首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin (0.1-10 microM) reinitiates the meiotic divisions in Rana oocytes and produces a 14-20 mV negative-going hyperpolarization of the plasma membrane as well as a 0.25 unit increase in intracellular pH during the first 90 min. During hyperpolarization, the Na+ conductance of the membrane decreases by 40-50% with a concomitant increase in 22Na+ uptake from the medium. The increased uptake of Na+ during a period of decreasing Na+ conductance is apparently due to an increase in fluid phase turnover associated with insulin-mediated endocytosis. Both membrane hyperpolarization and increase in pHi are Na+-dependent and are blocked by the serine proteinase inhibitor, phenylmethylsulfonyl fluoride. The membrane potential of the prophase oocyte has a significant electrogenic component with potential but not conductance sensitive to glycosides and substitution of Li+ for Na+. Insulin hyperpolarizes Li+ or glycoside-treated oocytes whereas glycosides do not affect insulin-hyperpolarized oocytes. [3H]Ouabain binding by the plasma membrane of the untreated oocyte shows at least two K+-sensitive components (Kd = 42 and 2000 nM) linked to inhibition of the Na+ pump. Insulin-treated oocytes show a single class of intermediate-affinity ouabain sites (Kd = 490 nM) which appear to result from insulin-induced internalization of membrane-bound ouabain. [125I]Insulin binding to the plasma membrane shows a class of high-affinity sites (Kd = 87 nM) with 40-50 pump sites per insulin-binding site. Our results suggest that insulin-induced mediator peptides stimulate Na+-H+ exchange resulting in an increase in intracellular pH and Na+ uptake concomitant with an increase in receptor-mediated endocytosis and a decrease in Na+ conductance and associated membrane hyperpolarization. The net result appears to be a down-regulation of the Na+ pump which together with a decrease in Na+ conductance may divert high-energy phosphate compounds from cation regulation to anabolic processes of meiosis.  相似文献   

2.
Canine basilar artery rings precontracted with 5-hydroxytryptamine (0.1-0.5 microM) relaxed in the presence of acetylcholine (25-100 microM), sodium nitroprusside (0.1 microM), or stimulation of the electrogenic sodium pump by restoration of extracellular K+ (4.5 mM) after K(+)-deprivation. Acetylcholine-induced relaxation is believed to be caused by the release of endothelium-derived relaxing factor (EDRF) and is prevented by mechanical removal of the endothelium, while relaxations induced by sodium nitroprusside or restarting of the sodium pump are endothelium-independent. Acetylcholine-induced relaxation was selectively blocked by pretreatment of the tissue with the nonselective K+ conductance inhibitors, 4-aminopyridine (4-AP, 3 mM), Ba2+ (1 mM), and tetraethylammonium (20 mM), 4-AP also blocked ACh-mediated relaxation in muscles contracted with elevated external K+. Relaxation of 5-hydroxytryptamine-induced contraction by sodium nitroprusside, or by addition of K+ to K(+)-deprived muscle, was not affected by 4-AP. Relaxation of basilar artery with acidified sodium nitrite solution (containing nitric oxide) was reduced by 4-AP. These results suggest that 4-AP and possibly Ba2+ inhibit acetylcholine-induced endothelium-dependent relaxation by inhibition of the action of EDRF on the smooth muscle rather than through inhibition of release of EDRF. The increase in K+ conductance involved in acetylcholine-induced relaxation is not due to ATP-inhibited K+ channels, as it is not blocked by glyburide (10(-6) M). Endothelium-derived relaxant factor(s) may relax smooth muscle by mode(s) of action different from that of sodium nitroprusside or by hyperpolarization due to the electrogenic sodium pumping.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Current generated by the electrogenic Na+/K+ pump protein was determined in oocytes of Xenopus laevis as strophantidine-sensitive current measured under voltage clamp. Under conditions of reduced intracellular [Na+] and [ATP], both to values below 1 mM, and in extracellularly K(+)-free medium, the Na+/K+ pump seems to operate in a reversed mode pumping Na+ into the cell and K+ out of the cell. This is demonstrated by strophantidine-induced hyperpolarization of the membrane and inward-directed current mediated by the pump protein. In addition, strophantidine-sensitive uptake of 22Na+ can be demonstrated under these conditions. The pump current decreases with membrane depolarization as expected for a pump cycle that involves inward movement of positive charges during Na+ translocation.  相似文献   

