首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gangliosides have profound modulatory effects on protein phosphorylation in brain. A protein kinase activated directly by gangliosides has been partially purified from the particulate fractions of guinea pig brain through extraction with nonionic detergent, ion-exchange chromatography, hydrophobic chromatography, and gel filtration. This novel ganglioside-stimulated protein kinase is distinct from cAMP-dependent, Ca2+/calmodulin-dependent, and Ca2+/phospholipid-dependent protein kinases. The partially purified kinase preparation could undergo ganglioside-stimulated autophosphorylation of a major phosphoprotein with Mr corresponding to 68,000. It also could phosphorylate exogenous substrates such as the synthetic peptide Leu-Arg-Arg-Ala Ser-Leu-Gly. The requirement of gangliosides for the activation of kinase activity is dose-dependent and specific. Among the various gangliosides tested, GT1b and GD1a were found to be the most potent activators, whereas GD1b and GM1 were slightly less effective. The activation process is rapid and does not require the presence of Ca2+, suggesting that the stimulatory effect of gangliosides is not mediated through limited proteolysis or Ca2+-glycolipid complexes. Although the exact physiological significance of the ganglioside-stimulated protein kinase is not known at present, it is possible that certain functions related to gangliosides in the nervous system are mediated through the activation of this novel enzyme.  相似文献   

2.
Purified rat brain Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) is stimulated by brain gangliosides to a level of about 30% the activity obtained in the presence of Ca2+/calmodulin (CaM). Of the various gangliosides tested, GT1b was the most potent, giving half-maximal activation at 25 microM. Gangliosides GD1a and GM1 also gave activation, but asialo-GM1 was without effect. Activation was rapid and did not require calcium. The same gangliosides also stimulated the autophosphorylation of CaM-kinase II on serine residues, but did not produce the Ca2+-independent form of the kinase. Ganglioside stimulation of CaM-kinase II was also present in rat brain synaptic membrane fractions. Higher concentrations (125-250 microM) of GT1b, GD1a, and GM1 also inhibited CaM-kinase II activity. This inhibition appears to be substrate-directed, as the extent of inhibition is very dependent on the substrate used. The molecular mechanism of the stimulatory effect of gangliosides was further investigated using a synthetic peptide (CaMK 281-309), which contains the CaM-binding, inhibitory, and autophosphorylation domains of CaM-kinase II. Using purified brain CaM-kinase II in which these regulatory domains were removed by limited proteolysis. CaMK 281-309 strongly inhibited kinase activity (IC50 = 0.2 microM). GT1b completely reversed this inhibition, but did not stimulate phosphorylation of the peptide on threonine-286. These results demonstrate that GT1b can partially mimic the effects of Ca2+/CaM on native CaM-kinase II and on peptide CaMK 281-309.  相似文献   

3.
A protein kinase activity was identified in pig brain that co-purified with microtubules through repeated cycles of temperature-dependent assembly and disassembly. The microtubule-associated protein kinase (MTAK) phosphorylated histone H1; this activity was not stimulated by cyclic nucleotides. Ca2+ plus calmodulin, phospholipids or polyamines. MTAK did not phosphorylate synthetic peptides which are substrates for cyclic AMP-dependent protein kinase, cyclic GMP-dependent protein kinase. Ca2+/calmodulin-dependent protein kinase II, protein kinase C or casein kinase II. MTAK activity was inhibited by trifluoperazine [IC50 (median inhibitory concn.) = 600 microM] in a Ca2+-independent fashion. Ca2+ alone was inhibitory [IC50 = 4 mM). MTAK was not inhibited by heparin, a potent inhibitor of casein kinase II, nor a synthetic peptide inhibitor of cyclic AMP-dependent protein kinase. MTAK demonstrated a broad pH maximum (7.5-8.5) and an apparent Km for ATP of 45 microM. Mg2+ was required for enzyme activity and could not be replaced by Mn2+. MTAK phosphorylated serine and threonine residues on histone H1. MTAK is a unique cofactor-independent protein kinase that binds to microtubule structures.  相似文献   

