首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive oxygen species (ROS) play a role in male infertility, where excessive amounts impair spermatozoal motility. Epididymal antioxidant enzymes protect spermatozoa from oxidative damage in the epididymal lumen. Antioxidant secretions from the seminal vesicle protect spermatozoa after ejaculation. As it is known that with age there is increased generation of ROS, the goals of this study were to determine how aging affects the response of antioxidant enzymes in the epididymis, seminal vesicles, and liver to l-buthionine-S,R-sulfoximine (BSO) mediated glutathione (GSH) depletion, and to examine the impact of GSH depletion on motility parameters of spermatozoa from the cauda epididymidis in young (4-mo-old) and old (21-mo-old) rats. Levels of GSH and glutathione disulfide (GSSG), as well as activities of glutathione peroxidase, glutathione reductase, catalase, and superoxide dismutase, were measured in the caput, corpus and cauda epididymidis, seminal vesicles, and liver. Spermatozoal motility was assessed by computer-assisted sperm analysis. Significant age-related changes in antioxidant enzyme activities were found in the liver and cauda epididymidis. Glutathione depletion clearly affected tissues in both young and old. The compounding effect of age was most evident in the cauda epididymidis, seminal vesicles, and liver, where antioxidant enzyme activities changed significantly. Additionally, spermatozoa motility was adversely affected after BSO treatment in both age groups, but significantly more so in older animals. In summary, the male reproductive tissues and liver undergo age-related changes in antioxidant enzyme activities and in their response to GSH depletion.  相似文献   

2.
π-Class glutathione S-transferase (GST-π) was very potently inactivated by oxidants such as H2O2, xanthine-xanthine oxidase and naphthoquinones. Thiols and glutathione analogs including dithiothreitol, reduced gluta-thione, cysteine, cysteamine, S-methyl-SG, S-hexyl-SG and S-decyl-SG protected GST-π from the inactivation, but a substrate analog (2,4-dinitrophenol), superoxide dismutase and catalase did not, suggesting that the cysteinyl residue(s) in/nearby the glutathione binding site (G-site) may be oxidatively modified by these oxidants. Many reductants and radical scavengers including butylated hydoxytoluene, α-tocopherol, ascorbate, uric acid, mannitol, tyrosine, tryptophan, histidine, quercitrin and bilirubin had no effect on the inactivation. GST-π pretreated with cystamine was reactivated very efficiently by 50 mM DTT following incubation with 1,2-naphthoquinone, whereas cystamine-untreated GST-π was not reactivated.  相似文献   

3.
Nitrofurantoin (N‐(5‐nitro‐2‐furfurylidine) 1‐amino‐hydantoine; NIT) is mainly used for the treatment of acute urinary tract infections. However, its administration can be associated with liver failure or cirrhosis. The aim of this study was to determine whether NIT is a mitochondrial toxicant, if so, what mechanism(s) is involved. The rat liver mitochondria were isolated and treated with different doses of NIT alone or in combination with a reagent of choice for protecting thiol groups, dithiothreitol (DTT). Several mitochondrial parameters, including succinate dehydrogenase activity (also called 3‐(4,5‐dimethylthiazol‐2‐yl) 2,5‐diphenyl tetrazolium bromide assay), lipid peroxidation, superoxide dismutase activity, Reduced glutathione (GSH), and oxidized glutathione (GSSG), and GSSG (oxidized glutathione) levels were determined. The results from this study showed that simultaneous treatment of mitochondria with NIT and DTT significantly reduces the toxicity. Here, we provide evidence that mitochondrial dysfunction followed by depletion of reduced glutathione can be reversed by DTT administration.  相似文献   