4.
Using fluorescent Ca2+ indicator fura-2 and whole-cell patch-clamp techniques, we examined the effect of 2-nicotinamidoethyl nitrate (nicorandil) on the intracellular free Ca2+ concentration ([Ca2+]i) and electrical properties in single guinea pig ventricular myocytes. Nicorandil (10 nM approximately 1 mM) reduced the resting level [Ca2+]i monitored as fura-2 fluorescence ratio in a concentration-dependent manner. Dibutyryl guanosine 3':5'-cyclic monophosphate (cyclic GMP), a membrane permeable cyclic GMP analogue, mimicked the nicorandil action. Neither application of caffeine (10 mM) nor deprivation of extracellular Na+ ions could prevent the nicorandil action on [Ca2+]i. In contrast, the nicorandil effect was virtually blocked by sodium orthovanadate (40 microM), a Ca2+ pumping ATPase inhibitor. During electrophysiological experiments, nicorandil shortened action potential durations (205 +/- 80 ms to 153 +/- 76 ms) by increasing a glibenclamide-sensitive outward K+ conductance. However, the drug produced little hyperpolarization (approximately 2 mV) because the resting potential of ventricular myocytes was close to the K+ equilibrium potential. The involvement of voltage-dependent Ca-channel current and Na-Ca exchanger was considered to be minimal under physiological conditions. It is thus concluded that nicorandil decreases basal [Ca2+]i via cyclic GMP-mediated activation of the plasma membrane Ca2+ pump in guinea pig ventricular myocytes.  相似文献   

5.
Light-evoked changes in membrane voltage were recorded intracellularly from rod photoreceptors in the isolated retina preparation of the toad, Bufo marinus, during superfusion with a solution containing pharmacological agents that blocked voltage-dependent conductances. Under these conditions, the amplitude of the hyperpolarizing photoresponse became much greater than under control conditions. The results of several experiments support the conclusion that this increase in photoresponse amplitude was due primarily to a voltage that was produced when the electrogenic current from the rods' Na+/K+ pump flowed across an increased membrane resistance (Torre, V. 1982. Journal of Physiology. 333:315). At the onset of a period of continuous illumination, the rod membrane first hyperpolarized and then began to repolarize, and after 180 s of illumination, the membrane voltage had recovered by 60-72% of its initial hyperpolarization. There did not appear to be any significant decrease in rod membrane resistance associated with this repolarization. Both the enhanced hyperpolarization at light onset and the slow repolarization during maintained illumination were blocked by superfusion with 10.0 microM strophanthidin. These data support the hypothesis that the activity of the rods' Na+/K+ pump declines progressively during maintained illumination. It is likely that the decline in pump activity produces significant changes in [K+]o in the subretinal space during maintained illumination.  相似文献   

6.
Effects of Na+,K(+)-ATPase inhibitor: marinobufagenin, on contractile and electric characteristics of isolated rat diaphragm were studied for the first time. Marinobufagenin induced dose-dependent (EC50 = 0.3 +/- 0.1 nM) increase in the contraction force (positive inotropic effect). At 1-2 nM, it slowed down the fatigue induced by continuous direct stimulation (2/s) of the muscle. Marinobufagenin at the same concentrations did not affect resting membrane potential or parameters of action potentials of muscle fibers, while at 10 and 20 nM it induced hyperpolarization by approximately 2 mV. Marinobufagenin blocked dose-dependently (IC50 = 2.9 +/- 2.0 nM) hyperpolarizing effect of acetylcholine (100 nM) mediated by increase in electrogenic contribution of alpha2 isoform of the Na+,K(+)-ATPase. This result suggests a capability of marinobufagenin to inhibit this isoform of the Na+,K(+)-ATPase. Possible mechanisms of marinobufagenin effects in skeletal muscle are discussed.  相似文献   