4.
Membranes prepared from highly purified rat liver lysosomes contain endogenous protein-phosphorylation activities. The transfer of phosphate to membrane fractions from [gamma-32P]ATP was analyzed by gel electrophoresis under acidic denaturing conditions. Two phosphopeptides were detected, with molecular weights of 3,000 and 14,000. Phosphorylation of these proteins was unaffected by the addition of cAMP, cGMP, or the heat-stable inhibitor of cAMP-dependent protein kinase. No additional phosphorylation was observed when cAMP-dependent protein kinase was included in the reaction or when exogenous protein kinase substrates were added. The 14,000-dalton 32P-labeled product was formed rapidly in the presence of low concentrations (250 microM) of either Ca2+ or Mg2+. This product was labile under both acidic and alkaline conditions, suggesting that this protein contains an acyl phosphate, present presumably as a catalytic intermediate in a phosphotransferase reaction. The lower molecular weight species required a high concentration (5 mM) of Mg2+ for phosphorylation, and micromolar concentrations of Ca2+ stimulated the Mg2+-dependent activity. The addition of Ca2+ and calmodulin stimulated the phosphorylation reaction to a greater extent than with Ca2+ alone. This activity was strongly inhibited by 0.2 mM LaCl3 and to a lesser extent by 50 microM chlorpromazine or trifluoperazine. These results suggest that the 3000-dalton peptide may be phosphorylated by a Ca2+, calmodulin-dependent kinase associated with the lysosomal membrane.  相似文献   

5.
Gangliosides have profound effects on protein phosphorylation in skeletal muscle. Addition of GT1b to guinea pig muscle extract stimulated the phosphorylation of a 98-kDa protein 4-8-fold. In contrast, Ca2+ stimulated the phosphorylation of this protein and two other proteins with apparent Mr of 107,000 and 145,000, respectively. Addition of GT1b in the presence of Ca2+ further enhanced the phosphorylation of the 98-kDa protein but completely inhibited the phosphorylation of both the 107- and the 145-kDa proteins. The nature of the ganglioside-modulated 98-kDa protein has been characterized. Results on the pH activity profiles and the requirements of Ca2+ for phosphorylation suggest that this phosphoprotein may correspond to glycogen phosphorylase. Phosphorylation of purified rabbit muscle phosphorylase b by nonactivated phosphorylase kinase was stimulated by GT1b. This stimulation was in part due to an activation of the kinase activity. Autophosphorylation of highly purified phosphorylase kinase was increased 4-10-fold in the presence of GT1b. Polysialogangliosides were more potent than monosialogangliosides in stimulating the autocatalytic activity, whereas asialo-GM1, colominic acid, N-acetylneuraminic acid, and phosphatidylserine were ineffective. The effects of gangliosides were dose-dependent. At physiological pH, the concentrations of GT1b required for half-maximal stimulation of the autophosphorylation of phosphorylase kinase were 6.4 microM in the absence of Ca2+ and 1.3 microM when the divalent cation was present. These findings suggest that gangliosides may play a role as biomodulators in the regulation of glycogenolysis in muscle.  相似文献   

6.
Ca2+-dependent protein phosphorylation was studied in intact hamster insulinoma cells. Depolarizing concentrations of potassium which stimulate Ca2+ uptake and insulin release by these cells also increased phosphorylation of one peptide, Mr = 60,000 (P60). This was demonstrated by incubating 32P-labeled insulinoma cells in media containing 50 mM K+ followed by analysis of the cellular proteins by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis and autoradiography. Potassium-induced phosphorylation of P60 was nearly half-maximal after 1 min and reached a plateau by 10 min. The enhanced 32P-labeling of P60 observed in the presence of 50 mM K+ was Ca2+-dependent since omission of extracellular Ca2+ or addition of the Ca2+ channel blocker alpha-isopropyl-alpha-[(N-methyl-N-homoveratryl)-gamma-aminopropyl]3,4,5-trimethoxyphenylacetonitrile hydrochloride prevented the effect. Glucagon (3 microM), which stimulates insulin release in a cAMP-dependent manner, had no effect on P60 phosphorylation. A possible involvement of calmodulin was explored in studies using trifluoperazine. The Ca2+-dependent increase in phosphorylation of P60 was prevented by trifluoperazine. Moreover, Ca2+ influx-mediated insulin release and P60 phosphorylation were inhibited at nearly identical concentrations of trifluoperazine. Half-maximal inhibition of potassium-induced insulin release and P60 phosphorylation was seen at 2.6 microM and 2.5 microM trifluoperazine, respectively. The data are consistent with a sequence of events involving Ca2+ influx, phosphorylation of P60 by a calmodulin-dependent protein kinase, and resultant insulin secretion.  相似文献   

