首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. 1. The 31P-NMR characteristics of intact rat liver mitochondria, mitoplasts and isolated inner mitochondrial membranes, as well as mitochondrial phosphatidylethanolamine and phosphatidylcholine, have been examined.
2. 2. Rat liver mitochondrial phosphatidylethanolamine hydrated in excess aqueous buffer undergoes a bilayer-to-hexagonal (HII) polymorphic phase transition as the temperature is increased through 10°C, and thus prefers the HII) arrangement at 37°C. Rat liver mitochondrial phosphatidylcholine, on the other hand, adopts the bilayer phase at 37°C.
3. 3. Total inner mitochondrial membrane lipids, dispersed in an excess of aqueous buffer, exhibit 31P-NMR spectra consistent with a bilayer arrangement for the majority of the endogeneous phospholipids; the remainder exhibit spectra consistent with structure allowing isotropic motional averaging. Addition of Ca2+ results in hexagonal (HII) phase formation for a portion of the phospholipids, as well as formation of ‘lipidic particles’ as detected by freeze-fracture techniques.
4. 4. Preparations of inner mitochondrial membrane at 4 and 37°C exhibit 31P-NMR spectra consistent with a bilayer arrangement of the large majority of the endogenous phospholipids which are detected. Approx. 10% of the signal intensity has characteristics indicating isotropic motional averaging processes. Addition of Ca2+ results in an increase in the size of this component, which can become the dominant spectral feature.
5. 5. Intact mitochondria, at 4°C, exhibit 31P-NMR spectra arising from both phospholipid and small water-soluble molecules (ADP, Pi, etc.). The phospholipid spectrum is characteristic of a bilayer arrangement. At 37°C the phospholipids again give spectra consistent with a bilayer; however, the labile nature of these systems is reflected by increased isotropic motion at longer (at least 30 min) incubation times.
6. 6. It is suggested that the uncoupling action of high Ca2+ concentrations on intact mitochondria may be related to a Ca2+-induced disruption of the integrity of the inner mitochondrial phospholipid bilayer. Further, the possibility that non-bilayer lipid structures such as inverted micelles occur in the inner mitochondrial membrane cannot be excluded.
Keywords: 31P-NMR; Inner mitochondrial membrane; Phosphatidylethanolamine; Ca2+; Hexagonal (HII) phase; Lipidic particle  相似文献   

2.
The phase equilibria in mixtures of dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylethanolamine (DOPE) and water were studied by 31P-NMR and 2H-NMR. The chemical shift anisotropy is greater for DOPC than for DOPE (6–9 ppm in the lamellar phase). This difference can most probably be ascribed to different order parameters for the two lipid head groups. 31P-NMR spectra recorded from a lamellar phase formed by DOPC-DOPE-water below maximum hydration exhibit two resolved, superimposed powder spectra. The chemical shift anisotropy for both phospholipids has greater values at excess water contents than below maximum hydration, and the spectral resolution between DOPC and DOPE in the lamellar phase is strikingly diminished at excess water contents. From 31P-NMR spectra it is possible to observe relative differences in composition between different lipid phase existing in equilibrium. The proportion of DOPE is decreased in the lamellar phase, and is increased in the reversed hexagonal phase, when these phases exist in equilibrium.  相似文献   