4.
Increased oxidative stress and impaired antioxidant defense mechanism are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. The present study was undertaken to evaluate the possible protective effects of S-allyl cysteine (SAC) against oxidative stress in streptozotocin (STZ) induced diabetic rats. SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, thiobarbituric acid reactive substances (TBARS), hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were studied. The levels of glucose, TBARS, hydroperoxide, and GSSG were increased significantly whereas the levels of plasma insulin, reduced glutathione, GSH/GSSG ratio, superoxide dismutase, catalase and GPx were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and GSSG. In addition, the levels of plasma insulin, superoxide dismutase, catalase, GPx and reduced glutathione (GSH) were increased in SAC treated diabetic rats. The above findings were supported by histological observations of the liver and kidney. The antioxidant effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. The present study indicates that the SAC possesses a significant favorable effect on antioxidant defense system in addition to its antidiabetic effect.  相似文献   

5.
Antioxidant defences of the apoplast   总被引:1,自引:0,他引:1  
Summary The apoplast of barley and oat leaves contained superoxide dismutase (SOD), catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase activities. The activities of these enzymes in the apoplastic extracts were greatly modified 24 h after inoculation with the biotrophic fungal pathogenBlumeria graminis. The quantum efficiency of photosystem II, which is related to photosynthetic electron transport flux, was comparable in inoculated and healthy leaves during this period. Apoplastic soluble acid invertase activity was also modified in inoculated leaves. Inoculation-dependent increases in apoplastic SOD activity were observed in all lines. Major bands of SOD activity, observed in apoplastic protein extracts by activity staining of gels following isoelectric focusing, were similar to those observed in whole leaves but two additional minor bands were found in the apoplastic fraction. The apoplastic extracts contained substantial amounts of dehydroascorbate (DHA) but little or no glutathione (GSH). Biotic stress decreased apoplastic ascorbate and DHA but increased apoplastic GSH in resistant lines. The antioxidant cycle enzymes may function to remove apoplastic H2O2 with ascorbate and GSH derived from the cytoplasm. DHA and oxidized glutathione may be reduced in the apoplast or returned to the cytosol for rereduction.Abbreviations AA reduced ascorbate - APX ascorbate peroxidase - DHA dehydroascorbate (oxidised ascorbate) - DHAR dehydroascorbate reductase - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG glutathione disulphide - GR glutathione reductase - MDHA monodehydroascorbate - MDHAR monodehydroascorbate reductase - SOD superoxide dismutase  相似文献   

6.
The therapeutic effects of poly(adenosine diphosphate-ribose) polymerase inhibition by 3-aminobenzamide (3-AB) were investigated in testicular ischemia-reperfusion (I/R) injury, using sperm analysis and histopathological and biochemical examinations, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities and reduced glutathione (GSH) levels. Male rats were divided into 3 groups: sham (n = 12), I/R (n = 12), and I/R with 3-AB (I/R-3-AB) (n = 12). The left testicular artery was occluded for 1 h, followed by 24 h (for biochemical and histopathological examinations) and 30 days (for sperm analysis) of reperfusion. 3-AB treatment intraperitoneally 10 min prior to and 1 h after reperfusion increased the I/R-induced decrease in sperm motility in both testes and reduced the increased abnormal sperm rates in the ipsilateral testis. However, 3-AB treatment failed to prevent the I/R-induced decrease in sperm concentration in both testes. SOD and CAT activities did not change in any group. GSH-Px activity and GSH levels were increased by I/R. 3-AB treatment reversed the I/R-induced increase in GSH-Px activity, similar to the level in sham rats, but did not alter GSH levels. 3-AB treatment significantly increased the I/R-induced decrease in histopathologic score. In conclusion, 3-AB treatment has potential biochemical and histopathological benefits beyond improving sperm quality and may have the potential to decrease damage from testicular torsion.  相似文献   

