previous measurements of tissue specific levels of LPL, and suggests an enhanced recirculation of fatty acids from adipose tissue to muscle in reduced-obese rats. This could occur through increased delivery of non-esterified fatty acids (NEFA) to muscle as a result of an increase in net lipolysis.  相似文献   

9.
Obese (fa/fa) rats (30 days old) exhibited a 50% increase in the weight of interscapular brown adipose tissue compared with their lean (Fa/fa) littermates. The tissue weight increase was accounted for by an increased fat content. Lipogenesis in vivo, as assessed by the incorporation of 3H from 3H2O into lipid, was increased 5-fold in brown adipose tissue of obese as compared with lean rats. Accordingly, acetyl-CoA carboxylase, fatty acid synthetase, citrate-cleavage enzyme and malic enzyme in this tissue were 4-8 times more active in obese than in lean rats.  相似文献   

10.
In this study, we measured the ghrelin, leptin, and insulin variations in lean and obese Zucker fa/fa rats during the acute phase of body weight gain. At 2 months of age, plasma insulin and leptin concentrations in fa/fa rats were, respectively, 470% and 3700% higher than in lean rats (p <0.0001). Plasma ghrelin was significantly lower (-24.6%; p <0.02) than in lean rats. At 6 months of age, ghrelin increased in both genotypes but the difference was no more significant. The inverse correlations existing between ghrelin and either body weight (BW), insulin or leptin at 2 months of age were no more observable in 6-month-old rats. At 6 months of age, the lean rats had the same body weight as the 2-month-old obese rats. In these body weight-matched rats, ghrelin was not correlated with BW but it remained negatively correlated with insulin and leptin. At the same body weight, obese rats had a much lower plasma ghrelin than lean rats (717+/-42 vs. 1754+/-83 pg/ml; p <0.0001). These data indicate that body composition rather than body weight is the primary factor for the down-regulation of the ghrelin system. This down-regulation constitutes a mechanism of defense of the organism against the development of obesity at least during the first part of life.  相似文献   

11.
We investigated the effect of subdiaphragmatic vagal deafferentation (SDA) on food intake, body weight gain, and metabolism in obese (fa/fa) and lean (Fa/?) Zucker rats. Before and after recovery from surgery, food intake and body weight gain were recorded, and plasma glucose and insulin were measured in tail-prick blood samples. After implantation of a jugular vein catheter, an intravenous glucose tolerance test (IVGTT) was performed, followed by minimal modeling to estimate the insulin sensitivity index. Food intake relative to metabolic body weight (g/kg(0.75)) and daily body weight gain after surgery were lower (P < 0.05) in SDA than in sham obese but not lean rats. Before surgery, plasma glucose and insulin concentrations were lower (P < 0.05) in lean than in obese rats but did not differ between surgical groups within both genotypes. Four weeks after surgery, plasma glucose and insulin were still similar in SDA and sham lean rats but lower (P < 0.05) in SDA than in sham obese rats. IVGTT revealed a downward shift of the plasma insulin profile by SDA in obese but not lean rats, whereas the plasma glucose profile was unaffected. SDA decreased (P < 0.05) area under the curve for insulin but not glucose in obese rats. The insulin sensitivity index was higher in lean than in obese rats but was not affected by SDA in both genotypes. These results suggest that elimination of vagal afferent signals from the upper gut reduces food intake and body weight gain without affecting the insulin sensitivity index measured by minimal modeling in obese Zucker rats.  相似文献   

12.
Genetically obese rodents (ob/ob mice and fa/fa rats) and animals with dietary-induced thermogenesis represent two extremes in efficiency of energy retention: the former deposit dietary energy with high efficiency, whereas the later deposit dietary energy with low efficiency. These differences in efficiency of energy retention must, at the cellular level, be associated with changes in efficiency and/or rate of formation and/or utilization of ATP (and other high energy intermediates). Brown adipose tissue possesses a unique proton-conductance pathway that reduces the efficiency of ATP synthesis. It has been speculated that this pathway is suppressed in obese (ob/ob) mice and accelerated in rats with dietary-induced thermogenesis. Metabolic reactions that alter the rate of ATP utilization in animals include Na+, K+-ATPase and protein turnover. The concentration of Na+, K+-ATPase enzyme unites in skeletal muscle and liver of young adult obese (ob/ob) mice is lower than in tissues of young adult lean mice. There also appear to be alterations in protein turnover in certain tissues of obese (ob/ob) mice, but additional studies are required to determine if whole-body protein turnover is altered in these animals. Data are unavailable on either Na+, K+-ATPase or protein turnover in tissue of animals with dietary-induced thermogenesis. Continuation of studies in these areas should provide a metabolic basis for understanding individual variability in efficiency of energy retention.  相似文献   