7.
Ganglioside-modulated protein phosphorylation in myelin   总被引:5,自引:0,他引:5  
Gangliosides have profound effects on the phosphorylation of several proteins in myelin. Addition of polysialogangliosides to purified guinea pig brain myelin enhanced the endogenous phosphorylation of a 62-kDa phosphoprotein, but completely inhibited the phosphorylation of myelin basic protein (MBP) (18.5 kDa). The ganglioside-stimulated phosphorylation of the 62-kDa protein was dose-dependent and -specific. Asialo-GM1, ceramide trihexosides, N-acetylneuraminic acid, or colominic acid alone could not mimic this effect, suggesting that the activation process requires both the hydrophobic head group and the anionic character of the gangliosides. Studies on the time course of this reaction revealed that it was a rapid and reversible process and was affected only very slightly by Ca2+. Thus, the stimulatory effect of gangliosides may not involve Ca2+-gangliosides complexes or proteolysis, but may be mediated through an activation of a ganglioside-dependent protein kinase or due to substrate protein-glycolipid interaction. Modulation of the phosphorylation of MBP by gangliosides varies with the states of phosphorylation of this protein. Prior addition of ganglioside to myelin inhibited the phosphorylation of MBP. However, addition of gangliosides to myelin subsequent to maximal phosphorylation of MBP retarded the dephosphorylation of this protein. Phosphorylation of isolated MBP by protein kinase C was stimulated by gangliosides, provided phosphatidylserine was present. In contrast, the glycolipid inhibited the phosphorylation of a unique site catalyzed by cAMP-dependent protein kinase. This site was distinct from those phosphorylated by protein kinase C and was also sensitive to chymotryptic cleavage. Although the exact physiological significance of protein phosphorylation in myelin has yet to be established, gangliosides may play an important role in the modulation of this reversible post-translational modification mechanism.  相似文献   

8.
Ca2+/calmodulin-dependent protein kinase II is thought to participate in M3 muscarinic receptor-mediated acid secretion in gastric parietal cells. During acid secretion tubulovesicles carrying H+/K+-ATPase fuse with the apical membrane. We localized Ca2+/calmodulin-dependent protein kinase II from highly purified rabbit gastric tubulovesicles using Ca2+/calmodulin-dependent protein kinase II isoform-specific antibodies, in vitro phosphorylation and pharmacological inhibition of Ca2+/calmodulin-dependent protein kinase II activity by the potent Ca2+/calmodulin-dependent protein kinase II inhibitor KN-62. The presence of Ca2+/calmodulin-dependent protein kinase II in tubulovesicles was shown by immunoblot detection of both Ca2+/calmodulin-dependent protein kinase II-gamma (54 kDa) and Ca2+/calmodulin-dependent protein kinase II-delta (56.5 kDa). The immunoprecipitated Ca2+/calmodulin-dependent protein kinase II from tubulovesicles showed Ca2+/calmodulin-dependent protein kinase activity by phosphorylating autocamtide-II, a specific synthetic Ca2+/calmodulin-dependent protein kinase II substrate. KN-62 inhibited the in vitro autophosphorylation of tubulovesicle-associated Ca2+/calmodulin-dependent protein kinase II (IC50 = 11 nM). During the search for potential Ca2+/calmodulin-dependent protein kinase II substrates we identified different proteins associated with tubulovesicles, such as synaptophysin and beta-tubulin immunoreactivity, which were identified using specific antibodies. These targets are known to participate in intracellular membrane traffic. Ca2+/calmodulin-dependent protein kinase II is thought to play an important role in regulating tubulovesicular motor activity and therefore in acid secretion.  相似文献   