7.
Bull sperm are exposed to aerobic conditions during processing before freezing, and they have little endogenous antioxidant to protect them against reactive oxygen species that may be present. Seventeen laboratory studies and two field trials were conducted with 174 semen collections from bulls in an artificial breeding cooperative. More than 250 combinations and concentrations of reduced glutathione (GSH), superoxide dismutase (SOD), ascorbic acid, hypotaurine (HPT), 2,2,6,6-tetramethylpeperidine-1-oxyl (Tempo) and 4-hydroxy-2, 2, 6, 6-tetramethylpeperidine (Tempol) were tested by adding these compounds to fresh semen, and to a whole milk (WM) glycerol extender. Semen packaged in straws in the WM extender was frozen with liquid nitrogen. The motility of frozen-thawed sperm during storage at 25 or 5 degrees C after freezing was compared with semen stored without freezing. Antioxidants generally were not beneficial, except the percentage of motile sperm was improved by 6-11% units (P<0.05) when sperm were stored unfrozen or after freezing when 0.5mM of GSH with or without SOD was added. In two field trials, non-return rates were 71.9, 69.5 and 70.9% (P>0.05) with WM containing 0.0, 0.5 and 1.0mM of GSH, respectively, and 74.0 and 73.9% with WM and WM plus 0.5mM of GSH and 100U/ml of SOD (P>0.05). WM contains an abundant supply of casein which is an antioxidant, and additional antioxidants were ineffective in improving motility of sperm immediately after freezing and thawing or in affecting fertility. However, sperm responses were different in egg yolk-Tris extender. Sperm in this egg yolk extender tolerated substantial concentrations of Tempo and Tempol compared with toxic effects in WM (P<0.05). Therefore, optimal combinations of antioxidants tested here may have more useful applications in organizations using an egg yolk-based semen extender.  相似文献   

8.
This study was carried out to demonstrate bovine Y chromosome-bearing spermatozoa by rapid fluorescence in situ hybridization (FISH), using a digoxigenin (Dig)-labeled DNA probe specific to bovine Y chromosome. Before the FISH procedure, sperm heads were treated for decondensation with dithiothreitol (DTT) and glutathione (GSH) with or without heparin supplementation. Concentrations of either above 2 mM DTT or above 100 mM GSH induced swelling of the sperm head, which resulted in sufficient detection of the Y chromosome signal in sperm nuclei by rapid FISH (49.8 to 53.4%). When FISH was used with 2 mM DTT or 100 mM GSH on specimens from 7 sires, the rate of detection of the Y chromosome signal varied among sires (5.4 to 49.6%), especially that of the GSH treatment. Supplementation of GSH with heparin (100 U/mL), however, could induce reliable, repeatable detection of the Y chromosome signal in sperm nuclei of all the 7 sires (48.4 to 50.3%). These results show that in bovine spermatozoa decondensed with GSH and heparin, rapid FISH can detect Y chromosome-bearing spermatozoa.  相似文献   

9.
Growing evidence suggests that the generation of reactive oxygen species (ROS) and their detoxification by antioxidants plays a very important role in fertility. However, the relationship between the level of antioxidants in spermatozoa and the decreased fecundity following a freeze/thaw cycle remains poorly understood. We assessed the activities of antioxidant enzymes such as catalase, glutathione peroxidase (GPx), superoxide dismutase (SOD), and levels of reduced/oxidized glutathione (GSH/GSSG) in bovine semen. Sperm cells were isolated using a Percoll gradient to avoid contamination from seminal plasma, cellular debris, and other cell types. We found that bovine spermatozoa are poorly adapted to metabolize the toxic hydrogen peroxide (H(2)O(2)). Indeed, very low levels of GPx and an absence of catalase were observed. We also studied the effect of freezing and thawing bovine spermatozoa in a egg yolk-Tris-glycerol extender (EYTG). Cryopreservation significantly reduced sperm GSH levels by 78% and SOD activity by 50%. We also investigated whether the decrease in GSH level could be linked to oxidative metabolism and found that a greater reduction in intracellular GSH level occurred when fresh sperm cells were incubated in EYTG for 6 hr at 38.5 degrees C under aerobic conditions than when incubated under restricted oxygen availability. Our results strongly suggest the involvement of an oxidative stress during a freeze/thaw cycle and are consistent with the hypothesis that ROS generated during such a cycle are detrimental to sperm function.  相似文献   