3.
4.
(1) Dipalmitoyl- and dioleoylthionphosphatidylcholine, which are phosphatidylcholine analogues in which the double bonded oxygen of the phosphate group is replaced by a sulfur atom, have been synthesized in 50–60% yields by condensation of diacylglycerol with phosphorus thionchloride in the presence of choline toluene-sulfonate. Dioleoylthionphosphatidylethanolamine has been prepared by the phospholipase D-catalyzed base exchange reaction. (2) Freeze-fracturing of aqueous dispersions of the thionphospholipids reveals that the thionphosphatidylcholines are organized in extended bilayers whereas dioleoylthionphosphatidylethanolamine above 0°C forms the hexagonal HII phase similar to dioleoylphosphatidylethanolamine. The gel → liquid crystalline phase transition of the dipalmitoylthionphosphatidylcholine occurs at 44°C which is only slightly higher than the transition temperature of dipalmitoylphosphatidylcholine which together with other data demonstrates that the thionphospholipids closely resemble the natural phospholipids in physicochemical behaviour. (3) Proton decoupled 31P-NMR spectra of aqueous dispersions of thionphosphatidylcholines have the characteristic asymmetrical line-shape with a low-field shoulder and a high-field peak typical of phospholipids organized in extended bilayers in which the phosphate group can undergo fast axial rotation. The 31P-NMR spectrum of the thionphosphatidylethanolamine in the hexagonal HII phase has a line-shape with a reversed asymmetry and an effective chemical shift anisotropy half of that of thionphospholipids organized in bilayers which is caused by fast lateral diffusion of the lipids around the cylinders of the hexagonal HII phase as has been observed for the corresponding phosphatidylethanolamines. (4) Since the 31P-NMR resonance of the thionphospholipids is completely separated from that of natural phospholipids, these lipids can be used to study by 31P-NMR the motional and structural properties of individual lipids in mixed systems. This is demonstrated for various lipid mixtures in which non-bilayer lipid structures have been induced by variations in composition, temperature and presence of divalent cations. It is shown that bilayer → non-bilayer transitions can be modulated by gel → liquid crystalline phase transitions and that typical bilayer forming lipids can be incorporated into non-bilayer structures such as the hexagonal HII phase.  相似文献   

5.
6.
In previous studies, we have shown that the temperature dependent vibrational frequency of the CH2 stretch in hydrocarbons in intact pollen grains can be recorded with Fourier transform infrared spectroscopy and used to measure phase transition temperatures (Tm) in these hydrocarbons. Circumstantial evidence was provided that the major contribution to the signal seen in these samples was from membrane phospholipids, and that sucrose in the dry pollen grains reduced Tm of those phospholipids. In the current study, we clarify why a major constituent of the pollen grains, neutral lipids contained in discrete lipid droplets, does not contribute significantly to the signal. Further, we have isolated membranes from the pollen and show that Tm in the isolated membranes rises from −6°C in the hydrated membranes to 58°C when the membranes are dried without the addition of sucrose. However, when the isolated membranes are dried in the presence of increasing amounts of sucrose, Tm fell steadily, reaching a minimal value of 31°C, a figure in good agreement with that seen in the intact pollen grains. The amount of sucrose required to depress Tm maximally in these membranes is also apparently in agreement with that found in the intact pollen, suggesting that sucrose depresses Tm in the pollen.  相似文献   

7.
(1) The effects of the anti-tumor drug adriamycin on lipid polymorphism in cardiolipin-containing model membranes and in isolated inner mitochondrial membranes has been examined by 31P-NMR. (2) Adriamycin binding does not affect the macroscopic structure or local order in the phosphate region of cardiolipin liposomes. (3) In cardiolipin liposomes and in cardiolipin-phosphatidylcholine (1:1) liposomes, the drug inhibits the ability of Ca2+ to induce the hexagonal HII phase. (4) Adriamycin interaction with both dioleoylphosphatidylethanolamine-cardiolipin (2:1) and dioleoylphosphatidylethanolamine-phosphatidylserine (1:1) liposomes results in structural phase separation into a liquid-crystalline hexagonal HII phase for the phosphatidylethanolamine and a liquid-crystalline lamellar phase for the negatively charged phospholipid. (5) Combined high-resolution 31P-NMR, electron microscopy and light scattering studies reveal the prominent fusion capacity of adriamycin towards cardiolipin-phosphatidylcholine small unilamellar vesicles. (6) Addition of Ca2+ to total rat liver inner mitochondrial membrane lipids, dispersed in excess buffer, results in hexagonal HII formation for part of the phospholipids. By contrast, the original bilayer structure is completely conserved when the above experiment is performed in the presence of adriamycin. (7) 31P-NMR spectra of isolated inner mitochondrial membranes are indicative of a bilayer organization for the majority of the phospholipids. Approximately 15% of the signal intensity originates from phospholipids which experience isotropic motion. Adriamycin addition almost completely eliminates the latter spectral component. In the absence of adriamycin, Ca2+ addition greatly increases the percentage of the phospholipids giving rise to an isotropic signal possibly indicating the formation of non-lamellar lipid structures. Adriamycin which specifically binds to cardiolipin (K. Nicolay et al. (1984) Biochim. Biophys. Acta 778, 359–371) completely blocks the Ca2+-induced structural reorganization of the lipids in this membrane.  相似文献   