9.
A Ca2+- and calmodulin-dependent casein kinase specific for dephosphorylated bovine kappa-casein was identified in a microsomal fraction of mammary acini prepared from rats in late lactation. This phosphorylation has an absolute requirement for Mg2+ for either the basal or the Ca2+- and calmodulin-dependent activity. One-half of the maximal stimulation is achieved at a calmodulin concentration of 204nM in the presence of Ca2+. The Ca2+- and calmodulin-dependent kinase activity (but not the basal activity) is inhibited by trifluoperazine. The casein kinase is associated with a microsomal fraction enriched in markers for plasma membrane and Golgi (5'-nucleotidase and galactosyltransferase respectively). The activity of this casein kinase remains relatively constant throughout lactation, but declines dramatically in 24h when rats are removed from their pups. This activity may represent the physiological activity responsible in part or whole for kappa-casein phosphorylation occurring before micelle formation and milk secretion.  相似文献   

10.
We have examined the effects of added cAMP-dependent protein kinase and endogenous calmodulin-dependent kinase on Ca2+ transport in purified internal membranes from human platelets. Both Ca2+ uptake and Ca2+-ATPase activity were maximally stimulated about 2-fold by addition of cAMP-dependent protein kinase. Cyclic AMP-dependent protein kinase inhibitor reduced both Ca2+ uptake and Ca2+-ATPase activities at concentrations which also inhibited cAMP-dependent protein phosphorylation. In addition, concerted stimulation of Ca2+-ATPase by exogenous calmodulin and added catalytic subunit of cAMP-dependent protein kinase was observed. A 22-kDa protein was phosphorylated by both cAMP-dependent and calmodulin-dependent kinases at the same rate as stimulation of the Ca2+-ATPase. Cyclic AMP-dependent phosphorylation of the 22-kDa polypeptide was inhibited by the protein kinase inhibitor and calmodulin-dependent phosphorylation was inhibited by chlorpromazine and EGTA. These results are consistent with the hypothesis that one mode of control of Ca2+ homeostasis in platelets may be similar to the phospholamban system in cardiac muscle.  相似文献   

11.
A calmodulin inhibitor, trifluoperazine, suppresses ATP-dependent Ca2+ uptake into microsomes prepared from bovine aortic smooth muscle. From this microsomal preparation which we expected to contain calmodulin-dependent Ca2+-transport ATPase [EC 3.6.1.3], we purified (Ca2+-Mg2+)ATPase by calmodulin affinity chromatography. The protein peak eluted by EDTA had calmodulin-dependent (Ca2+-Mg2+)ATPase activity. The major band (135,000 daltons) obtained after sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) accounted for about 80% of the total protein eluted. This major band was phosphorylated by [gamma-32P]ATP in a Ca2+-dependent manner. All the 32P incorporated into the major band was released by hydroxylaminolysis. The ATPase reconstituted in soybean phospholipid liposomes showed ATP, calmodulin-dependent Ca2+ uptake. The affinity of the ATPase for Ca2+, Km, was 7 microM and the maximum ATPase activity was 1.4 mumol/mg/min. These values were changed to 0.17 microM and 3.5 mumol/mg/min, respectively by the addition of calmodulin. The activity of the purified (Ca2+-Mg2+)ATPase was inhibited by orthovanadate, and the concentration required for half-maximal inhibition was about 1.8 microM which is close to that of plasma membrane ATPases. Judging from the effect of orthovanadate and the molecular weight, the purified (Ca2+-Mg2+)ATPase was considered to have originated from the plasma membrane not from the sarcoplasmic reticulum.  相似文献   

