首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The hemin receptor HemR of Yersinia enterocolitica was identified as a 78 kDa iron regulated outer membrane protein. Cells devoid of the HemR receptor as well as cells mutated in the tonB gene were unable to take up hemin as an iron source. The hemin uptake operon from Y. enterocolitica was cloned in Escherichia coli K12 and was shown to encode four proteins: HemP (6.5 kDa), HemR (78 kDa), HemS (42 kDa) and HemT (27 kDa). When expressed in E.coli hemA aroB, a plasmid carrying genes for HemP and HemR allowed growth on hemin as a porphyrin source. Presence of genes for HemP, HemR and HemS was necessary to allow E.coli hemA aroB cells to use hemin as an iron source. The nucleotide sequence of the hemR gene and its promoter region was determined and the amino acid sequence of the HemR receptor deduced. HemR has a signal peptide of 28 amino acids and a typical TonB box at its amino-terminus. Upstream of the first gene in the operon (hemP), a well conserved Fur box was found which is in accordance with the iron-regulated expression of HemR.  相似文献   

2.
Yersinia pestis strains utilize haem and several haem-protein complexes as sole sources of iron. In this study, the haemin uptake locus (hmu) of Y. pestis KIM6+ was selected from a genomic library by trans-duction into an Escherichia coli siderophore synthesis (entC) mutant. Recombinant plasmids containing a common 16 kb BamHI insert were isolated that allowed E. coli entC to use haemin as an iron source. An 8.6 kb region of this insert was found to be essential for haemin utilization and encoded at least five proteins with molecular masses of 79/77, 44, 37, 35, and 30/27.5 kDa. A 10.9 kb Clal fragment containing the hmu locus showed varying degrees of homology to genomic DNA from Yersinia pseudotuberculosis, Yersinia enter-ocolitica, and other genera of Enterobacteriaceae. An E. coli hemA aroB strain harbouring cloned hmu genes used haemin as both an iron and porphyrin source but only on iron-poor medium, suggesting that haemin uptake is tightly iron regulated. Additionally, haemoglobin and myoglobin were used as iron sources by an E. coli entC (pHMU2.2) strain. Deletion of the hmu locus from Y. pestis KIM6+ chromosome generated a mutant that grew poorly on iron-depleted medium containing free haemin as well as mammalian haem-protein complexes including haemoglobin, haemoglobin-haptoglobin, myoglobin, haem-haemopexin, and haem-albumin unless it was complemented with cloned hmu genes.  相似文献   

3.

Background  

Yersinia enterocolitica is an enteric pathogen that invades the intestinal mucosa and proliferates within the lymphoid follicles (Peyer's patches). The attachment invasion locus (ail) mediates invasion by Y. enterocolitica and confers an invasive phenotype upon non-invasive E. coli; ail is the primary virulence factor of Y. enterocolitica. The ferrioxamine receptor (foxA) located on the Y. enterocolitica chromosome, together with its transport protein, transports a siderophore specific for ferric ion. Currently, ail is the primary target gene for nucleic acid detection of pathogenic Y. enterocolitica.  相似文献   

4.
Summary The tonB gene is required for energy-dependent transport processes across the outer membrane of gram-negative bacteria. Using the antibiotics albomycin and ferrimycin, a tonB mutant of Yersinia enterocolitica was isolated. Comparison of the tonB mutant with the parent strain revealed that in Y. enterocolitica the uptake of ferrioxamine, ferrichrome, pesticin and heme is TonB-dependent. The tonB gene from Y. enterocolitica was sequenced and found to be similar to those of other Enterobacteria. The Y. enterocolitica tonB gene complemented a Y. enterocolitica tonB mutant. In contrast, some Tong functions of an Escherichia coli tonB mutant were not restored by the tonB gene of Y. enterocolitica. The observed differences in the ability to complement E. coli Tong functions correlated with the degree to which the Tong boxes of the receptors and colicins differed from the TonB box consensus sequence. Furthermore, the N-terminal membrane anchor of the TonB proteins and the TolA protein are likely to form an -helix with an identical sequence motif (SHLS) located at one face of the a-helix, suggesting this region to be involved in the functional cross-talk between the TonB-ExbBD-and TolABQR-dependent transport systems across the outer membrane.  相似文献   

