首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infancy is a time of unparalleled infection exposure. Coming from the privilege of the uterus, the newborn infant must make appropriate immune responses following infection that eliminates the infection but protects the host. There is evidence that in sudden infant death syndrome (SIDS) subjects there is a background of recent 'trivial' infection and immunological/inflammatory reactivity. This immunological/inflammatory reactivity is seen in enhanced pulmonary immunoglobulins and T-cell activation. It may be that in certain SIDS cases a trivial infection triggers an exaggerated inflammatory response, inducing cytokine cascades and eventual demise of the infant.  相似文献   

2.

Background

The mechanisms of disease severity caused by H5N1 influenza virus infection remain somewhat unclear. Studies have indicated that a high viral load and an associated hyper inflammatory immune response are influential during the onset of infection. This dysregulated inflammatory response with increased levels of free radicals, such as nitric oxide (NO), appears likely to contribute to disease severity. However, enzymes of the nitric oxide synthase (NOS) family such as the inducible form of NOS (iNOS) generate NO, which serves as a potent anti-viral molecule to combat infection in combination with acute phase proteins and cytokines. Nevertheless, excessive production of iNOS and subsequent high levels of NO during H5N1 infection may have negative effects, acting with other damaging oxidants to promote excessive inflammation or induce apoptosis.

Methodology/Principal Findings

There are dramatic differences in the severity of disease between chickens and ducks following H5N1 influenza infection. Chickens show a high level of mortality and associated pathology, whilst ducks show relatively minor symptoms. It is not clear how this varying pathogenicty comes about, although it has been suggested that an overactive inflammatory immune response to infection in the chicken, compared to the duck response, may be to blame for the disparity in observed pathology. In this study, we identify and investigate iNOS gene expression in ducks and chickens during H5N1 influenza infection. Infected chickens show a marked increase in iNOS expression in a wide range of organs. Contrastingly, infected duck tissues have lower levels of tissue related iNOS expression.

Conclusions/Significance

The differences in iNOS expression levels observed between chickens and ducks during H5N1 avian influenza infection may be important in the inflammatory response that contributes to the pathology. Understanding the regulation of iNOS expression and its role during H5N1 influenza infection may provide insights for the development of new therapeutic strategies in the treatment of avian influenza infection.  相似文献   

3.
The common mucosal immune system (CMIS) is an interconnecting network of immune structures that provides effective immunity to mucosal surfaces. The structures of the mucosal immune system are fully developed in utero by 28 weeks gestation, but in the absence of intrauterine infection, activation does not occur until after birth. Mucosal immune responses occur rapidly in the first weeks of life in response to extensive antigenic exposure. Maturation of the mucosal immune system and establishment of protective immunity varies between individuals but is usually fully developed in the first year of life, irrespective of gestational age at birth. In addition to exposure to pathogenic and commensal bacteria, the major modifier of the developmental patterns in the neonatal period is infant feeding practices. A period of heightened immune responses occurs during the maturation process, particularly between 1 and 6 months, which coincides with the age range during which most cases of sudden infant death syndrome (SIDS) occur. A hyper-immune mucosal response has been a common finding in infants whose death is classified as SIDS, particularly if in association with a prior upper respiratory infection. Inappropriate mucosal immune responses to an otherwise innocuous common antigen and the resulting inflammatory processes have been proposed as factors contributing to SIDS.  相似文献   

4.
Sudden infant death syndrome (SIDS) is sudden unexpected death in infancy for which there is no explanation after review of the history, a death scene investigation and a thorough autopsy. The use of common diagnostic criteria is a prerequisite for discussing the importance of infection, inflammatory responses and trigger mechanism in SIDS. Several observations of immune stimulation in the periphery and of interleukin-6 elevation in the cerebrospinal fluid of SIDS victims explain how infections can play a role in precipitating these deaths. Finally, these findings and important risk factors for SIDS are integrated in the concept of a vicious circle for understanding the death mechanism. The vicious circle is a concept to elucidate the interactions between unfavourable factors, including deficient auto-resuscitation, and how this could result in death.  相似文献   