7.
The Na+/K+ pump in rat hepatocytes is stimulated in response to Ca2+-mobilizing hormones such as [arginine]vasopressin (AVP), angiotensin II and adrenaline, as well as tumour promoters such as 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA). The ability of these agents to increase cellular contents of diacylglycerol and activate protein kinase C may be necessary to observe this response. In the present work, ouabain-sensitive 86Rb+ uptake was studied in isolated rat hepatocytes to help to explain why stimulation of the Na+/K+ pump by Ca2+-mobilizing hormones and tumour promoters is not temporally sustained relative to other hormone responses. A transient stimulation (3-4 min) of the Na+/K+ pump was observed in hepatocytes exposed to high (10 nM), but not low (0.1 nM), concentrations of AVP. Experiments with the Ca2+ chelator EGTA and the Na+ ionophore monensin indicate that the rapid secondary decrease in Na+/K+-pump activity which occurs after AVP stimulation is not due to changes in cytosolic Ca2+ and Na+ concentrations. When added after the stimulation and rapid decrease in Na+/K+-pump activity induced in hepatocytes by a high concentration of AVP, a second challenge with AVP or PMA failed to stimulate the pump. Similarly, previous exposure of hepatocytes to angiotensin, adrenaline or PMA attenuated the subsequent Na+/K+-pump responses to AVP and PMA. In contrast, previous exposure to AVP had no significant effect on subsequent stimulation of the Na+/K+-pump by monensin, glucagon, forskolin or 8-p-chlorophenylthio cyclic AMP. In addition, exposure to monensin had no effect on subsequent responses to AVP and PMA. These data indicate that high concentrations of Ca2+-mobilizing hormones and PMA result in heterologous desensitization of the hepatic Na+/K+ pump to subsequent stimulation by Ca2+-mobilizing hormones and PMA, but not by cyclic-AMP-dependent agonists or monensin.  相似文献   

8.
Evidence is presented in support of the hypothesis that transmitter monoamines can exert their post-synaptic effects by stimulation or inhibition of Na+/K(+)-ATPase in neuronal or glial cell plasma membranes. Stimulation of electrogenic sodium pumping, causing a hyperpolarization with an increase in membrane resistance, could account for the depression of neuronal spontaneous firing and the signal/noise enhancing actions of these amines. Conversely, inhibition of an electrogenic sodium pump in neuronal plasma membranes would lead to depolarization and enhanced excitability.  相似文献   

9.
This paper presents electrophysiological evidence that small changes in [K+]o modulate the activity of the Na+-K+ pump on the apical membrane of the frog retinal pigment epithelium (RPE). This membrane also has a large relative K+ conductance so that lowering [K+]o hyperpolarizes it and therefore increases the transepithelial potential (TEP). Ba2+, a K+ channel blocker, eliminated these normal K+-evoked responses; in their place, lowering [K+]o evoked an apical depolarization and TEP decrease that were blocked by apical ouabain or strophanthidin. These data indicate that Ba2+ blocked the major K+ conductance(s) of the RPE apical membrane and unmasked a slowing of the normally hyperpolarizing electrogenic Na+-K+ pump caused by lowering [K+]o. Evidence is also presented that [K+]o modulates the pump in the isolated RPE under physiological conditions (i.e., without Ba2+). In the intact retina, light decreases subretinal [K+]o and produces the vitreal-positive c-wave of the electroretinogram (ERG) that originates primarily in the RPE from a hyperpolarization of the apical membrane and TEP increase. When Ba2+ was present in the retinal perfusate, the apical membrane depolarized in response to light and the TEP decreased so that the ERG c-wave inverted. The retinal component of the c-wave, slow PIII, was abolished by Ba2+. The effects of Ba2+ were completely reversible. We conclude that Ba2+ unmasks a slowing of the RPE Na+-K+ pump by the light-evoked decrease in [K+]o. Such a response would reduce the amplitude of the normal ERG c-wave.  相似文献   