5.
Uptake of iron complexes into the Gram-negative bacterial cell requires highly specific outer membrane receptors and specific ATP-dependent (ATP-Binding-Cassette (ABC)) transport systems located in the inner membrane. The latter type of import system is characterized by a periplasmic binding protein (BP), integral membrane proteins, and membrane-associated ATP-hydrolyzing proteins. In Gram-positive bacteria lacking the periplasmic space, the binding proteins are lipoproteins tethered to the cytoplasmic membrane. To date, there is little structural information about the components of ABC transport systems involved in iron complex transport. The recently determined structure of the Escherichia coli periplasmic ferric siderophore binding protein FhuD is unique for an ABC transport system (Clarke et al. 2000). Unlike other BP's, FhuD has two domains connected by a long -helix. The ligand binds in a shallow pocket between the two domains. In vivo and in vitro analysis of single amino acid mutants of FhuD identified several residues that are important for proper functioning of the protein. In this study, the mutated residues were mapped to the protein structure to define special areas and specific amino acid residues in E. coli FhuD that are vital for correct protein function. A number of these important residues were localized in conserved regions according to a multiple sequence alignment of E. coli FhuD with other BP's that transport siderophores, heme, and vitamin B12. The alignment and structure prediction of these polypeptides indicate that they form a distinct family of periplasmic binding proteins.  相似文献   

6.
冯言  刘马峰  程安春 《微生物学报》2016,56(7):1061-1069
几乎所有细菌的生长都离不开铁元素。在有氧的环境中,三价铁离子几乎无法被细菌直接利用。但是在宿主胃肠道中,铁元素主要以可溶性的亚铁离子形式存在,它们可通过革兰氏阴性菌外膜直接进入胞周质,在周质通过亚铁离子转运系统,将铁离子转运至胞浆供细菌利用。绝大多数阴性菌主要是通过Feo转运系统利用亚铁离子,大肠杆菌的Feo转运系统由feoA、feoB和feoC3个基因组成。除Feo转运系统外,还发现Yfe转运系统、Efe转运系统、Sit转运系统等。本文重点介绍革兰氏阴性菌Feo转运系统的组成及作用机制,以期为进一步研究细菌亚铁离子的转运机制提供参考。  相似文献   

7.
8.
The Neisseris meningitidis haemoglobin receptor gene, hmbR, was cloned by complementation in a porphyrin-requiring Escherichia coli mutant. hmbR encodes an 89.5 kDa outer membrane protein which shares amino acid homology with the TonB-dependent receptors of Gram-negative bacteria. HmbR had the highest similarity to Neisseria transferrin and lactoferrin receptors. The utilization of haemoglobin as an iron source required internalization of the haemin moiety by the cell. The mechanism of haemin internalization via the haemoglobin receptor was TonB-dependent in E. coli. A N. meningitidis hmbR mutant was unable to use haemoglobin but could still use haemin as a sole iron source. The existence of a second N. meningitidis receptor gene, specific for haemin, was shown by the isolation of cosmids which did not hybridize with the hmbR probe, but which were able to complement an E. coli hemA aroB mutant on haemin-supplemented plates. The N. meningitidis hmbR mutant was attenuated in an infant rat model for meningococcal infection, indicating that haemoglobin utilization is important for N. meningitidis virulence.  相似文献   

9.
Summary A region of substantial homology, comprising 32 amino acids around a highly conserved glycine residue, is located near the C-terminal ends of the hydrophobic Fhu, Fec, Fep, Fat, and Btu transport proteins involved in the uptake of ferrisiderophores and vitamin B12 into Escherichia coli and Vibrio anguillarum. Furthermore, a region similar in location and sequence containing an invariant glycine at an equivalent position was identified in the hydrophobic component of all other periplasmic binding protein-dependent (PBT) systems. In the FhuB protein, which is twice the size of the other PBT-related inner membrane proteins and which displays an internal homology, two conserved glycine residues are present. Alteration of Gly at positions 226 and 559 to Ala, Val, or Glu reduced iron(III) hydroxamate uptake, suggesting that this homologous region may play a general role in the mechanism of PBT-dependent transport.  相似文献   