5.
The interaction of protozoan parasites with innate host defences is critical in determining the character of the subsequent infection. The initial steps in the encounter of Toxoplasma gondii with the vertebrate immune system provide a striking example of this important aspect of the host-parasite relationship. In immuno-competent individuals this intracellular protozoan produces an asymptomatic chronic infection as part of its strategy for transmission. Nevertheless, T. gondii is inherently a highly virulent pathogen. The rapid induction by the parasite of a potent cell-mediated immune response that both limits its growth and drives conversion to a dormant cyst stage explains this apparent paradox. Studies with gene-deficient mice have demonstrated the interleukin-12 (IL-12)-dependent production of interferon gamma (IFN-gamma) to be of paramount importance in controlling early parasite growth. However, this seems to be independent of nitric oxide production as mice deficient in inducible nitric oxide synthase (iNOS) and tumour necrosis factor receptor were able to control early growth of T. gondii, although, they later succumbed to infection. Nitric oxide does, however, seem to be important in controlling persistent infection; treating chronic infection with iNOS metabolic inhibitors results in disease reactivation. Preliminary evidence implicates neutrophils in effector pathways against this parasite distinct from that described for macrophages. Once initiated, IL-12-dependent IFN-gamma production in synergy with other proinflammatory cytokines can positively feed back on itself to induce ''cytokine shock''. Regulatory cytokines, particularly IL-10, are essential to down-regulate inflammation and limit host pathology.  相似文献   

6.
IL-10 gene polymorphisms in infectious disease and SIDS   总被引:1,自引:0,他引:1  
Interleukin-10 (IL-10) is a regulatory cytokine, and its principal role in vivo is to limit inflammatory response. IL-10 has been shown to influence both the susceptibility and course of various diseases, and the different polymorphisms in the IL-10 gene promoter have been associated with disease prevalence and severity. The genes involved in the immune system are also assumed to be of importance with regard to sudden infant death syndrome (SIDS), and specific haplotypes in the IL-10 gene promoter have been reported associated both with SIDS and sudden unexpected death due to infection.  相似文献   

7.
Nitric oxide plays a central role in the physiology and pathology of diverse tissues including the immune system. It is clear that the levels of nitric oxide must be carefully regulated to maintain homeostasis. Appropriate levels of nitric oxide derived from iNOS assist in mounting an effective defense against invading microbes. Conversely, inability to generate nitric oxide results in serious, even fatal, susceptibility to infections. Further, dysregulation or overproduction of nitric oxide has been implicated in the pathogenesis of many disorders, including atherosclerosis, neurodegenerative diseases, inflammatory autoimmune diseases, and cancer. Therefore, depending upon the levels of nitric oxide generated, the potential exists for nitric oxide to behave like a "double-edged" biological sword. Taking these issues into consideration, it is thus pivotal to understand the regulation of nitric oxide. Nitric oxide is regulated by many endogenous factors including hormones such as estrogens. While the effects of estrogen on the generation of nitric oxide in non-immune tissues are relatively well documented, the effect of estrogen on iNOS/nitric oxide in immune cells is only now becoming apparent. Our laboratory has recently shown that estrogen treatment of mice markedly upregulates the levels of iNOS mRNA, iNOS protein, and nitric oxide in activated splenocytes. This upregulation of nitric oxide is in part mediated through interferon-gamma (IFN-gamma), a pro-inflammatory cytokine that is enhanced by estrogen. These findings are important considering that estrogens are not only involved in regulation of normal immune responses, but also are implicated in many autoimmune and inflammatory diseases. To date, there are no reviews on the effects of estrogen on immune tissue-derived nitric oxide and therefore this review will address this critical gap in the literature. Given the increasing importance of immune-tissue-derived iNOS in health and disease, studies on estrogen-induced regulation of iNOS may offer a better understanding of diseases and aid in devising new therapeutic interventions.  相似文献   

8.
Studies on the potential role of infectious agents in sudden infant death syndrome (SIDS) have been published over the years in a variety of journals. The aim of this special issue of FEMS Immunology and Medical Microbiology is to bring together a group of the most recent studies from Europe, Australia and Canada which cover epidemiology and laboratory studies examining hypotheses relating to infection and inflammation in SIDS. The articles in this issue examine evidence for the involvement of specific micro-organisms in SIDS and the problems relating to experimental studies on infection in relation to the underlying pathology of these deaths. There is an update on the evidence for the common bacterial hypothesis proposed in 1987 examining risk factors identified in epidemiological studies, particularly how the prone sleeping position could affect bacterial colonisation or induction of toxins. Evidence for induction of inflammatory responses in SIDS infants is reviewed and the relation of these responses to mechanisms proposed as causes of death assessed. Factors found to be associated with reduction of the risk of SIDS (breast feeding and immunisation) are examined in relation to some of the toxigenic bacteria implicated in these deaths. Finally, the high incidence of SIDS in some ethnic groups is examined as a potential model to investigate the contributions of genetic, environmental and cultural differences to susceptibility of infants not only to SIDS but to serious respiratory tract infections.  相似文献   