12.
Rat liver soluble proteins were phosphorylated by endogenous protein kinase with [gamma-32P]ATP. Proteins were separated in dodecyl sulphate slab gels and detected with the aid of autoradiography. The relative role of cAMP-dependent, cAMP-independent and Ca2+-activated protein kinases in the phosphorylation of soluble proteins was investigated. Heat-stable inhibitor of cAMP-dependent protein kinase inhibits nearly completed the phosphorylation of seven proteins, including L-type pyruvate kinase. The phosphorylation of eight proteins is not influenced by protein kinase inhibitor. The phosphorylation of six proteins, including phosphorylase, is partially inhibited by protein kinase inhibitor. These results indicate that phosphoproteins of rat liver can be subdivided into three groups: phosphoproteins that are phosphorylated by (a) cAMP-dependent protein kinase or (b) cAMP-independent protein kinase; (c) phosphoproteins in which both cAMP-dependent and cAMP-independent protein kinase play a role in the phosphorylation. The relative phosphorylation rate of substrates for cAMP-dependent protein kinase is about 15-fold the phosphorylation rate of substrates for cAMP-independent protein kinase. The Km for ATP of cAMP-dependent protein kinase and phosphorylase kinase is 8 microM and 38 microM, respectively. Ca2+ in the micromolare range stimulates the phosphorylation of (a) phosphorylase, (b) a protein with molecular weight of 130 000 and (c) a protein with molecular weight of 15 000. The phosphate incorporation into a protein with molecular weight of 115 000 is inhibited by Ca2+. Phosphorylation of phosphorylase and the 15 000-Mr protein in the presence of 100 microM Ca2+ could be completely inhibited by trifluoperazine. It can be concluded that calmodulin is involved in the phosphorylation of at least two soluble proteins. No evidence for Ca2+-stimulated phosphorylation of subunits of glycolytic or gluconeogenic enzymes, including pyruvate kinase, was found. This indicates that it is unlikely that direct phosphorylation by Ca2+-dependent protein kinases is involved in the stimulation of gluconeogenesis by hormones that act through a cAMP-independent, Ca2+-dependent mechanism.  相似文献   

13.
A ganglioside-stimulated protein phosphorylation system was discovered in plasma membrane fractions of human neuroblastoma cells (GOTO). Gangliosides (GQ1b, GT1a, GT1b, GD1a, GD1b, GD3, and GM1) could stimulate this system. GQ1b showed the most effective stimulation among these gangliosides. The substrate specificity was rather broad. Not only some (de novo) proteins of the membranes but also purified histones and tubulin were phosphate-acceptable. This protein phosphorylation system specifically depended upon Ca2+ (optimum concentration: 50-100 microM). The optimum pH was 7.0-7.5. GQ1b/Ca2+ could not directly activate well known protein kinases (Ca2+/phospholipid-activated protein kinase, Ca2+/calmodulin-activated protein kinase, and cyclic nucleotide-dependent protein kinases). Furthermore, GQ1b could replace neither phospholipids nor calmodulin. Thus, an unknown, new type of protein kinase(s) may be involved in this system. Alternatively, GQ1b may activate some known protein kinase(s) in cooperation with another unknown factor which may be removed during the preparation of the partially purified known protein kinase used in this experiment.  相似文献   

14.
Gossypol, a polyphenolic binaphthalene-dialdehyde extracted from cotton plants which possesses male antifertility action in mammals, is a potent inhibitor of phospholipid-sensitive Ca2+-dependent protein kinase from pig testis. Gossypol inhibited Ca2+-dependent activity of the enzyme without affecting its basal activity. The IC50 value (concentration causing 50% inhibition) was 31 microM when lysine-rich histone was used as substrate. Kinetic analysis indicated that the compound inhibited the enzyme non-competitively with respect to ATP (Ki = 31 microM) or lysine-rich histone (Ki = 30 microM), and competitively with respect to phosphatidylserine (Ki = 2.1 microM). With Ca2+, irrespective of the presence or absence of 1,3-diolein, the compound lowered Vmax and increased the apparent Ka for Ca2+. The compound also inhibited phosphorylation by the enzyme of high-mobility-group 1 protein (one of the endogenous substrates in the testis for the enzyme located in nucleosome), with an IC50 value of 88 microM. These results suggested that a phospholipid-sensitive Ca2+-dependent protein phosphorylation system in the testis is involved in the regulation of spermatogenesis.  相似文献   