10.
OmpC-like porin was isolated from the outer membrane (OM) of Yersinia enterocolitica cultured at 37°C (the “warm” variant) and its physicochemical and functional properties were studied. The amino acid sequence of OmpC porin was established, and the primary structure and transmembrane topology of this protein were analyzed in comparison with the OmpF porin isolated from Y. enterocolitica cultured at 6°C (the “cold” variant). Both porins of Y. enterocolitica had a high homology degree (65%) between themselves and with OmpC and OmpF porins from OM of Escherichia coli (58 and 76% homology, respectively). The secondary structure of OmpC and OmpF porins from OM of Y. enterocolitica consists of 16 β-strands connected by short “periplasmic” and longer “extracellular” loops with disordered structure, according to the topological model developed for porins of E. coli. The molecular structures of OmpC and OmpF porins of Y. enterocolitica have significant differences in the structure of the “extracellular” loops and in the position of one of three tryptophan residues. Using the bilayer lipid membrane (BLM) technique, pores formed by OmpC porin of Y. enterocolitica were shown to differ in electrophysiological characteristics from channels of OmpF protein of this microorganism. The isolated OmpC porin reconstructed into BLM displayed functional plasticity similarly to OmpF protein and nonspecific porins of other enterobacteria. The conductivity level of the channels formed by this protein in the BLM was regulated by value of the applied potential.  相似文献   

11.
Classical pathogenic strains of Yersinia enterocolitica produce a 17 kDa outer membrane protein, Ail (attachment-invasion locus), which mediates bacterial attachment to some cultures epithelial cell lines and invasion of others. In the present study, hybridomas were developed for the production of monoclonal antibodies (MAbs) against Ail protein of Y. enterocolitica. A set of five stabilized hybridoma cell lines were generated, of which, two MAbs, YEA 302 and YEA 303, exhibited specific reaction to the native Ail protein (17 kDa) present in whole cell lysate of Y. enterocolitica strains beside having reaction with rAil. The other three MAbs, YEA 5, 17 and 32, had some cross reactions with proteins other than Ail. Two out of five MAbs were IgG1, two were IgG2b and one in IgM in nature. MAbs (YEA 302 and YEA 303) did not show any cross-reaction with whole cell lysate of Brucella abortus, Vibrio cholerae, Salmonella typhimurium and Escherichia coli and other species of Enterobacteriaceae including Y. pestis in ELISA and Western blot analysis. The presence of Ail protein among the strains recovered from pork and milk samples was evaluated by these sets of MAbs and the results were compared with the duplex PCR. Collectively, the data suggest that these MAbs may have the potential for their use in the detection of pathogenic Y. enterocolitica reliably, rapidly and at a relatively low cost.  相似文献   

12.
Aim: To evaluate whole cell protein profiling vis‐à‐vis genotyping to discern phylogenetic relationships among strains of Y. enterocolitica biovar 1A. Methods and Results: Whole cell protein profiling of Y. enterocolitica biovar 1A strains was performed using SDS–PAGE. Twenty‐one distinct protein profile types were obtained among a collection of 81 strains isolated from clinical and nonclinical sources. Whole cell protein profiling exhibited discriminatory index (DI) of 0·80 and clustered the strains into two distinct clonal groups. The clinical and the aquatic serotype O:6,30–6,31 strains were clustered into two discrete subgroups. Conclusions: Whole cell protein profiling displayed sufficient diversity among strains of Y. enterocolitica biovar 1A, and the phylogenetic relationships obtained were in good agreement with those established earlier by genotyping techniques. Significance and impact of the study: Whole cell protein profiling was as discriminatory as some of the genotyping methods and has the potentiality to be used as an adjunct tool to study epidemiology of Y. enterocolitica.  相似文献   