9.
10.
Exposure to cigarette smoke is a major risk factor for sudden infant death syndrome and also for respiratory infections in children. It has been suggested that toxigenic bacteria colonizing the respiratory tract might play a role in some cases of sudden infant death syndrome and nicotine has been demonstrated to enhance the lethality of bacterial toxins in a model system. Pyrogenic toxins of Staphylococcus aureus have been identified in tissues of infants who died of sudden infant death syndrome. It has been suggested that some of these deaths were due to induction of inflammatory mediators by infectious agents during a period when infants are less able to control these responses. The aim of this study was to assess the effects of a water-soluble cigarette smoke extract on the production of tumor necrosis factor alpha and nitric oxide from human monocytes in response to staphylococcal toxic shock syndrome toxin 1 or infection of the monocytes with respiratory syncytial virus. Cell culture supernatants were examined by a bioassay using mouse fibroblasts (L-929 cell line) for tumor necrosis factor alpha activity and by a spectrophotometric method for nitrite. Compared with monocytes incubated with medium only, monocytes incubated with any of the factors or their combinations tested in the study released higher levels of tumor necrosis factor alpha and lower levels of nitric oxide. Incubation with cigarette smoke extract increased tumor necrosis factor alpha from respiratory syncytial virus-infected cells while it decreased tumor necrosis factor alpha from cells incubated with toxic shock syndrome toxin. Incubation with cigarette smoke extract decreased the nitric oxide production from respiratory syncytial virus-infected cells while it increased the nitric oxide production from cells incubated with toxic shock syndrome toxin. Monocytes from a minority of individuals demonstrated extreme tumor necrosis factor alpha responses and/or very high or very low nitric oxide. The proportion of samples in which extreme responses with a very high tumor necrosis factor alpha and very low nitric oxide were detected was increased in the presence of the three agents to 20% compared with 0% observed with toxic shock syndrome toxin 1 or 4% observed with cigarette smoke extract or respiratory syncytial virus.  相似文献   

11.
12.
Neuroinflammation is a complex innate immune response vital to the healthy function of the central nervous system (CNS). Under normal conditions, an intricate network of inducers, detectors, and activators rapidly responds to neuron damage, infection or other immune infractions. This inflammation of immune cells is intimately associated with the pathology of neurodegenerative disorders, such as Parkinson''s disease (PD), Alzheimer''s disease and ALS. Under compromised disease states, chronic inflammation, intended to minimize neuron damage, may lead to an over-excitation of the immune cells, ultimately resulting in the exacerbation of disease progression. For example, loss of dopaminergic neurons in the midbrain, a hallmark of PD, is accelerated by the excessive activation of the inflammatory response. Though the cause of PD is largely unknown, exposure to environmental toxins has been implicated in the onset of sporadic cases. The herbicide paraquat, for example, has been shown to induce Parkinsonian-like pathology in several animal models, including Drosophila melanogaster. Here, we have used the conserved innate immune response in Drosophila to develop an assay capable of detecting varying levels of nitric oxide, a cell-signaling molecule critical to the activation of the inflammatory response cascade and targeted neuron death. Using paraquat-induced neuronal damage, we assess the impact of these immune insults on neuroinflammatory stimulation through the use of a novel, quantitative assay. Whole brains are fully extracted from flies either exposed to neurotoxins or of genotypes that elevate susceptibility to neurodegeneration then incubated in cell-culture media. Then, using the principles of the Griess reagent reaction, we are able to detect minor changes in the secretion of nitric oxide into cell-culture media, essentially creating a primary live-tissue model in a simple procedure. The utility of this model is amplified by the robust genetic and molecular complexity of Drosophila melanogaster, and this assay can be modified to be applicable to other Drosophila tissues or even other small, whole-organism inflammation models.  相似文献   

13.
Nitric oxide (NO) can stimulate dendritic cells to a more activated state. However, nitric oxide and peroxynitrites production by dendritic cells has been usually associated with pathological situations such as autoimmunity or inflammatory diseases. This study was designed to determine if dendritic cells obtained from healthy volunteers produce nitric oxide and peroxynitrites, which results in protein nitration. The expression of arginase II, but not arginase I, isoform was detected in monocytes and dendritic cells. There was higher inducible nitric oxide synthase (iNOS) protein expression and lower arginase activity both in immature and mature dendritic cells, compared to monocytes. This caused nitric oxide production, and maturation of dendritic cells which provoked a significative increase of nitrites and nitrates compared to immature dendritic cells. There was also peroxynitrites synthesis during monocyte differentiation as shown by the nitration of proteins. Immunoblot revealed a pattern of nitrated proteins in cell extracts obtained from monocytes and dendritic cells, however there were bands that appeared only in human dendritic cells, in particular an intense 90 kDa band. Nitric oxide production and nitrotyrosine formation could affect the antigen presentation and modify the immune response.  相似文献   