10.
The present study reports a discrepancy between the effects of vanadate on the membrane Na+-K+-ATPase and the Na+/K+ pump of the skeletal muscle. Vanadate in concentration 4 X 10(-6) mol/l which is necessary to block the enzyme Na+-K+-ATPase activity of membrane fractions failed to inhibit the electrogenic Na+/K+ pump of intact muscle cells. The effect of vanadate on the electrophysiological parameters of the muscle fibre membrane required much higher vanadate levels, but again, Na+/K+ pump was still active. Vanadate in concentrations 4 X 10(-4) and 4 X 10(-5) mol/l depolarized the membrane potential and decreased the membrane resistance [apparently in consequence of enhanced passive membrane permeability for Na+ ions]. Action potentials and the electrical excitability of the muscle fibre membrane were reduced by these vanadate concentrations.  相似文献   

11.
The effects of hyperthermia (41-43 degrees C) on the membrane potential (calculated from the transmembrane distribution of [3H]tetraphenylphosphonium) and Na+ transport of Chinese hamster V79 fibroblasts were studied. At 41 degrees C, hyperthermia induced a membrane hyperpolarization of log phase cells (5 to 26 mV) that was reversible upon returning to 37 degrees C. The hyperpolarization was inhibited 50% by 1 mM ouabain or 0.25 mM amiloride, an inhibitor of Na+:H+ exchange. Shifting temperature to 41 degrees C increased ouabain-sensitive Rb+ uptake indicating activation of the electrogenic Na+ pump. At 43 degrees C for 60 min, the membrane potential of log phase cells depolarized (20-35 mV). Parallel studies demonstrated enhanced Na+ uptake at 41 degrees C only in the presence of ouabain. At 43 degrees C, Na+ uptake was increased relative to controls with or without ouabain present. At both 41 and 43 degrees C, 0.25 mM amiloride inhibited heat-stimulated Na+ uptake. Na+ efflux was enhanced at 41 degrees C in a process inhibited by ouabain. Thus, one consequence of heat treatment at 41 degrees C is activation of Na+:H+ exchange with the resultant increase in cytosolic [Na+] activating the electrogenic Na+ pump. At temperatures greater than or equal to 43 degrees C, the Na+ pump is inhibited.  相似文献   

12.
The mechanisms underlying cytoplasmic pH (pHi) regulation in rat thymic lymphocytes were studied using trapped fluorescein derivatives as pHi indicators. Cells that were acid-loaded with nigericin in choline+ media recovered normal pHi upon addition of extracellular Na+ (Nao+). The cytoplasmic alkalinization was accompanied by medium acidification and an increase in cellular Na+ content and was probably mediated by a Nao+/Hi+ antiport. At normal [Na+]i, Nao+/Hi+ exchange was undetectable at pHi greater than or equal to 6.9 but was markedly stimulated by internal acidification. Absolute rates of H+ efflux could be calculated from the Nao+-induced delta pHi using a buffering capacity of 25 mmol X liter-1 X pH-1, measured by titration of intact cells with NH4+. At pHi = 6.3, pHo = 7.2, and [Na+]o = 140 mM, H+ extrusion reached 10 mmol X liter-1 X min-1. Nao+/Hi+ exchange was stimulated by internal Na+ depletion and inhibited by lowering pHo and by addition of amiloride (apparent Ki = 2.5 microM). Inhibition by amiloride was competitive with respect to Nao+. Hi+ could also exchange for Lio+, but not for K+, Rb+, Cs+, or choline+. Nao+/Hi+ countertransport has an apparent 1:1 stoichiometry and is electrically silent. However, a small secondary hyperpolarization follows recovery from acid-loading in Na+ media. This hyperpolarization is amiloride- and ouabain-sensitive and probably reflects activation of the electrogenic Na+-K+ pump. At normal Nai+ values, the Nao+/Hi+ antiport of thymocytes is ideally suited for the regulation of pHi. The system can also restore [Na+]i in Na+-depleted cells. In this instance the exchanger, in combination with the considerable cytoplasmic buffering power, will operate as a [Na+]i- regulatory mechanism.  相似文献   