8.
9.
10.
Molecular dynamics simulations and 31P-NMR spin-lattice (R1) relaxation rates from 0.022 to 21.1 T of fluid phase dipalmitoylphosphatidylcholine bilayers are compared. Agreement between experiment and direct prediction from simulation indicates that the dominant slow relaxation (correlation) times of the dipolar and chemical shift anisotropy spin-lattice relaxation are ∼10 ns and 3 ns, respectively. Overall reorientation of the lipid body, consisting of the phosphorus, glycerol, and acyl chains, is well described within a rigid-body model. Wobble, with D = 1-2 × 108 s−1, is the primary component of the 10 ns relaxation; this timescale is consistent with the tumbling of a lipid-sized cylinder in a medium with the viscosity of liquid hexadecane. The value for D|| the diffusion constant for rotation about the long axis of the lipid body, is difficult to determine precisely because of averaging by fast motions and wobble; it is tentatively estimated to be 1 × 107 s−1. The resulting D||/D ≈ 0.1 implies that axial rotation is strongly modulated by interactions at the lipid/water interface. Rigid-body modeling and potential of mean force evaluations show that the choline group is relatively uncoupled from the rest of the lipid. This is consistent with the ratio of chemical shift anisotropy and dipolar correlation times reported here and the previous observations that 31P-NMR lineshapes are axially symmetric even in the gel phase of dipalmitoylphosphatidylcholine.  相似文献   

11.
12.
We have studied the effects of trinitrophenylation on the transbilayer movement of phosphatidylcholine and the macroscopic lipid structure in rat liver microsomal membranes. The transbilayer movement of phosphatidylcholine was investigated using the PC-specific transfer protein. 31P-NMR was employed to monitor the phospholipid organization in intact microsomal vesicles. The results indicate that modification of microsomes with trinitrobenzenesulfonic acid enhances the transbilayer movement of phosphatidylcholine at 4°C. Furthermore, phosphatidylethanolamine headgroup trinitrophenylation in microsomes increases the isotropic component in the 31P-NMR spectra even at 4°C, possibly representing the appearance of intermediate non-bilayer lipid structures. The observed parallel between these data suggests that phosphatidylethanolamine molecules in the microsomal membrane, probably in combination with a protein component, are able to destabilize the bilayer organization, thereby facilitating the transmembrane movement of phospholipids.  相似文献   

13.
The structural preferences of the pH-sensitive phospholipid, N-succinyldioleoylphosphatidylethanolamine (N-succinyl-DOPE), have been examined alone and in mixtures with DOPE by 31P-NMR, fluorescence energy transfer, and freeze-fracture techniques. The basic polymorphic behavior of pure N-succinyl-DOPE and DOPE/N-succinyl-DOPE lipid systems and the influence of calcium and pH were investigated. It is shown that, similar to other negatively charged acidic phospholipids, N-succinyl-DOPE adopts the bilayer organization upon hydration. This structure is maintained at both pH 7.4 and 4.0 in the presence or absence of calcium. In the mixed lipid system, N-succinyl-DOPE can stabilize the non-bilayer lipid, DOPE, into a bilayer structure at both pH 7.4 and 4.0 at more than 10 mol% N-succinyl-DOPE, although a narrow 31P-NMR lineshape is observed at acidic pH values. This corresponds to the presence of smaller vesicles as shown by quasi-elastic light scattering measurements. Addition of equimolar calcium (with respect to N-succinyl-DOPE) to the DOPE/N-succinyl-DOPE systems induces the hexagonal HII phase at both pH values. In unilamellar systems with similar lipid composition the addition of Ca2+ results in membrane fusion as indicated by fluorescence energy-transfer experiments. These findings are discussed with regard to the molecular mechanism of the bilayer to hexagonal HII phase transition and membrane fusion and the utility of N-succinyl-DOPE containing pH-sensitive vesicles as drug-delivery vehicles.  相似文献   

