首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Arg-Gly-Asp peptide (RGD), contained in several extracellular matrix proteins such as fibronectin, laminin, vitronectin, and collagen, is a tripeptide that plays a role as a recognition sequence in many cell-to-cell and cell-to-matrix adhesion mechanisms, through its interaction with several receptors of the integrin family. We previously described the ability of the oolemma of hamster oocytes to bind GRGDTP coupled to the surface of activated immunobeads and demonstrated that RGD-containing oligopeptides inhibit the adhesion of human and hamster spermatozoa to zona-free hamster oocytes and their subsequent penetration. In the present experiments, we show, utilizing immunobeads coated with an RGD-containing peptide (PepTiteTM 2000), that the oolemma of unfertilized human eggs is also able to recognize this adhesion sequence. The binding of PepTiteTM 2000-coated immunobeads to the oolemma was inhibited by the oligopeptide GRGDTP as well as by fibronectin and laminin. When immunobeads were prepared with a PepTiteTM concentration of 10 micrograms/ml, GRGDTP 150 micrograms/ml, laminin 80 micrograms/ml, and fibronectin 60 micrograms/ml inhibited bead rosetting on the egg surface. These data suggest that a specific binding moiety for RGD is present on the human egg surface. The binding of fibronectin to the oolemma was also demonstrated by the rosetting of immunobeads coupled with antifibronectin antibody to human oocytes after their exposure to 1 mg/ml free fibronectin. Such binding of fibronectin to the oolemma could be inhibited by coincubation with a monoclonal antibody directed against the cell adhesion fragment of fibronectin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The synthetic cell attachment-promoting peptides from fibronectin (Pierschbacher, M. D., and E. Ruoslahti, 1984, Nature (Lond.)., 309:30-33) were found to detach cultured cells from the substratum when added to the culture in a soluble form. Peptides ranging in length from tetrapeptide to heptapeptide and containing the active L-arginyl-glycyl-L-aspartic acid (Arg-Gly-Asp) sequence had the detaching activity, whereas a series of different peptides with chemically similar structures had no detectable effect on any of the test cells. The Arg-Gly-Asp-containing peptides caused detachment of various cell lines of different species and histogenetic origin. Studies with defined substrates showed that the active peptides could inhibit the attachment of cells to vitronectin in addition to fibronectin, indicating that vitronectin is recognized by cells through a similar mechanism as fibronectin. The peptides did not inhibit the attachment of cells to collagen. However, cells cultured on collagen-coated plastic for 24-36 h, as well as cells with demonstrable type I or type VI collagen in their matrix, were susceptible to the detaching effect of the peptides. These results indicate that the recognition mechanism(s) by which cells bind to fibronectinand vitronectin plays a major role in the substratum attachment of cells and that collagens may not be directly involved in cell-substratum adhesion. Since vitronectin is abundant in serum, it is probably an important component in mediating the attachment of cultured cells. The independence of the effects of the peptide on the presence of serum and the susceptibility of many different cell types to detachment by the peptide show that the peptides perturb an attachment mechanism that is intrinsic to the cells and fundamentally significant to their adhesion.  相似文献   