13.
The primary extrusion of Na+ from Mycoplasma gallisepticum cells was demonstrated by showing that when Na+-loaded cells were incubated with both glucose (10 mM) and the uncoupler SF6847 (0.4 microM), rapid acidification of the cell interior occurred, resulting in the quenching of acridine orange fluorescence. No acidification was obtained with Na+-depleted cells or with cells loaded with either KCl, RbCl, LiCl, or CsCl. Acidification was inhibited by dicyclohexylcarbodiimide (50 microM) and diethylstilbesterol (50 microM), but not by vanadate (100 microM). By collapsing delta chi with tetraphenylphosphonium (200 microM) or KCl (25 mM), the fluorescence was dequenched. The results are consistent with a delta chi-driven uncoupler-dependent proton gradient generated by an electrogenic ion pump specific for Na+. The ATPase activity of M. gallisepticum membranes was found to be Mg2+ dependent over the entire pH range tested (5.5 to 9.5). Na+ (greater than 10 mM) caused a threefold increase in the ATPase activity at pH 8.5, but had only a small effect at pH 5.5. In an Na+-free medium, the enzyme exhibited a pH optimum of 7.0 to 7.5, with a specific activity of 30 +/- 5 mumol of phosphate released per h per mg of membrane protein. In the presence of Na+, the optimum pH was between 8.5 and 9.0, with a specific activity of 52 +/- 6 mumol. The Na+-stimulated ATPase activity at pH 8.5 was much more stable to prolonged storage than the Na+-independent activity. Further evidence that two distinct ATPases exist was obtained by showing that M. gallisepticum membranes possess a 52-kilodalton (kDa) protein that reacts with antibodies raised against the beta-subunit of Escherichia coli ATPase as well as a 68-kDa protein that reacts with the anti-yeast plasma membrane ATPases antibodies. It is postulated that the Na+ -stimulated ATPases functions as the electrogenic Na+ pump.  相似文献   

14.
In guinea pig taenia caeci smooth muscle the muscarinic receptor stimulant carbachol evoked depolarization and contraction, which was followed by hyperpolarization and relaxation on its removal. Both the hyperpolarization and relaxation were inhibited by removal of K+ from the external medium. During Na+-pump blockade (K+-free solution) the depolarizing and contracting actions of carbachol decreased. When the Na+ pump was switched on again by readmission of 5.9 mmol/L K+ to K+-depleted and Na+-enriched preparations, electrogenic hyperpolarization and relaxation developed. During this period carbachol failed to produce depolarization and contraction.  相似文献   

15.
We studied the effect of adenosine on Na+/Ca2+ exchange activity in ewe heart ventricular sarcolemmal vesicles. Adenosine was found to stimulate Na+/Ca2+ exchange activity in a dose-dependent manner from 0.1 nM to 10 microM, with maximal stimulation (40%) at 0.1 microM adenosine. The Vmax of Na+/Ca2+ exchange was increased, but the Km for Ca2+ was not altered. The effect of adenosine was specific since 1 microM adenine, inosine, and guanosine led to less than 15% stimulation, and adenosine diphosphate had no effect. Caffeine antagonized the activation of Na+/Ca2+ exchange by adenosine, and the order of potency of adenosine analogs was N6-(L-2-phenylisopropyl)adenosine = N6-cyclohexyladenosine = 5'-(N- ethylcarboxamido)adenosine much greater than N6-(D-2-phenylisopropyl)adenosine, indicating the involvement of A1 subclass receptors. The effect of adenosine was mimicked by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and blocked by pertussis toxin treatment. Taken together, these results suggest that A1 subclass receptors coupled to a pertussis toxin-sensitive G protein mediate the activation of Na+/Ca2+ exchange activity by adenosine. We conclude that the negative inotropic effect of adenosine in ventricular muscle, antagonistic toward cyclic AMP, may involve activation of Na+/Ca2+ exchange.  相似文献   