13.
Measurements of the tissue accumulation of α-amino[1-14C]isobutyrate [1-14C]AIB) in lean (+/?) and obese (fa/fa) Zucker rats showed an augmented tissue/plasma ratio in the liver of the obese animals. In contrast, brown adipose tissue AIB accumulation was lower in the fa/fa animals. In response to a 24h starvation period AIB accumulation was significantly elevated in the liver and plasma of the lean animals and was unchanged in the liver of the fa/fa animals. The circulating concentration of alanine and branched-chain amino acids was elevated in the fa/fa animals as compared to their lean counterparts. These observations suggest that amino acid uptake is not involved in the impaired muscle development observed in the obese Zucker rat and that the ability of brown adipose tissue for amino acid utilization is decreased in the obese animals suggesting that this may partially explain the impaired thermoregulatory capacity observed in brown adipose tissue of obese Zucker rats.  相似文献   

14.
Obesity is associated with a decrement in the ability of skeletal muscle to oxidize lipid. The purpose of this investigation was to determine whether clinical interventions (weight loss, exercise training) could reverse the impairment in fatty acid oxidation (FAO) evident in extremely obese individuals. FAO was assessed by incubating skeletal muscle homogenates with [1-(14)C]palmitate and measuring (14)CO(2) production. Weight loss was studied using both cross-sectional and longitudinal designs. Muscle FAO in extremely obese women who had lost weight (decrease in body mass of approximately 50 kg) was compared with extremely obese and lean individuals (BMI of 22.8 +/- 1.2, 50.7 +/- 3.9, and 36.5 +/- 3.5 kg/m(2) for lean, obese, and obese after weight loss, respectively). There was no difference in muscle FAO between the extremely obese and weight loss groups, and FAO was depressed (-45%; P < or = 0.05) compared with the lean subjects. Muscle FAO also did not change in extremely obese women (n = 8) before and 1 yr after a 55-kg weight loss. In contrast, 10 consecutive days of exercise training increased (P < or = 0.05) FAO in the skeletal muscle of lean (+1.7-fold), obese (+1.8-fold), and previously extremely obese subjects after weight loss (+2.6-fold). mRNA content for PDK4, CPT I, and PGC-1alpha corresponded with FAO in that there were no changes with weight loss and an increase with physical activity. These data indicate that a defect in the ability to oxidize lipid in skeletal muscle is evident with obesity, which is corrected with exercise training but persists after weight loss.  相似文献   

15.
Objective: This study examined the effects of topiramate (TPM), a novel neurotherapeutic agent reported to reduce body weight in humans, on the components of energy balance in female Zucker rats. Research Methods and Procedures: A 2 × 3 factorial experiment was performed in which two cohorts of Zucker rats differing in their phenotype (phenotype: lean, Fa/?; obese, fa/fa) were each divided into three groups defined by the dose of TPM administered (dose: TPM 0, vehicle; TPM 15, 15 mg/kg; TPM 60, 60 mg/kg). Results: The reduction in body weight gain induced by TPM in both lean and obese rats reflected a decrease in total body energy gain, which was more evident in obese than in lean rats. Whereas TPM administration did not influence the intake of digestible energy in lean rats, it induced a reduction in food intake in obese animals. In lean, but not in obese rats, apparent energy expenditure (as calculated by the difference between energy intake and energy gain) was higher in rats treated with TPM than in animals administered the vehicle. The low dose of TPM decreased fat gain (with emphasis on subcutaneous fat) without affecting protein gain, whereas the high dose of the drug induced a reduction in both fat and protein gains. The effects of TPM on muscle and fat depot weights were representative of the global effects of TPM on whole body fat and protein gains. The calculated energetic efficiency (energy gain/energy intake) was decreased in both lean and obese rats after TPM treatment. TPM dose independently reduced hyperinsulinemia of obese rats, but it did not alter insulinemia of lean animals. Discussion: The present results provide sound evidence for the ability of TPM to reduce fat and energy gains through reducing energetic efficiency in both lean and obese Zucker rats.  相似文献   