3.
《The Journal of cell biology》1995,130(5):1189-1196
Many integrins recognize short RGD-containing amino acid sequences and such peptide sequences can be identified from phage libraries by panning with an integrin. Here, in a reverse strategy, we have used such libraries to isolate minimal receptor sequences that bind to fibronectin and RGD-containing fibronectin fragments in affinity panning. A predominant cyclic motif, *CWDDG/LWLC*, was obtained (the asterisks denote a potential disulfide bond). Studies using the purified phage and the corresponding synthetic cyclic peptides showed that *CWDDGWLC*-expressing phage binds specifically to fibronectin and to fibronectin fragments containing the RGD sequence. The binding did not require divalent cations and was inhibited by both RGD and *CWDDGWLC*-containing synthetic peptides. Conversely, RGD-expressing phage attached specifically to immobilized *CWDDGWLC*-peptide and the binding could be blocked by the respective synthetic peptides in solution. Moreover, fibronectin bound to a *CWDDGWLC*-peptide affinity column, and could be eluted with an RGD-containing peptide. The *CWDDGWLC*-peptide inhibited RGD-dependent cell attachment to fibronectin and vitronectin, but not to collagen. A region of the beta subunit of RGD-binding integrins that has been previously demonstrated to be involved in ligand binding includes a polypeptide stretch, KDDLW (in beta 3) similar to WDDG/LWL. Synthetic peptides corresponding to this region in beta 3 were found to bind RGD-displaying phage and conversion of its two aspartic residues into alanines greatly reduced the RGD binding. Polyclonal antibodies raised against the *CWDDGWLC*- peptide recognized beta 1 and beta 3 in immunoblots. These data indicate that the *CWDDGWLC*-peptide is a functional mimic of ligand binding sites of RGD-directed integrins, and that the structurally similar site in the integrin beta subunit is a binding site for RGD.  相似文献   

4.
The adhesion of HT29 human colon adenocarcinoma cells to different extracellular matrix components was studied. While treatment of the cells with sialidase had no detectable effect on binding to laminin and fibronectin, attachment to collagen IV was decreased. However, additional removal of beta-(1-4)-bound galactose led to significantly reduced binding to all of the substrates, including fibronectin and laminin. Tunicamycin treatment, monitored by lectin-induced aggregation, drastically diminished cell adhesion to laminin and fibronectin, whereas cell binding to collagen IV was not affected. Arg-Gly-Asp (RGD)-related peptides were used to study the adhesion to collagen IV. The results show that a serine-containing RGD-related peptide GRGDSP has virtually no effect on colon carcinoma cell adhesion to type IV collagen. In contrast, when serine was substituted for threonine (GRGDTP) adhesion to collagen IV was strongly inhibited. After incubation of sialidase-treated cells with the threonine-containing peptide adhesion was almost totally blocked. These results demonstrate the existence of both RGD-dependent and carbohydrate-based mechanisms for metastatic human HT29 cell binding to collagen IV.  相似文献   

5.
The cell-binding abilities of a recombinant, RGD-containing peptide from foot-and-mouth disease virus (FMDV) have been characterized in HeLa and BHK cells. This peptide represents the aa sequence of the solvent-exposed G-H loop of protein VP1 which is involved in cell recognition and infection. The efficiency of the viral motif in promoting cell attachment and spreading is comparable to that shown by fibronectin or vitronectin. Cell binding is inhibited by a monoclonal antibody directed against a viral, RGD-involving B-cell epitope and also by sera against vitronectin (Vβ35) and fibronectin (5β1) receptors. In addition, a synthetic RGD peptide, which is a ligand for both integrins, prevents the cell binding mediated by the FMDV domain. These data demonstrate that the FMDV RGD motif is a potent ligand for cell-receptor integrins and sufficient to promote cell attachment to susceptible cells mainly through the vitronectin receptor.  相似文献   

6.
Triflavin, a 7.5-kDa cysteine-rich polypeptide purified from Trimeresurus flavoviridis snake venom, belongs to a family of RGD-containing peptides, termed disintegrins, that have been isolated from the venoms of various vipers and shown to be potent inhibitors of platelet aggregation. The interaction of tumor cells with extracellular matrices such as fibronectin, vitronectin, and collagen has been shown to be mediated through a family of cell surface receptors that specifically recognize an arginine-glycine-aspartic acid (RGD) sequence within each adhesive protein. In this study, we show that triflavin dose-dependently inhibited adhesion of human cervical carcinoma (HeLa) cells to extracellular matrices (ECMs; i.e., fibronectin, fibrinogen, and vitronectin). On the other hand, triflavin exerted a limited inhibitory effect on cell adhesion to laminin and collagen (type I and IV). On a molar basis, triflavin is approximately 800 times more potent than Gly-Arg-Gly-Asp-Ser (GRGDS) at inhibiting cell adhesion. When immobilized on plate, triflavin significantly promoted HeLa cell adhesion, and this attachment was inhibited by GRGDS. Furthermore, FITC-conjugated triflavin bound to cells in a saturable manner and its binding was inhibited by GRGDS. In addition, triflavin did not affect [3H]thymidine uptake of HeLa cells during a 3-day incubation. These results suggest that triflavin probably binds to integrin receptors expressed on HeLa cell surface via its RGD sequence within its molecule, thereby inhibiting the adhesion of extracellular matrices to HeLa cells.  相似文献   