15.
We have reinvestigated the effects of Ca++ and ATP on brush borders isolated from intestinal epithelial cells. At 37 degrees C, Ca++ (1 microM) and ATP cause a dramatic contraction of brush border terminal webs, not a retraction of microvilli as previously reported (M. S. Mooseker, 1976, J. Cell Biol. 71:417-433). Terminal web contraction, which occurs over the course of 1-5 min at 37 degrees C, actively constricts brush borders at the level of their zonula adherens. Contraction requires ATP, is stimulated by Ca++ (1 microM), and occurs in both membrane-intact and demembranated brush borders. Ca++ - dependent-solation of microvillus cores requires a concentration of Ca++ slightly greater (10 microM) than that required for contraction. Under conditions in which brush borders contract, many proteins in the isolated brush borders become phosphorylated. However, the phosphorylation of only one of the brush border proteins, the 20,000 dalton (20-kdalton) light chain of brush border myosin (BBMLC20), is stimulated by Ca++. At 37 degrees C, BBMLC20 phosphorylation correlates directly with brush border contraction. Furthermore, both BBMLC20 phosphorylation and brush border contraction are inhibited by trifluoperazine, an anti-psychotic phenothiazine that inhibits calmodulin activity. These results indicate that Ca++ regulates brush border contractility in vitro by stimulating cytoskeleton-associated, Ca++- and calmodulin-dependent brush border myosin light chain kinase.  相似文献   

16.
Various regulators of protein kinase activities were tested for their effects on the in vitro transfer of phosphate from [gamma-32P]ATP to four proteins of rat brain synaptic particulate preparations. One protein, of apparent molecular weight 44,000, accepted 32P in the presence of 8 mM EDTA and no added Mg2+. It was the major phosphoprotein of brain mitochondria. Its phosphorylation was inhibited by pyruvate and stimulated by K+, and it comigrated in electrophoretic gels with authentic alpha-subunit of pyruvate: lipoamide oxidoreductase (decarboxylating) (EC 1.2.4.1) from bovine heart. The major kinase acting on three proteins of apparent molecular weights 24,000, 21,000, and 19,000 was stimulated by Ca2+, by preincubation with phospholipase C, and by 12-tetradecanoyl 4-beta-phorbol 13-acetate. Phosphorylation of these lower-molecular-weight proteins was inhibited by ACTH1-24, by cyclic 3',5'-adenosine monophosphate, and by 50 microM trifluoperazine. The stimulatory effect of Ca2+ was antagonized by calmodulin. The kinase in question appears to be B-50 protein kinase or protein kinase C.  相似文献   

17.
Two peptide analogs of Ca2+/calmodulin-dependent protein kinase II (CaMK-(peptides)) were synthesized and used to probe interactions of the various regulatory domains of the kinase. CaMK-(281-289) contained only Thr286, the major Ca2+-dependent autophosphorylation site of the kinase (Schworer, C. M., Colbran, R. J., Keefer, J. R. & Soderling, T. R. (1988) J. Biol. Chem. 263, 13486-13489), whereas CaMK-(281-309) contained Thr286 together with the previously identified calmodulin binding and inhibitory domains (Payne, M. E., Fong, Y.-L., Ono, T., Colbran, R. J., Kemp, B. E., Soderling, T. R. & Means, A. R. (1988) J. Biol. Chem. 263, 7190-7195). CaMK-(281-309), but not CaMK-(281-289), bound calmodulin and was a potent inhibitor (IC50 = 0.88 +/- 0.7 microM using 20 microM syntide-2) of exogenous substrate (syntide-2 or glycogen synthase) phosphorylation by a completely Ca2+/calmodulin-independent form of the kinase generated by limited proteolysis with chymotrypsin. This inhibition was completely relieved by the inclusion of Ca2+/calmodulin in excess of CaMK-(281-309) in the assays. CaMK-(281-289) was a good substrate (Km = 11 microM; Vmax = 3.15 mumol/min/mg) for the proteolyzed kinase whereas phosphorylation of CaMK-(281-309) showed nonlinear Michaelis-Menton kinetics, with maximal phosphorylation (0.1 mumol/min/mg) at 20 microM and decreased phosphorylation at higher concentrations. The addition of Ca2+/calmodulin to assays stimulated the phosphorylation of CaMK-(281-309) by the proteolyzed kinase approximately 10-fold but did not affect the phosphorylation of CaMK-(281-289). A model for the regulation of Ca2+/calmodulin-dependent protein kinase II is proposed based on the above observations and results from other laboratories.  相似文献   