10.
The objective was to evaluate the effects of various antioxidants and duration of pre-freezing equilibration on cryopreservation of ram semen. Semen samples from four rams were pooled, diluted with Tris-egg yolk extender without antioxidants (control), or supplemented with reduced glutathione (GSH: 0.5, 1.0, and 2.0 mM), superoxide dismutase (SOD: 5, 10, and 20 U/mL), or catalase (CAT: 5, 10, and 20 U/mL), and cryopreserved, immediately after thermal equilibrium was reached at 5 °C (0 h), or 12 or 24 h after equilibration. Total antioxidant capacity was determined in the in natura extenders and after addition of semen samples for various durations of processing (fresh/dilute, throughout refrigeration, and post-thaw). Plasma membrane (PI-CFDA), acrosome integrity (FITC-PNA), and mitochondrial membrane potential (JC-1) were determined in fresh/diluted, refrigerated, and post-thaw samples. Post-thaw sperm motility was assessed with a computerized analysis system (CASA). There were no significant differences in acrosome damage or mitochondrial membrane potential after refrigeration and freeze-thaw, regardless of antioxidant addition. Sperm plasma membrane integrity was worse (P < 0.05) with cryopreservation immediately after equilibration (average 20.1 ± 8.3; mean ± SD) than after 12 h of equilibration (average 42.5 ± 10.9); however, the addition of SOD and CAT (10 and 20 U/mL) resulted in no significant difference between post-equilibration intervals of 0 and 12 h. Total antioxidant activity was not different (P > 0.05) among treatments after sperm addition or throughout the refrigeration and post-thaw. In conclusion, adding GSH, SOD or CAT did not increase the total antioxidant capacity of semen, nor did it enhance the quality of the post-thaw sperm. However, maintenance of ram semen at 5 °C for 12 h prior to cryopreservation reduced membrane damage of frozen-thawed sperm.  相似文献   

11.
Mouse and human spermatozoa, but not rabbit spermatozoa, have long been known to be sensitive to loss of motility induced by exogenous H2O2. Recent work has shown that loss of sperm motility in these species correlates with the extent of spontaneous lipid peroxidation. In this study, the effect of H2O2 on this reaction in sperm of the three species was investi gated. The rate of spontaneous lipid peroxidation in mouse and human sperm is markedly enhanced in the presence of 1-5 mM H2O2, while the rate in rabbit sperm is unaffected by H2O2. The enhancement of lipid peroxidation, the rate of reaction of H2O2 with the cells, the activity of sperm glutathione peroxidase, and the endogenous glutathione content are highest in mouse sperm, intermediate in human sperm, and very low in rabbit sperm. Inac tivation of glutathione peroxidase occurs in the presence of H2O2 due to complete conver sion of endogenous glutathione to GSSG: No GSH is available as electron donor substrate to the peroxidase. Inactivation of glutathione peroxidase by the inhibitor mercaptosucci nate has the same effect on rate of lipid peroxidation and loss of motility in mouse and human sperm as does H2O2. This implies that H2O2 by itself at 1-5 mM is not intrinsically toxic to the cells. With merceptosuccinate, the endogenous glutathione is present as GSH in mouse and human sperm, indicating that the redox state of intracellular glutathione by itself plays little role in protecting the cell against spontaneous lipid peroxidation. Mouse and human sperm also have high rates of superoxide production. We conclude that the key intermediate in spontaneous lipid peroxidation is lipid hydroperoxide generated by a chain reaction initiated by and utilizing superoxide. Removal of this hydroperoxide by gluta thione peroxidase protects these sperm against peroxidation; inactivation of the peroxidase allows lipid hydroperoxide to increase and so increases the peroxidation rate. Rabbit sperm have low rates of superoxide reaction due to high activity of their superoxide dismutase; lack of endogenous glutathione and low peroxidase activity does not affect their rate or lipid peroxidation. As a result, these sperm are not affected by either H2O2 or mercapto-succinate. These results lead us to postulate a mechanism for spontaneous lipid peroxida tion in mammalian sperm which involves reaction of lipid hydroperoxide and O2 as the rate-determining step.  相似文献   