7.
Integrins are a family of cell-surface receptors intimately involved in the interactions of cells with their extracellular matrix. These receptors comprise an alpha and beta subunit in noncovalent association and many have been shown to recognize and bind an arginine-glycine-aspartate (RGD) sequence contained within their specific extracellular matrix ligand. Fibroblasts express integrin receptors belonging to two major subfamilies. Some of the members within the subfamily defined by beta 1 (VLA) are receptors for collagen but, perhaps surprisingly, the other major subfamily of integrins on fibroblasts--that defined by the alpha chain of the vitronectin receptor, alpha v--all appear to bind primarily vitronectin and/or fibronectin. In the present study we show that RGD-containing peptides expose cryptic binding sites on the alpha v-associated integrins enabling them to function as collagen receptors. The addition of RGD-containing peptides to fibroblasts cultured on type I collagen induced dramatic cell elongation and, when the cells were contained within collagen matrices, the peptides induced marked contraction of the gels. These processes were inhibited by Fab fragments of a monoclonal antibody against an alpha v integrin. Also, alpha v-associated integrins from cell lysates bound to collagen I affinity columns in the presence, but not in the absence, of RGD-containing peptides. These data suggest a novel regulatory control for integrin function. In addition, because the cryptic collagen receptors were shown to be implicated in the contraction of collagen gels, the generation of such binding forces suggests that this may be the major biological role for these integrins in processes such as wound healing.  相似文献   

8.
The sequence Arg-Gly-Asp (RGD) in extracellular matrix proteins such as fibronectin, collagen, and laminin mediates cell attachment by interacting with proteins of the integrin family of cell surface receptors. A gene fusion encoding the RGD-containing peptide, fused to the C-terminus of a cellulose-binding domain (CBD/RGD), was expressed in Escherichia coli. Cultures produced up to 50 mg of CBD/RGD per liter, most of which was extracellular. It was purified from the culture supernatant by affinity chromatography on cellulose. CBD/RGD promoted the attachment of green monkey Vero cells to polystyrene and cellulose acetate. Attachment was inhibited by small synthetic peptides containing the RGD sequence. CBD/RGD was as effective as collagen in promoting the attachment of Vero cells to Cellsnowtrade mark microcarriers. (c) 1995 John Wiley & Sons, Inc.  相似文献   

9.
Our previous studies showed that the alpha 5 beta 1 integrin selects cysteine pair-containing RGD peptides from a phage display library based on a random hexapeptide. We have therefore searched for more selective peptides for this integrin using a larger phage display library, where heptapeptides are flanked by cysteine residues, thus making the inserts potentially cyclic. Most of the phage sequences that bound to alpha 5 beta 1 (69 of 125) contained the RGD motif. Some of the heptapeptides contained an NGR motif. As the NGR sequence occurs in the cell-binding region of the fibronectin molecule, this sequence could contribute to the specific recognition of fibronectin by alpha 5 beta 1. Selection for high affinity peptides for alpha 5 beta 1 surprisingly yielded a sequence RRETAWA that does not bear obvious resemblance to known integrin ligand sequences. The synthetic cyclic peptide GACRRETAWACGA (*CRRETAWAC*) was a potent inhibitor of alpha 5 beta 1-mediated cell attachment to fibronectin. This peptide is nearly specific for the alpha 5 beta 1 integrin, because much higher concentrations were needed to inhibit the alpha v beta 1 integrin, and there was no effect on alpha v beta 3- and alpha v beta 5-mediated cell attachment to vitronectin. The peptide also did not bind to the alpha IIb beta 3 integrin. *CRRETAWAC* appears to interact with the same or an overlapping binding site in alpha 5 beta 1 as RGD, because cell attachment to *CRRETAWAC* coated on plastic was divalent cation dependent and could be blocked by an RGD-containing peptide. These results reveal a novel binding specificity in the alpha 5 beta 1 integrin.  相似文献   