13.
Aims: Rapid detection of pathogenic Yersinia enterocolitica isolates by using antisera raised against recombinant attachment‐invasion locus (Ail) protein. Methods and Results: The complete gene (471 bp) encoding for the Ail protein was amplified by PCR and cloned in pQE 30 UA vector. The recombinant clones were selected by polymerase chain reaction (PCR). Recombinant protein was expressed using induction with 1 mmol l?1 final concentration of isopropylthiogalactoside (IPTG). Polyclonal antibodies were raised in mice against this purified recombinant protein. An indirect plate ELISA was standardized based on rAil protein for the detection of Y. enterocolitica. Western blot analysis with the sera raised against recombinant Ail protein exhibited reaction at 17 kDa region of the native Ail protein present in pathogenic Y. enterocolitica standard strains and strains isolated from pork samples suggesting that the antigenicity of recombinant Ail protein was similar to that of native Ail protein. Nonpathogenic Y. enterocolitica and the other species of Yersinia, namely, Y. pseudotuberculosis, Y. intermedia, Y. kristenseni, Y. fredrickseni and also the Enterobacteriaceae organisms tested were not found reacting to polyclonal antisera against this recombinant Ail protein. Conclusion: The antibodies raised against recombinant Ail protein could specifically identify pathogenic Y. enterocolitica strains both by indirect plate ELISA and Western blot immunoassay. Significance and Impact of the Study: The method developed in this study may find application in the detection of pathogenic Y. enterocolitica not only from food and environmental samples but also from clinical samples.  相似文献   

14.
Transport of iron(III) hydroxamates across the inner membrane ofEscherichia coli depends on a binding protein-dependent transport system composed of the FhuB,C and D proteins. The FhuD protein, which is synthesized as a precursor and exported through the cytoplasmic membrane, represents the periplasmic binding protein of the system, accepting as substrates a number of hydroxamate siderophores and the antibiotic albomycin. A FhuD derivative, carrying an N-terminal His-tag sequence instead of its signal sequence and therefore not exported through the inner membrane, was purified from the cytoplasm. Functional activity, comparable to that of wild-type FhuD, was demonstrated for this His-tag-FhuD in vitro by protease protection experiments in the presence of different substrates, and in vivo by reconstitution of iron transport in afhuD mutant strain. The experimental data demonstrate that the primary sequence of the portion corresponding to the mature FhuD contains all the information required for proper folding of the polypeptide chain into a functional solute-binding protein. Moreover, purification of modified periplasmic proteins from the cytosol may be a useful approach for recovery of many polypeptides which are normally exported across the inner membrane and can cause toxicity problems when overproduced.  相似文献   

15.
Vibrio cholerae can utilize haemin or haemoglobin as its sole source of iron. Four haem utilization mutants of a classical strain of V. cholerae were isolated. These mutations were complemented with pHUT1, a cosmid clone isolated from a library of wild-type CA401 DNA. Two independent Tn5 insertions into the cloned sequence disrupted function in all of the complemented mutants. Escherichia coli 1017 transformed with pHUT1 failed to utilize haemin as an iron source; a second plasmid containing a different cloned fragment of V. cholerae DNA (pHUT3) was required in addition to pHUT1 to reconstitute the system in E. coli. Minicell analysis and SDS-PAGE of protein fractions indicate that pHUT10 (a subclone of p>HUT1) encodes a 26 kDa inner membrane protein, and pHUT3 encodes a 77 kDa outer membrane protein. Loss of either protein by Tn5 mutagenesis abolishes haem utilization in E. coli. An E. coli hemA mutant that cannot synthesize porphyrins was transformed with the recombinant plasmids to determine whether the plasmids encoded the ability to transport the porphyrin as well as the iron. The transformants grew aerobically in media containing haemin, whereas the parental strain was unable to grow under these conditions. This indicates that V. cholerae haem-iron utilization genes allow transport of the entire haem moiety into the cell.  相似文献   

16.
Summary ThefhuB, fhuC andfhuD genes encode proteins which catalyze transport of iron(III)-hydroxamate compounds from the periplasm into the cytoplasm ofEscherichia coli. ThefhuB, C, D genes were cloned downstream of a strong phage T7 promoter and transcribed by T7 RNA polymerase. The overexpressed FhuD protein appeared in two forms of 31 and 28 kDa and was released upon conversion of vegetative cells into spheroplasts, suggesting synthesis of FhuD as a precursor and export into the periplasm. The very hydrophobic FhuB protein was found in the cytoplasmic membrane. These properties, together with the previously found homologies in the FhuC protein to ATP-binding proteins, display the characteristics of a periplasmic binding protein dependent transport system across the cytoplasmic membrane. The molecular weight of FhuB and the sequence offhuC, as previously published by us, was confirmed. FhuB exhibited double the size of most hydrophobic proteins of such systems and showed homology between the amino- and carboxy-terminal halves of the protein, indicating duplication of an original gene and subsequent fusion of the two DNA fragments.  相似文献   