12.
Free radicals are involved in aging and cyclosporin A-induced toxicity. The age-related changes in the liver oxidative status of glutathione, lipid peroxidation, and the activity of the enzymatic antioxidant defense system, as well as the influence of aging on the susceptibility to the hepatotoxic effects of cyclosporin (CyA) were investigated in rats of different ages (1, 2, 4, and 24 months). The hepatic content of reduced glutathione (GSH) increased with aging, peaked at 4 months, and decreased in senescent rats. By contrast, glutathione disulfide (GSSG) and thiobarbituric acid-reactive substances (TBARS) concentrations and superoxide dismutase, catalase, and glutathione peroxidase activities were higher in the oldest than in the youngest rats. CyA treatment, besides inducing the well-known cholestatic syndrome, increased liver GSSG and TBARS contents and the GSSG/GSH molar ratio, and altered the nonenzymatic and enzymatic antioxidant defense systems. The CyA-induced cholestasis and hepatic depletion of GSH, and the increases in the GSSG/GSH ratio, and in GSSG and TBARS concentrations were higher in the older than the mature rats. Moreover, superoxide dismutase and catalase activities were found to be significantly decreased only in treated senescent rats. The higher CyA-induced oxidative stress, lipoperoxidation, and decreases in the antioxidant defense systems in the aged animals render them more susceptible to the hepatotoxic effects of cyclosporin.  相似文献   

13.
Using diabetes mellitus as a model of oxidative damage, this study investigated whether subacute treatment (10 mg/kg/day, intraperitoneally for 14 days) with the compound piperine would protect against diabetes-induced oxidative stress in 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione (GSH and GSSG, respectively) content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Piperine treatment of normal rats enhanced hepatic GSSG concentration by 100% and decreased renal GSH concentration by 35% and renal glutathione reductase activity by 25% when compared to normal controls. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with piperine reversed the diabetic effects on GSSG concentration in brain, on renal glutathione peroxidase and superoxide dismutase activities, and on cardiac glutathione reductase activity and lipid peroxidation. Piperine treatment did not reverse the effects of diabetes on hepatic GSH concentrations, lipid peroxidation, or glutathione peroxidase or catalase activities; on renal superoxide dismutase activity; or on cardiac glutathione peroxidase or catalase activities. These data indicate that subacute treatment with piperine for 14 days is only partially effective as an antioxidant therapy in diabetes.  相似文献   

14.
为了探究腹腔注射贝类毒素OA对小鼠肝脏还原性谷胱甘肽(GSH)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)的影响,采用对一月龄的小鼠腹腔注射不同浓度的OA,24h后取其小鼠肝脏测定还原性谷胱甘肽(GSH)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)各项指标。结果表明,测定注射OA毒素各剂量组的超氧化物歧化酶(GSH)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)3项指标均显著低于对照组。其中,GSH高剂量组和中剂量组差异性不显著。CAT高剂量组(96μg/h)、中剂量组(48μg/kg)、低剂量组(24μg/kg)各组变化显著,呈现一定的剂量-效应关系,SOD高中低各组差异性不显著。因此,在小鼠染毒OA24h后,还原性谷胱甘肽(GSH),超氧化物歧化酶(SOD),过氧化氢酶(CAT)这3项指标均受到了显著性抑制作用,说明这3项指标对毒素OA较为敏感,其中CAT呈现了显著的剂量一效应关系。  相似文献   