10.
The relationship between the adhesion of five human colorectal carcinoma cell lines to extracellular matrix (ECM) proteins, namely type I collagen, type IV collagen, fibronectin, laminin and basement membrane extract (Matrigel), and the ability of these cells to express morphological differentiation when grown in a basement membrane extract (Matrigel) or on normal rat mesenchymal cells has been examined. Two cell lines, SW1222 and HRA-19, organised into glandular structures, with well-defined polarity when cultured on both substrata as well as in three-dimensional (3D) collagen gel culture as previously shown. The remaining three cell lines (SW620, SW480 and HT29) grew as loose aggregates or as they would normally grow on tissue culture plastic. Addition to the culture medium of a hexapeptide, containing the cell-matrix recognition sequence arginine-glycine-aspartic acid (RGD), inhibited attachment and glandular formation of SW1222 and HRA-19 when these cells were grown on living mesenchymal cells, but not in Matrigel. The morphological differentiation of HRA-19 cells in 3D-collagen was also inhibited by the same RGD-containing peptide, as previously shown for SW1222 cells. Attachment of the remaining three cell lines was inhibited on mesenchyme but not in Matrigel, further supporting the specificity of the peptide effect on epithelial-mesenchymal binding. In conclusion we have shown that colorectal tumour cells are able to bind ECM proteins and that the cellular binding is an essential step in the induction of the morphological differentiation seen on living mesenchymal cells, in basement membrane extracts and in type I collagen gel.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Integrin receptors are the main mediators of cell adhesion to the extracellular matrix. They bind to their ligands by interacting with short amino acid sequences, such as the RGD sequence. Soluble, small RGD-based peptides have been used to block integrin-binding to ligands, thereby interfering with cell adhesion, migration and survival, while substrate-immobilized RGD sequences have been used to enhance cell binding to artificial surfaces. This approach has several important medical applications, e.g. in suppression of tumor angiogenesis or stimulation of bone formation around implants. However, the relatively weak affinity of short RGD-containing peptides often results in incomplete integrin inhibition or ineffective ligation. In this work, we designed and synthesized several new multivalent RGD-containing molecules and tested their ability to inhibit or to promote integrin-dependent cell adhesion when used in solution or immobilized on substrates, respectively. These molecules consist of an oligomeric structure formed by alpha-helical coiled coil peptides fused at their amino-terminal ends with an RGD-containing fragment. When immobilized on a substrate, these peptides specifically promoted integrin alphaVbeta3-dependent cell adhesion, but when used in solution, they blocked alphaVbeta3-dependent cell adhesion to the natural substrates fibronectin and vitronectin. One of the peptides was nearly 10-fold more efficient than fibronectin or vitronectin in promoting cell adhesion, and almost 100-fold more efficient than a linear RGD tripeptide in blocking adhesion. These results indicate that alpha-helical coiled coil peptides carrying an amino-terminal RGD motif can be used as soluble antagonists or surface-immobilized agonists to efficiently inhibit or promote integrin alphaVbeta3-mediated cell adhesion, respectively.  相似文献   