17.
18.
For many pathogenic microorganisms, iron acquisition from host heme sources stimulates growth, multiplication, ultimately enabling successful survival and colonization. In gram‐negative Escherichia coli O157:H7, Shigella dysenteriae and Yersinia enterocolitica the genes encoded within the heme utilization operon enable the effective uptake and utilization of heme as an iron source. While the complement of proteins responsible for heme internalization has been determined in these organisms, the fate of heme once it has reached the cytoplasm has only recently begun to be resolved. Here we report the first crystal structure of ChuX, a member of the conserved heme utilization operon from pathogenic E. coli O157:H7 determined at 2.05 Å resolution. ChuX forms a dimer which remarkably given low sequence homology, displays a very similar fold to the monomer structure of ChuS and HemS, two other heme utilization proteins. Absorption spectral analysis of heme reconstituted ChuX demonstrates that ChuX binds heme in a 1:1 manner implying that each ChuX homodimer has the potential to coordinate two heme molecules in contrast to ChuS and HemS where only one heme molecule is bound. Resonance Raman spectroscopy indicates that the heme of ferric ChuX is composed of a mixture of coordination states: 5‐coordinate and high‐spin, 6‐coordinate and low‐spin, and 6‐coordinate and high‐spin. In contrast, the reduced ferrous form displays mainly a 5‐coordinate and high‐spin state with a minor contribution from a 6‐coordinate and low‐spin state. The νFe‐CO and νC‐O frequencies of ChuX‐bound CO fall on the correlation line expected for histidine‐coordinated hemoproteins indicating that the fifth axial ligand of the ferrous heme is the imidazole ring of a histidine residue. Based on sequence and structural comparisons, we designed a number of site‐directed mutations in ChuX to probe the heme binding sites and dimer interface. Spectral analysis of ChuX and mutants suggests involvement of H65 and H98 in heme coordination as mutations of both residues were required to abolish the formation of the hexacoordination state of heme‐bound ChuX.  相似文献   

19.
Liu M  Boulouis HJ  Biville F 《PloS one》2012,7(5):e37630
Bartonellae are hemotropic bacteria, agents of emerging zoonoses. These bacteria are heme auxotroph Alphaproteobacteria which must import heme for supporting their growth, as they cannot synthesize it. Therefore, Bartonella genome encodes for a complete heme uptake system allowing the transportation of this compound across the outer membrane, the periplasm and the inner membranes. Heme has been proposed to be used as an iron source for Bartonella since these bacteria do not synthesize a complete system required for iron Fe3? uptake. Similarly to other bacteria which use heme as an iron source, Bartonellae must transport this compound into the cytoplasm and degrade it to allow the release of iron from the tetrapyrrole ring. For Bartonella, the gene cluster devoted to the synthesis of the complete heme uptake system also contains a gene encoding for a polypeptide that shares homologies with heme trafficking or degrading enzymes. Using complementation of an E. coli mutant strain impaired in heme degradation, we demonstrated that HemS from Bartonella henselae expressed in E. coli allows the release of iron from heme. Purified HemS from B. henselae binds heme and can degrade it in the presence of a suitable electron donor, ascorbate or NADPH-cytochrome P450 reductase. Knocking down the expression of HemS in B. henselae reduces its ability to face H?O? induced oxidative stress.  相似文献   

20.
Using strains with or without the PhoE porin or different components of the phosphate regulon, we determined that maintenance of the culturability of Escherichia coli in seawater depended significantly on the presence of structures allowing access of phosphate ions to the periplasm, then to the cytoplasm of cells. Cells totally deprived of the two main phosphate transport systems (Pit, Pst) exhibited the highest loss of culturability. Most of this effect resulted from the loss of the high-affinity Pst system, and more specifically that of the periplasmic phosphate-binding protein PhoS. Survival was enhanced in seawater supplemented with phosphate (0.5 mm), whether or not these structures were present. From an ecological point of view, it is assumed that the presence of phosphate ions, even at low concentrations, can influence the behavior of E. coli cells in seawater. Offprint requests to: M.J. Gauthier  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号