14.
The molecular organization as well as the composition of the phospholipids in cytochrome c oxidase preparations (bovine heart) were investigated by 31P-nuclear magnetic resonance. In the so-called 'lipid-rich' preparation the lipids were found to form a fluid bilayer around the enzyme since the 31P-NMR spectrum was characteristic of a fast, axially symmetric motion of the phosphate groups with a chemical shift anisotropy of delta sigma = -45 ppm. In contrast, the 'lipid-depleted' cytochrome c oxidase gave rise to a broader spectrum where the motion of the phospholipids was no longer axially symmetric. Nevertheless, the total width of the spectrum was still considerably narrower than observed for immobilized phospholipids in solid crystals. Both enzyme preparations were dissolved in 1% detergent solution and used for high-resolution 31P-NMR spectroscopy. Narrow lines of about 20 Hz linewidth were obtained for both types of enzyme preparations, and well-resolved resonances could be assigned to cardiolipin, phosphatidylethanolamin and phosphatidylcholine. The major differences between lipid-rich and lipid-depleted cytochrome c oxidase were the absolute amount of phospholipid associated with the protein and the relative contribution of the individual lipid classes to the 31P-NMR spectrum. For lipid-rich cytochrome c oxidase about 130 molecules phospholipid were bound per enzyme (approx. 11 cardiolipins, 54 phosphatidylethanolamines and 64 phosphatidylcholines). For lipid-depleted cytochrome c oxidase only 6-18 lipids were bound per enzyme (1 or 2 cardiolipins, 3-8 phosphatidylethanolamines and 2-8 phosphatidylcholines). In contrast to earlier suggestions that cardiolipin is the only remaining lipid in lipid-depleted cytochrome c oxidase, the 31P-NMR studies demonstrate that all three lipids remain associated with the protein.  相似文献   

15.
The potential of 31P-NMR saturation transfer experiments for determining motional characteristics (in the millisecond to second time scale) of phospholipids in model and biological membranes is demonstrated. A technique to separate membrane phospholipid 31P-NMR signals from those of small water-soluble phosphates in intact cells in liver tissue is also illustrated.  相似文献   

16.
The effects of temperature and the membrane-active protein CTII on the formation of nonbilayer structures in mitochondrial membranes were studied by 31P-NMR. An increase in ATP synthase activity was found for the first time to accompany the formation of nonbilayer packed phospholipids with immobilized molecular mobility in mitochondrial membranes. Computer modeling was additionally employed in studying the interaction of important phospholipids found in mitochondrial membranes with the molecular surface of CTII, which behaves like a dicyclohexylcarbodiimide-binding protein (DCCD-BP) of the F0 group in a lipid phase. Proton permeability toroidal pores were assumed to form in mitochondrial membranes from nonbilayer-packed phospholipids immobilized via interactions with DCCD-BP. Proton transport along a concentration gradient through the transit toroidal permeability pores may induce conformational changes necessary for mediating the catalytic activity of ATP synthase in the subunits of the F0–F1 complex.  相似文献   