12.
Adhesion of eight cell lines, derived from human gliomas of different histological types, to fibronectin, collagen I, vitronectin, and laminin was investigated in vitro. The glioma cell lines were found to attach to these substrates to different extents. Interestingly, all cell lines strongly attached to laminin. In addition, glioma cell adhesion was found to be dose dependent. Moreover, adhesion of three cell lines to fibronectin and collagen I was partially inhibited and to vitronectin completely prevented by GRGDTP peptide, indicating the involvement of integrin receptors in glioma cell adhesion. We have demonstrated, recently, that gangliosides play an important role in promoting glioma cell invasion of the reconstituted basement membrane, Matrigel, in vitro. In order to study the mechanism of action of gangliosides in this process, the role of six gangliosides (GM1, GM3, GD3, GD1a, GD1b, and GT1b) in cell adhesion to the four proteins was investigated in three cell lines. Although all gangliosides, with the exception of GM3, were found to enhance cell adhesion to these proteins to different extents, GD3 proved to be the most effective adhesion-promoting ganglioside in all three cell lines. GM3 was found to inhibit cell adhesion to the four proteins in one cell line but enhanced cell adhesion in two other cell lines. The three cell lines were found to express both GD3 and gangliosides recognised by the A2B5 antibody. Furthermore, adhesion of the three cell lines to fibronectin, vitronectin, laminin, and collagen I was inhibited by incubation with A2B5, demonstrating the involvement of intrinsic cell membrane gangliosides in adhesion of glioma cells to these proteins. Taken together with the observation that gangliosides modulate integrin receptor function, these data suggest that gangliosides may play a central role in the control of the adhesive and invasive properties of human glioma cells.  相似文献   

13.
Antibodies to a rat liver membrane glycoprotein with an Mr of 115,000 (nonreduced) inhibited the attachment of rat hepatocytes and primary rat heart fibroblasts to both collagen and fibronectin. The Mr 115,000 glycoprotein cross-reacted immunologically with the beta 1-chain of the rat hepatocyte fibronectin receptor (HFNR), and the two proteins showed identical peptide maps after proteolytic cleavage. It was concluded that the Mr 115,000 protein was similar or identical to the beta 1-chain of Arg-Gly-Asp (RGD)-directed matrix receptors. Although collagen type I contains several RGD sequences, the attachment of hepatocytes and fibroblasts to collagen type I was not inhibited by the synthetic peptide GRGDTP in concentrations that blocked adhesion to fibronectin. Furthermore, hepatocytes adhered equally well to collagen fragments, generated by cyanogen bromide cleavage, lacking RGD sequences as to fragments containing this sequence. Antibodies to the Mr 115,000 protein inhibited the adhesion of hepatocytes to both types of collagen fragments. Taken together, these data indicate the presence of collagen receptors that share the beta-subunit with the HFNR but that are not directed to RGD sequences. Tentative alpha-chains of the collagen matrix receptor complex were isolated by immunoprecipitation of surface 125I-labeled fibroblast membrane proteins purified by affinity chromatography on immobilized collagen type I. Data are presented indicating that proteins with Mr around 145,000 and 170,000 (nonreduced) are associated in noncovalently linked complexes with the Mr 115,000 protein. These complexes have affinity for collagen and thus have properties expected for integrin-like collagen receptors.  相似文献   

14.
肝癌细胞-胞外基质粘附性与粘附识别序列的相关性   总被引:1,自引:0,他引:1  
以微管吸吮技术研究了人肝癌细胞在IV型胶原/层粘连蛋白(LN)/纤维连结蛋白(FN)裱衬表面的粘附性。进一步,用四种人工合成肽精-甘-天冬-丝(RGDS)、甘-精-甘-天冬-苏-脯GRGDTP)、酪-异亮-甘-丝-精(YIGSR0和半胱-天冬-脯-甘-酪-异亮-甘-丝-精(CDPGYIGSR)研究了肝癌细胞粘附性对两种粘附识别序列RGD和YIGSR的依赖性。为了归纳和整理实验结果,根据竞争性抑制的  相似文献   

15.
Triflavin, an Arg-Gly-Asp (RGD)-containing snake venom peptide, inhibits B16-F10 mouse melanoma cell adhesion to extracellular matrices, e.g., fibronectin, vitronectin, fibrinogen, and collagen type I. In this study, GRGDS inhibits B16-F10 mouse melanoma cell adhesion to immobilized triflavin in a dose-dependent manner. In addition, flow-cytometric analysis and the fluorescence staining method in which FITC-triflavin is utilized as a binding ligand were used. GRGDS inhibits the binding of FITC-triflavin to B16-F10 cells. Additionally, the above results suggest that triflavin directly binds to its receptors expressed on B16-F10 cell surface primarily via its RGD sequence, there-by inhibiting B16-F10 cell adhesion to extracellular matrices.  相似文献   