18.
Both Ca2+ and cyclic AMP (cAMP) are implicated in the regulation of insulin release in the pancreatic beta cell. In hamster insulinoma cells used in our laboratory to study the mechanism of insulin release, Ca2+ and cAMP trigger secretion independently. Concomitant with stimulation of the secretory apparatus both cAMP and Ca2+ promote phosphorylation of distinct insulinoma cell proteins. Calmodulin may be involved in the stimulation of insulin release and protein phosphorylation induced by Ca2+ influx. The Ca2+-dependent protein kinase of the insulinoma cell is activated by exogenous calmodulin and blocked by trifluoperazine, and inhibitor of calmodulin action. This drug also inhibits glucose-induced insulin release in pancreatic islets. In insulinoma cells trifluoperazine blocks Ca2+ influx-mediated insulin release and protein phosphorylation with no effect on basal or cAMP-mediated insulin release and protein phosphorylation with no effect on basal or cAMP-mediated secretion. Inhibition of Ca2+ influx-mediated insulin release and protein phosphorylation occurs with nearly identical dose dependence. Inasmuch as trifluoperazine affects voltage-dependent Ca2+ uptake in insulinoma cells, an involvement of calmodulin cannot be directly inferred. The evidence suggests that protein phosphorylation may be involved in the activation of the secretory apparatus by both cAMP and Ca2+. It is proposed that stimulation of insulin release by cAMP and Ca2+ is mediated by cAMP-dependent protein kinase and calmodulin-dependent protein kinase, respectively.  相似文献   

19.
In mammalian systems, Ca2+/diacylglycerol-activated phospholipid-dependent protein kinase (C-kinase) appears to play an important role in regulating physiological responses that outlast the transient rise in cytosolic Ca2+. Electrophysiological experiments in neurons of the nudibranch mollusc, Hermissenda crassicornis, have suggested a role for C-kinase in the long-lasting reductions in early and late K+ currents that have been observed following associative learning. Accordingly, we have investigated the catalytic properties of C-kinase in Hermissenda CNS. Following homogenization in Ca2+-free buffer, C-kinase can be separated from Ca2+/calmodulin-dependent protein kinase by centrifugation; C-kinase activity is found in the supernatant whereas essentially all of the Ca2+/calmodulin-dependent protein kinase is found in the membrane fraction. Addition of Ca2+, phosphatidylserine, and diacylglycerol to the cytosol results in phosphorylation of at least eight endogenous proteins. The Hermissenda CNS C-kinase can also phosphorylate lysine-rich histone, a substrate for mammalian C-kinase. The molluscan enzyme exhibits phospholipid specificity in that phosphatidylserine is much more effective than phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, and phosphatidic acid. Addition of diacylglycerol, in the presence of Ca2+ and phosphatidylserine, increases the activity of the C-kinase. The percentage of activation by diacylglycerol is larger at lower Ca2+ concentrations. Enzyme activity is inhibited by trifluoperazine and polymixin B sulfate. These studies indicate that the Hermissenda C-kinase is catalytically similar to mammalian C-kinase.  相似文献   

20.
The phosphorylation of phosphoinositides in the acetylcholine receptor (AChR)-rich membranes from the electroplax of the electric fish Narke japonica has been examined. When the AChR-rich membranes were incubated with [gamma-32P]ATP, 32P was incorporated into only two inositol phospholipids, i.e., tri- and diphosphoinositide (TPI and DPI). Even after the alkali treatment of the membrane, AChR-rich membranes still showed a considerable DPI kinase activity upon addition of exogenous DPI. It is likely that the 32P-incorporation into these lipids was realized by the membrane-bound DPI kinase and phosphatidyl inositol (PI) kinase. Such a membrane-bound DPI kinase was activated by Ca2+ (greater than 10(-6) M), whereas the PI kinase appeared to be inhibited by Ca2+. The effect of Ca2+ on the DPI phosphorylation was further enhanced by the addition of ubiquitous Ca2+-dependent regulator protein calmodulin. Calmodulin antagonists such as chlorpromazine (CPZ), trifluoperazine (TFP), and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) inhibited the phosphorylation of DPI in the AChR-rich membranes. It is suggested that the small pool of TPI in the plasma membrane is replenished by such Ca2+- and calmodulin-dependent DPI kinase responding to the change in the intracellular Ca2+ level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号