16.
Leptin acts as a satiety factor within the central nervous system by binding to its receptor located in the hypothalamus. A missense mutation of the leptin receptor induces hyperphagia and obesity in the obese Zucker fa/fa rat. Since the CNS is an important target of leptin action, we hypothesized that leptin gene transfer into the lateral cerebral ventricle could efficiently lead to inhibition of food intake and reduction of body weight in obese fa/fa rats as well as in lean animals. A single intracerebroventricular injection of an adenoviral vector containing a cDNA encoding leptin resulted in the expression of leptin in the ependymal cells lining the ventricle and the secretion of leptin into the cerebrospinal fluid (CSF). During the first week after injection, when high concentrations of leptin were produced in the CSF, the reducing effects of leptin on food intake and body weight were comparable in lean and in obese fa/fa rats. The subsequent decline in CSF leptin levels, that was similar in lean and obese fa/fa rats, resulted in the faster resumption of food intake and body weight gain in obese than in lean animals, confirming a reduced sensitivity to leptin in the obese group. The results of this study show that leptin gene delivery into the cerebral ventricles allows for the production of elevated leptin concentrations in CSF, and they support the hypothesis that the impaired sensitivity to leptin may be overcome in obese fa/fa rats.  相似文献   

17.
Increasing evidence supports a negative role of glycogen synthase kinase-3 (GSK-3) in regulation of skeletal muscle glucose transport. We assessed the effects of chronic treatment of insulin-resistant, prediabetic obese Zucker (fa/fa) rats with a highly selective GSK-3 inhibitor (CT118637) on glucose tolerance, whole body insulin sensitivity, plasma lipids, skeletal muscle insulin signaling, and in vitro skeletal muscle glucose transport activity. Obese Zucker rats were treated with either vehicle or CT118637 (30 mg/kg body wt) twice per day for 10 days. Fasting plasma insulin and free fatty acid levels were reduced by 14 and 23% (P < 0.05), respectively, in GSK-3 inhibitor-treated animals compared with vehicle-treated controls. The glucose response during an oral glucose tolerance test was reduced by 18% (P < 0.05), and whole body insulin sensitivity was increased by 28% (P < 0.05). In vivo insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation (50%) and IRS-1-associated phosphatidylinositol-3' kinase (79%) relative to fasting plasma insulin levels were significantly elevated (P < 0.05) in plantaris muscles of GSK-3 inhibitor-treated animals. Whereas basal glucose transport in isolated soleus and epitrochlearis muscles was unaffected by chronic GSK-3 treatments, insulin stimulation of glucose transport above basal was significantly enhanced (32-60%, P < 0.05). In summary, chronic treatment of insulin-resistant, prediabetic obese Zucker rats with a specific GSK-3 inhibitor enhances oral glucose tolerance and whole body insulin sensitivity and is associated with an amelioration of dyslipidemia and an improvement in IRS-1-dependent insulin signaling in skeletal muscle. These results provide further evidence that selective targeting of GSK-3 in muscle may be an effective intervention for the treatment of obesity-associated insulin resistance.  相似文献   

18.
Conjugated linoleic acid (CLA) elevates body ash in healthy animals. The objective of the present study was to determine if single or mixed CLA isomers improve bone mass in an obese and hyperinsulinemic state. Male (n = 120) lean and obese fa/fa Zucker rats (age, 6 weeks) were randomized to 8 weeks on a control diet or to 0.4% (w/w) cis-9, trans-11 CLA (Group 1); 0.4% (w/w) trans-10, cis-12 CLA (Group 2); 0.4% (w/w) cis-9, trans-11 CLA and 0.4% (w/w) trans-10, cis-12 CLA (Group 3); 0.4% (w/w) cis-9, trans-11 CLA, 0.4% (w/w) trans-10, cis-12 CLA, and traces of other CLA isomers (Group 4); and 0.4% (w/w) cis-9, trans-11 CLA, 0.4% (w/w) trans-10, cis-12 CLA, and 0.3% (w/w) other CLA isomers (Group 5). Bone area (BA), bone mineral content (BMC), and bone mineral density (BMD) of the whole body, spine, and femur were measured at baseline (6 weeks) and at 14 weeks of age. Effects of genotype, diet, and genotype x diet interactions were assessed using factorial analysis of variance. At 6 and 14 weeks, whole-body BA and BMC were lower in lean rats compared with fa/fa rats. Similarly, at 14 weeks, fa/fa rats had a higher spine and femur BMD despite a lower femur weight. The fa/fa rats in Groups 4 and 5 had higher adjusted whole-body BMC compared with Group 3, but not with Group 1, Group 2, or the control. In lean rats, Group 3 had a greater adjusted whole-body BMC than Groups 1 and 2, but not Group 4, Group 5, or the control. Thus, commercially available CLA mixtures and single CLA isomers do not affect bone mass in a hyperinsulinemic, obese state.  相似文献   