16.
We report the isolation from two human neuroblastoma cell lines of an Arg-Gly-Asp-dependent integrin complex capable of binding to vitronectin, fibronectin, and type I collagen. The two neuroblastoma cell lines, SK-N-SH and IMR-32, exhibit specific attachment to fibronectin and type I collagen. SK-N-SH cells exhibit a much stronger attachment to vitronectin than the IMR-32 cells, which attach poorly to this substrate. Affinity chromatography of octylglucoside extracts of 125I surface-labeled cells on GRGDSPK-Sepharose columns resulted in the specific binding and elution with GRGDSP of three radiolabeled polypeptides with relative molecular masses of 135, 115, and 90 kD when analyzed by SDS-PAGE under nonreducing conditions. In the SK-N-SH cells the 135- and 90-kD polypeptides were more abundant whereas in the IMR-32 cells the 135- and 115-kD polypeptides were more highly expressed. Liposomes prepared from fractions containing all three polypeptides bound to vitronectin, fibronectin, and type I collagen, whereas liposomes prepared from the 135- and 115-kD polypeptides bound only to fibronectin and type I collagen. Polyclonal antibodies against the alpha/beta complexes of both the vitronectin receptor and the fibronectin receptor immunoprecipitated all three polypeptides. A monoclonal antibody against beta 1 immunoprecipitated only the 135- and the 115-kD polypeptides, whereas a monoclonal antibody against beta 3 subunit immunoprecipitated the 135- and 90-kD polypeptides. Although, the 115-kD polypeptide could be recognized by an anti-beta 1 antibody, a comparison of peptide maps generated by V8 protease digestion of the 115-kD polypeptide and beta 1 subunit immunoprecipitated from GRGDSPK-Sepharose flow-through material indicated that these two polypeptides are distinct. Depletion of the 90-kD polypeptide with an anti-beta 3 monoclonal antibody did not effect the ability of the 115- and 135-kD polypeptides to bind to GRGDSPK-Sepharose. These data indicate that the SK-N-SH and IMR-32 neuroblastoma cells express a novel "beta 1-like" integrin subunit that can associate with alpha v and can bind to RGD. We propose to name this beta 1-like subunit beta n. The data reported here thus demonstrate that in these two cell lines alpha v associates with two beta subunits, beta n and beta 3, forming two heterodimers. The alpha v beta n complex mediates binding to fibronectin and type I collagen, whereas the alpha v beta 3 complex mediates binding to vitronectin.  相似文献   

17.
Peptides containing the tripeptide sequence Arg-Gly-Asp can duplicate or inhibit the cell attachment-promoting effects of fibronectin and vitronectin. Peptides analogous to a prototype peptide, Gly-Arg-Gly-Asp-Ser-Pro-Cys, the sequence of which was taken from the cell attachment site of fibronectin, were assayed for their relative abilities to inhibit the attachment of cells to a fibronectin or vitronectin substrate. A peptide having the L-Arg residue replaced with D-Arg showed no difference in this capacity, whereas substituting Gly with D-Ala or L-Asp with D-Asp resulted in completely inactive peptides. Replacement of L-Ser with D-Ser drastically reduced the influence that the resulting peptide had on the vitronectin interaction, but this peptide showed little difference in its effect on the binding of cells to fibronectin when compared with the prototype peptide. Furthermore, substitution of the Ser with L-Asn resulted in a peptide that had an apparent increased preference for the fibronectin receptor and decreased preference for the vitronectin receptor. Conversely, threonine in this position gave a peptide with increased preference for the vitronectin receptor, whereas L-Pro in this position gave a completely inactive peptide. Finally, by cyclicizing the prototype peptide to restrict its conformational flexibility, a peptide was obtained that was a much improved inhibitor of attachment of cells to vitronectin and yet nearly inactive with respect to the interactions of cells with fibronectin substrates. These studies lend support to the hypothesis that different Arg-Gly-Asp-directed adhesion receptors can recognize differences in the conformation and environment of the Arg-Gly-Asp tripeptide, and they establish the feasibility of obtaining synthetic probes that are more selective for individual receptors than are the peptides modeled after the natural sequences of adhesive extracellular matrix molecules.  相似文献   