17.
Studies on hydration are important for better understanding of structure and function of nucleic acids. We compared the hydration of self-complementary DNA, RNA and 2′-O-methyl (2′-OMe) oligonucleotides GCGAAUUCGC, (UA)6 and (CG)3 using the osmotic stressing method. The number of water molecules released upon melting of oligonucleotide duplexes, ΔnW, was calculated from the dependence of melting temperature on water activity and the enthalpy, both measured with UV thermal melting experiments. The water activity was changed by addition of ethylene glycol, glycerol and acetamide as small organic co-solutes. The ΔnW was 3–4 for RNA duplexes and 2–3 for DNA and 2′-OMe duplexes. Thus, the RNA duplexes were hydrated more than the DNA and the 2′-OMe oligonucleotide duplexes by approximately one to two water molecules depending on the sequence. Consistent with previous studies, GC base pairs were hydrated more than AU pairs in RNA, whereas in DNA and 2′-OMe oligonucleotides the difference in hydration between these two base pairs was relatively small. Our data suggest that the better hydration of RNA contributes to the increased enthalpic stability of RNA duplexes compared with DNA duplexes.  相似文献   

18.
The intracellular phosphorus and carbon metabolites in the halotolerant alga Dunaliella salina adapted to different salinities were monitored in living cells by 31P- and 13C-nuclear magnetic resonance (NMR) spectroscopy. The 13C-NMR studies showed that the composition of the visible intracellular carbon metabolites other than glycerol is not significantly affected by the salinity of the growth medium. The T1 relaxation rates of the 13C-glycerol signals in intact cells were enhanced with increasing salinity of the growth medium, in parallel to the expected increase in the intracellular viscosity due to the increase in intracellular glycerol. The 31P-NMR studies showed that cells adapted to the various salinities contained inorganic phosphate, phosphomonoesters, high energy phosphate compounds, and long chain polyphosphates. In addition, cells grown in media containing up to 1 molar NaCl contained tripolyphosphates. The tripolyphosphate content was also controlled by the availability of inorganic phosphate during cell growth. Phosphate-depleted D. salina contained no detectable tripolyphosphate signal. Excess phosphate, however, did not result in the appearance of tripolyphosphate in 31P-NMR spectra of cells adapted to high (>1.5 molar NaCl) salinites.  相似文献   

19.
Phase behavior of hydrated lipid bilayer was investigated for the mixtures of two phospholipid species chosen from phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG) with the same acyl chains. The pseudo-binary phase diagrams constructed by a differential scanning calorimetry (DSC) were analyzed based on a thermodynamic model applying the Bragg–Williams approximation for non-ideality of mixing. The interchange energy parameters, ρ0, derived from this approach were positive for all mixture systems in both gel and liquid–crystalline phase bilayers, and increased in the order PG/PE<PC/PA<PC/PE<PG/PA with a few exception. This suggests that the energetical disadvantage for the mixed-pair formation relative to the like-pair formation in the hydrated bilayer increases in this order. In addition, the ρ0 values increased with the increase in the acyl chain length of the phospholipids. These experimental results were discussed in terms of an intermolecular interaction of the phospholipid species in hydrated bilayer.  相似文献   

20.
Summary The effect of biliary salts and fatty acids on the bilayer structure of rabbit intestinal brush-border membranes was studied using the nonperturbing probe31P NMR. The broad. asymmetric lineshape of the31P NMR spectrum of isolated brush-border vesicles demostrates that their component phospholipids are organized in extended bilayers. These membranes are not significantly perturbed by incubation with physiological concentrations of biliary salts (3, 9, 18mm), demonstrating that the vesicles are highly stable, corresponding to their biological function. However, the emergence of a narrow peak superimposed on the broad lineshape indicates that a small proportion of the membrane phospholipids has reached isotropic motion, which may correspond to external or internal micellar structures. Incubation with mixed micelles of fatty acids and taurochlorate show that long-chain fatty acids enhance the membrane-perturbing effect of taurocholate while short-chain, watersoluble fatty acids do not, suggesting a difference in the absorption mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号