15.
Glutathione-Mediated Alleviation of Chromium Toxicity in Rice Plants   总被引:1,自引:0,他引:1  
A hydroponic experiment was conducted to determine the possible effect of exogenous glutathione (GSH) in alleviating chromium (Cr) stress through examining plant growth, chlorophyll contents, antioxidant enzyme activity, and lipid peroxidation in rice seedlings exposed to Cr toxicity. The results showed that plant growth and chlorophyll content were dramatically reduced when rice plants were exposed to 100 μM Cr. Addition of GSH in the culture solution obviously alleviated the reduction of plant growth and chlorophyll content. The activities of some antioxidant enzymes, including superoxide dismutase, catalase (CAT) and glutathione reductase in leaves, and CAT and glutathione peroxidase in roots showed obvious increase under Cr stress. Addition of GSH reduced malondialdehyde accumulation and increased the activities of these antioxidant enzymes in both leaves and roots, suggesting that GSH may enhance antioxidant capacity in Cr-stressed plants. Furthermore, exogenous GSH caused significant decrease of Cr uptake and root-to-shoot transport in the Cr-stressed rice plants. It can be assumed that GSH is involved in Cr compartmentalization in root cells.  相似文献   

16.
A total of 28 adult V-line rabbits were fed ad libitum a control diet or a diet supplemented with 0.5%, 1.0% and 1.5% soybean lecithin (SL) for 12 weeks. Bucks that received 0.5%, 1.0% or 1.5% dietary SL had a higher ejaculate volume, mass motility, sperm concentration, total sperm output and total motile sperm. Dietary SL reduced the percentage of dead sperm and increased the normal sperm, and this concurred with an increase in blood testosterone concentration. Blood and seminal plasma total lipid, acid phosphatase and seminal plasma alkaline phosphatase were significantly increased because of inclusion of SL. Interestingly, SL reduced blood and seminal plasma thiobarbituric acid-reactive substances while increasing blood and seminal plasma glutathione content, glutathione S-transferase, glutathione peroxidase and superoxide dismutase activity. Conception rate and litter size at birth and weaning were also significantly improved. Practically, it could be suggested that SL is a suitable supplement for improving semen quality, antioxidant status, reproductive traits and the economic efficiency of V-line rabbit bucks and 1% is an adequate concentration.  相似文献   

17.
研究旨在探讨饲料中添加还原型谷胱甘肽(Glutathione, GSH)对黄颡鱼幼鱼(Pelteobagrus fulvidraco)组织谷胱甘肽含量、免疫及抗氧化性能的影响。选用初始体重为(1.32±0.01) g的黄颡鱼800尾, 随机分为5组, 每组4个重复, 每个重复40 尾鱼, 分别投喂基础饲料和添加100、300、500和700 mg/kg GSH的试验饲料, 饲养56d后采样分析, 并采用氯化铵进行96h氨氮应激试验。结果表明: 除100 mg/kg组外, 饲料中添加GSH显著提高黄颡鱼肝脏、血清GSH含量(P<0.05), 当GSH添加量≥300 mg/kg时, 肝脏和血清GSH含量均呈现稳定状态。随着饲料中谷胱甘肽水平的增加, 血清免疫和肝脏抗氧化指标均呈现先升高后降低的趋势, 其中300和500 mg/kg组溶菌酶与碱性磷酸酶活性、300 mg/kg组免疫球蛋白M与补体4含量、500 mg/kg组酸性磷酸酶活性与对照组相比显著升高(P<0.05)。与对照组和700 mg/kg组相比, 300 mg/kg组肝脏超氧化物歧化酶、过氧化氢酶、谷胱甘肽过氧化酶活性和总抗氧化能力与血清超氧化物歧化酶、谷胱甘肽过氧化酶活性均显著高升高(P<0.05); 且300 mg/kg组血清丙二醛含量显著降低(P<0.05)。氨氮应激96h时, 与对照组相比, 300 mg/kg组肝脏和血清超氧化物歧化酶、过氧化氢酶、谷胱甘肽过氧化酶活性力均显著升高(P<0.05), 且300 mg/kg组血清丙二醛含量显著降低(P<0.05)。由此可见, 饲料中添加谷胱甘肽能提高黄颡鱼幼鱼组织谷胱甘肽含量、免疫及抗氧化性能, 其中以300—500 mg/kg为宜。  相似文献   