16.
Intracellular recordings have been made from salivary gland cells of the pond snail Planorbis corneus. Gland cells produced a dose-dependent biphasic response to the bath application of acetylcholine (ACh), an initial depolarization being followed by a hyperpolarization. Nicotine and the nicotinic agonist tetramethylammonium had an excitatory action on the gland cells. The muscarinic agonists acetyl-beta-methyl choline and arecoline were also stimulants, but muscarine, bethanechol and pilocarpine produced no response from gland cells at 10(-3) M. A number of cholinergic antagonists, including atropine, hexamethonium and curare, effectively blocked the response to ACh. The depolarizing phase of the ACh response resulted from an increased membrane permeability to Na+ ions, though the participation of other ionic species cannot be ruled out. The hyperpolarizing phase of the ACh response was produced by the activity of an electrogenic Na+/K+ pump.  相似文献   

17.
W Laubinger  P Dimroth 《Biochemistry》1989,28(18):7194-7198
The purified ATPase (F1F0) of Propionigenium modestum has its pH optimum at pH 7.0 or at pH 6.0 in the presence or absence of 5 mM NaCl, respectively. The activation by 5 mM NaCl was 12-fold at pH 7.0, 3.5-fold at pH 6.0, and 1.5-fold at pH 5.0. In addition to its function as a primary Na+ pump, the ATPase was capable of pumping protons. This activity was demonstrated with reconstituted proteoliposomes by the ATP-dependent quenching of the fluorescence of 9-amino-6-chloro-2-methoxyacridine. No delta pH was formed in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone or by blocking the ATPase with dicyclohexylcarbodiimide. In the presence of valinomycin and K+, the delta pH increased, in accord with the operation of an electrogenic proton pump. The proton pump was only operative at low Na+ concentrations (less than 1 mM), and its activity increased as the Na+ concentration decreased. Parallel to the decrease of H+ pumping, the velocity of the Na+ transport increased about 6-fold from 0.1 to 4 mM NaCl, indicating a switch from H+ to Na+ pumping, as the Na+ concentration increases. Due to proton leaks in the proteoliposomal membranes, fluorescence quenching was released after blocking the ATPase with dicyclohexylcarbodiimide, by trapping residual ATP with glucose and hexokinase, or by the Na+-induced conversion of the proton pump onto a Na+ pump. Amiloride, an inhibitor of various Na+-coupled transport systems, was without effect on the kinetics of Na+ transport by the P. modestum ATPase.  相似文献   

18.
Membrane potentials and conductances, and intracellular ionic activities were studied in isolated perfused collecting tubules of K+-adapted Amphiuma. Intracellular Na+ (aNai) and K+ (aKi) activities were measured, using liquid ion-exchanger double-barreled microelectrodes. Apical and basolateral membrane conductances were estimated by cable analysis. The effects of inhibition of the apical conductance by amiloride (10(-5) M) and of inhibition of the basolateral Na-K pump by either a low K+ (0.1 mM) bath or by ouabain (10(-4) M) were studied. Under control conditions, aNai was 8.4 +/- 1.9 mM and aKi 56 +/- 3 mM. With luminal amiloride, aNai decreased to 2.2 +/- 0.4 mM and aKi increased to 66 +/- 3 mM. Ouabain produced an increase of aNai to 44 +/- 4 mM, and a decrease of aKi to 22 +/- 6, and similar changes were observed when the tubule was exposed to a low K+ bath solution. During pump inhibition, there was a progressive decrease of the K+-selective basolateral membrane conductance and of the Na+ permeability of the apical membrane. A similar inhibition of both membrane conductances was observed after pump inhibition by low K+ solution. Upon reintroduction of K+, a basolateral membrane hyperpolarization of -23 +/- 4 mV was observed, indicating an immediate reactivation of the electrogenic Na-K pump. However, the recovery of the membrane conductances occurred over a slower time course. These data imply that both membrane conductances are regulated according to the intracellular ionic composition, but that the basolateral K+ conductance is not directly linked to the pump activity.  相似文献   