18.
Synthetic peptides can specifically inhibit the function of certain adhesive glycoproteins in vitro and in vivo. We have compared the relative activities of a set of six variant synthetic peptides based on the sequence of fibronectin in terms of their ability to inhibit the interactions of fibroblasts with fibronectin, spreading factor/vitronectin, laminin, and native collagen gels. BHK (baby hamster kidney) and chick embryo fibroblasts spreading on these adhesive molecules displayed distinctive patterns of sensitivity to inhibition by this panel of peptides, which depended on the adhesive molecule rather than the cell type. For fibronectin, Gly-Arg-Gly-Asp-Ser was considerably more active than Arg-Gly-Asp-Ser, whereas these two peptides displayed little difference in activity in inhibiting cell adhesion to spreading factor. For both proteins, the inverted peptide sequence Ser-Asp-Gly-Arg was also moderately active, whereas closely related peptides containing a transposition, a deletion, or a single, conserved amino acid substitution were much less active. For inhibiting interactions with laminin or native type I collagen gels, Gly-Arg-Gly-Asp-Ser was only weakly active, but the inverted peptide Ser-Asp-Gly-Arg unexpectedly continued to display inhibitory activity for both attachment proteins in both cell types. Our results indicate that different adhesive processes depend on distinct peptide recognition events by a cell. However, there may be a possible common denominator among attachment proteins in a moderate sensitivity to Ser-Asp-Gly-Arg. Our study also underscores the importance of examining a full set of peptide analogs when these novel inhibitors are used to characterize biological processes.  相似文献   

19.
Cell adhesion is characterized by an integrin-mediated ligand binding event followed by reorganization of the actin-cytoskeleton leading to cell spreading and/or migration. In this report we examine the role of integrin alpha v beta 3 in mediating cell attachment to vitronectin or a RGD-containing peptide in the presence of cytochalasin B to prevent actin polymerization. Under these conditions cell attachment to a RGD-containing peptide can be dissociated by excess soluble ligand whereas cells attached to vitronectin cannot. These results suggest that alpha v beta 3-mediated cell attachment to vitronectin results in a highly stabilized interaction that is independent of the actin-cytoskeleton. To investigate the molecular nature of this interaction alpha v beta 3 was purified to homogeneity, and its binding properties toward various ligands were measured in a solid-phase receptor assay. The data indicate that alpha v beta 3 binds to vitronectin or fibronectin in a nondissociable manner whereas a RGD-containing peptide derived from vitronectin binds specifically but is completely dissociable with a Kd of 9.4 x 10(-7) M. Moreover, chemical modification of alpha v beta 3 with limited glutaraldehyde treatment allowed vitronectin to bind in a RGD-dependent and dissociable manner, suggesting that receptor conformational changes or specific amino acid residues proximal to the ligand binding site(s) are involved in the stabilization event. Thus, in the absence of cytoskeletal proteins or other cellular components, integrin alpha v beta 3-ligand binding involves recognition of the RGD sequence leading to a highly stabilized protein-protein association.  相似文献   

20.
The laminin A chain has been sequenced by cDNA cloning and was found to contain an RGD sequence. Synthetic peptides containing the RGD sequence and flanking amino acids were active in mediating cell adhesion, spreading, migration, and neurite outgrowth. Furthermore, endothelial cell attachment to a laminin substrate was inhibited by an RGD-containing synthetic peptide. Antisera against the integrin (fibronectin) receptor, and monoclonal antibody to the integrin, VLA-6, inhibited cell interaction with laminin, as well as with peptides containing an RGD sequence. These results suggest that the RGD containing site of laminin is active and interacts with the integrin family of receptors in certain cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号