18.
The maturing sperm cells discard the majority of their cytoplasm during the final stages of spermatogenesis and lose some of their defense enzymes. The purpose of this study was to investigate the effects of vitamin E supplementation on standard semen quality parameters and antioxidant activities of frozen-thawed bovine sperm. Vitamin E was added at concentrations of 0.5, 1.0, 1.5 and 2.0 mg/ml to bovine semen cryoprotective medium. The results showed that the sperm motility and VSL, STR values in the extender supplemented with 1.0 and 1.5 mg/ml of vitamin E, were significantly higher than that of other concentrations (P < 0.05). The percentages of acrosome-intact and membrane-intact sperm were significantly improved (P < 0.05) by supplementing with 1.5 mg/ml of vitamin E. In biochemical assays, the extender supplemented with vitamin E did not exhibit significant improvement in SOD (superoxide dismutase) levels, compared with the control (P > 0.05). Compared with other groups, CAT (catalase) levels were demonstrated to be greater with the supplementation of vitamin E at 1.0 and 1.5 mg/ml (P < 0.05). The extender supplemented with 1.5 mg/ml of vitamin E caused the highest levels of glutathione peroxidase (GSH-Px), compared with other groups (P < 0.05). The glutathione (GSH) activity was significantly higher with the supplementation of 0.5, 1.0 and 1.5 mg/ml of vitamin E, compared with 2.0 mg/ml in the vitamin E group and control (P < 0.05). Moreover, increasing the doses of vitamin E decreased sperm antioxidant activities, the extender supplemented with 2.0 mg/ml of vitamin E, caused the lowest levels of GSH-Px and GSH activities, compared with other treatment groups (P < 0.05). In conclusion, the beneficial effects of vitamin E noted in this study can be attributed to the antioxidant characteristics. Vitamin E supplementation in the extender reduced the lipid peroxidation potential and improved semen quality during freezing-thawing. More researches are needed to evaluate and understand the precise physiological role of vitamin E in reproduction.  相似文献   

19.
The antioxidant effect of saponarin, which is the main flavone isolated from Gypsophila trichotoma Wend., and its protection against cocaine hepatotoxicity were investigated in male Wistar rats. The animals were treated with cocaine (40 mg/kg i.p.) alone and also after 3 consecutive days of pretreatment with saponarin (80 mg/kg p.o.). After 18 hours the rats were sacrificed by decapitation. The production of thiobarbituric acid reactive substances, reduced glutathione (GSH) and the activity of the following antioxidant enzymes: catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase were assessed in liver homogenate. Administered alone, cocaine induced significant hepatotoxicity manifested with GSH depletion and reduced antioxidant defences. Saponarin pretreatment, however, decreased cocaine toxicity both by increasing GSH levels and antioxidant enzyme activities. The results of this study proved the antioxidant activity of saponarin and its protective effect against cocaine-induced oxidative stress and hepatotoxicity.  相似文献   

20.
Glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13; GAPDH) from the cyanobacteriumAnacystis nidulans was activated up to five-fold by reduced glutathione (GSH) in the physiological concentration range (0.1–2 mM GSH). Non-physiological reductants, like dithiothreitol (DTT) and -mercaptoethanol, also activated the enzyme. Oxidized glutathione (GSSG) had no effect on the cyanobacterial GAPDH but treatment with H2O2 led to a rapid, reversible deactivation of both untreated and GSH-treated enzyme preparations. GSH reversed the inhibition induced by H2O2. An oligomeric form of the enzyme (apparentM r440,000) was dissociated by GSH into a lower-M r, more active enzyme form (M r200,000). The enzyme was shown to obey regular Michaelis-Menten kinetics. The activation of GAPDH by GSH was associated with a decrease inK m and an increase inV max values of the enzyme for 3-phosphoglycerate. GSH had virtually no effect on a GAPDH preparation isolated from corn chloroplasts and studied for comparison.Abbreviations GAPDH glyceraldehyde-3-phosphate dehydrogenase - GSH reduced glutathione - GSSG oxidized glutathione - DTT dithiothreitol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号