19.
MDCK kidney epithelial cell cultures exposed to the differentiation inducer hexamethylene bisacetamide (HMBA) for 24 hours exhibited a 50% decrease in transport activity per (Na+,K+)-ATPase molecule (turnover number) but an unchanged number of pump sites (Kennedy and Lever, 1984). Inhibition of protein synthesis by either 10 microM cycloheximide or 2 microM emetine blocked the inhibitory effects of HMBA on Na+/K+ pump efficiency assessed by measurements of [3H]-ouabain binding to intact cells, (Na+,K+) ATPase activity of detergent-activated cell extracts, and ouabain-sensitive Rb+ uptake. In the absence of inducer treatment, inhibition of protein synthesis increased Na+/K+ pump turnover number by twofold while maintaining Na+/K+ pump activity per cell at a constant level. Intracellular Na+ levels were decreased after cycloheximide treatment; therefore, pump stimulation was not due to substrate effects. Furthermore, cycloheximide effects of Rb+ uptake could be dissociated from effects on tight junctions. These observations suggest that the transport activity of the (Na+,K+) ATPase is tightly regulated by factors dependent on protein synthesis.  相似文献   

20.
In the experiments carried out with the suspension of the myometrium cell plasmatic membranes treated with 0.1% digitonin solution the authors investigated influence of the calix[4]arenes C-97 and C-107 (codes are shown) on ouabain effect on the Na+,K+-ATPase activity. It was shown that calixarenes in concentration 100 tiM inhibited by 97-98% the enzymatic Na+,K+-ATPase activity, while they did not practically influence on the basal Mg2+-ATPase activity, and suppressed much more effective than ouabain the sodium pump enzymatic activity: in the case of the action of the calixarenes the value of the apparent constant of inhibition I0.5 was < 0.1 microM while for ouabain it was 15-25 microM. The negative cooperative effect was typical of the inhibitory action of calixarenes, as well as ouabain: the value of Hills factor nH = 0.3-0.5 <1. The modelling compound M-3 (0.1 microM 4 microM)--a fragment of the calixarene C-107--did not practically influence the enzymatic activities as Na+,K+-ATPase and basal Mg2+-ATPase. Hence the influence of calixarene C-107 on the Na+, K+-ATPase activity is caused by cooperative action of two fragments M-3 and effect of calixarene bowl, rather than by simple action of the fragment M-3. Calixarenes C-97 and C-107, used in concentration corresponding to values of I0.5 (40 and 60 nM, accordingly), essentially stimulated inhibiting action of ouabain on the specific Na+, K+-ATPase activity in the memrane fraction. Under coaction of ouabain with calixarene C-97 or C-107 there was no additive effect of the action of these inhibitors on the Na+,K+-ATPase activity. Calixarene C-97 brought in the incubation medium in concentration of 10 nM not only led to inhibition of the Na+,K+-ATPase activity relative to control, but also simultaneously increased the affinity of the enzyme for the cardiac glycoside: the magnitudes of the apparent constant of inhibition I0.5 were 21.0 +/- 5.2 microM and 5.3 +/- 0.7 microM. It is concluded, that highly effective inhibitors of the Na+,K+-ATPase activity--calixarenes C-97 and C-107 can enhance the effect of the sodium pump conventional inhibitor--ouabain, increasing the affinity of the enzyme for the cardiac glycoside (on the example of calixarene C-97).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号