19.
TSE, ELIZABETH O, FRANCINE M GREGOIRE, BRIGITTE REUSENS, CLAUDE REMACLE, JOSEPH J HOET, PATRICIA R JOHNSON, JUDITH S STERN. Changes of islet size and islet size distribution resulting from protein malnutrition in lean (Fa/Fa) and obese (fa/fa) Zucker rats. Potential alterations in islet size and islet size distribution resulting from protein malnutrition were studied in lean (Fa/Fa) and obese (fa/fa) Zucker rats. The purpose was to investigate whether the distribution of enlarged islets in obese rats was altered by low-protein feeding. Four-week-old, male, lean and obese Zucker rats were fed either a diet containing 20% (w/w) protein (control diet) or a diet containing 5% (w/w) protein (low-protein diet) for 3 weeks. Pancreata were dissected at autopsy and immunostained for insulin. Islet size and distribution were determined by morphometric analysis. Body-weight gain, food intake, and serum insulin and glucose were also measured. After 3 weeks on the diets, serum insulin was significantly lower in both lean (-75%) and obese (-54%) rats fed low protein compared with that in controls. However, obese rats were still hyperinsulinemic compared with lean rats. Protein malnutrition resulted in a shift in distribution of islets to smaller size both in lean and in obese rats, with an increase in the population of small islets (100 μm2) and a decrease in the population of large islets (>20,000 μ;m2). In lean and obese rats fed low protein, β-cell weight was significantly lower, B cell volume fraction tended to decrease, and islet number per section area was significantly elevated when compared with controls. Taken together, these results show that protein deficiency alters the endocrine pancreas in both lean and obese Zucker rats. Although the decrease in islet size and the shift in distribution to smaller islets most likely contribute to the decrease in serum insulin concentration, these changes appear insufficient to normalize hyperinsulinemia in the obese Zucker rat.  相似文献   

20.
Groups of lean or pre-obese LA/N-cp rats were subjected to a program of vigorous exercise (less than 4 hr/day) or remained sedentary from 6 weeks until 12 weeks of age. Sedentary pre-obese rats gained weight twice as rapidly as sedentary lean rats. Exercise treatment resulted in greater decrements in body wt in obese than in lean rats, but did not result in absolute weight loss in either group. At 12 weeks of age, fat pad weights in principle depots were 10-15 times greater in corpulent than in lean rats and were significantly smaller in the exercised groups of both phenotypes, and corresponded with lower relative adiposity compared to corresponding sedentary groups. Heart weights were greater in corpulent than lean, while gastrocnemius muscle weights were similar in both phenotypes. Exercise was without effect on the weight of either muscle tissue in either phenotype. Interscapular brown adipose tissue weights and the IBAT:BW ratio were greater in obese than in lean rats. IBAT weights were lower in exercised than sedentary rats of either phenotype, but the IBAT:BW ratio was lower only in the obese exercised rats. In sedentary rats, L-alpha-glycerophosphate dehydrogenase and malic enzyme activity were greater in obese than lean, and exercise treatment resulted in increased L-alpha-glycerophosphate dehydrogenase and malic enzyme only in lean rats. These results are consistent with a redistribution of energy expenditure from energy storing to energy dissipating pathways following vigorous exercise, resulting in slowed rates of weight gain and body fat accretion in both lean and obese animals, with the most significant decrements among pre-obese rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号