14.
Ji F  Liu Z  Cao J  Li N  Liu Z  Zuo J  Chen Y  Wang X  Sun J 《PloS one》2008,3(3):e1724
Schistosoma egg-induced liver granuloma is a dynamic inflammatory reaction that results from complex immune responses to the infection. However, the role of B cells in inflammatory granuloma development is not yet fully understood. We report here that B cell function is required for S. japonicum egg-induced granuloma pathology in early infection. Both OBF-1 knockout mice and microMT mice develop severely reduced hepatic granulomas at five weeks post-infection compared to their wild-type counterparts. In contrast, they display no significant difference in granuloma pathology at eight weeks post-infection. Moreover, we find that B cells and antibodies accumulate in the granulomas of wild-type mice early in the infection, indicating a contribution of the B cell response to the granulomatous inflammation. Furthermore, defects in B cell function markedly reduce liver egg burden. These results suggest an important role for B cells in early granuloma pathology. Surprisingly, we found that the S. japonicum infection destroys the structure of the lymphoid follicles. This disruptive effect is correlated with a severely impaired T cell-dependent antibody response upon challenge with ovalbumin. Thus, these findings reveal a novel aspect of the interaction between Schistosoma and the host immune system.  相似文献   

15.
Recent studies have implicated non-specific mediators associated with CD4+ T cells of the T helper 1 subset in resistance to experimental malarias. As part of continuing studies into the multifactorial role of nitric oxide and other contributors to the innate immune response in control of acute-phase malaria infection, the production of the acute-phase proteins, caeruloplasmin and serum amyloid P, following infection of naive mice with blood stages of the rodent malaria parasite Plasmodium chabaudi was investigated. Levels of both acute-phase proteins in the serum of infected mice were significantly elevated on days 7–12 post-infection compared both to other times of infection, and to background levels detected in uninfected control mice. These times corresponded to the ascending and peak primary parasitaemia, when production of interferon-γ, tumour necrosis factor- and nitric oxide is known to be raised. Although it is not apparent whether the production of caeruloplasmin and serum amyloid P has a causal effect in reducing parasitaemia or is simply a by-product of innate immunity, the detection of increased levels of circulating acute-phase proteins may act as a useful surrogate marker of high level parasitaemia, and therefore, of blood-borne malaria pathology.  相似文献   

16.
The etiology of sudden infant death syndrome (SIDS) is unknown but thought to be multifactorial. Several animal models have been developed that induce death without pre-existing symptoms and with pathology similar to that seen in SIDS infants; however, the relevance of these animal models to the events leading to SIDS remains elusive, in part because animal models are as varied as the potential causes of SIDS. In addition, it is difficult to find an animal model that can accurately reflect the genetic, developmental and environmental risk factors for SIDS. Comparisons between species can prove difficult but animal models provide a useful tool for evaluating potential mechanisms related to sudden unexplained death. This review focuses on models developed to examine the association of infection and inflammation with mechanisms proposed to explain sudden unexplained death.  相似文献   

17.
Human rhinovirus infection is a common trigger for asthma exacerbations. Asthma exacerbations and rhinovirus infections are both associated with markedly decreased pH and ammonium levels in exhaled breath condensates. This observation is thought to be related, in part, to decreased activity of airway epithelial glutaminase. We studied whether direct rhinovirus infection and/or the host immune response to the infection decreased airway epithelial cell surface pH in vitro. Interferon-gamma and tumor necrosis factor-alpha, but not direct rhinovirus infection, decreased pH, an effect partly associated with decreased ammonium concentrations. This effect was 1) prevented by nitric oxide synthase inhibition; 2) independent of cyclic GMP; 3) associated with an increase in endogenous airway epithelial cell S-nitrosothiol concentration; 4) mimicked by the exogenous S-nitrosothiol, S-nitroso-N-acetyl cysteine; and 5) independent of glutaminase expression and activity. We then confirmed that decreased epithelial pH inhibits human rhinovirus replication in airway epithelial cells. These data suggest that a nitric oxide synthase-dependent host response to viral infection mediated by S-nitrosothiols, rather than direct infection itself, plays a role in decreased airway surface pH during human rhinovirus infection. This host immune response may serve to protect the lower airways from direct infection in the normal host. In patients with asthma, however, this fall in pH could be associated with the increased mucus production, augmented inflammatory cell degranulation, bronchoconstriction, and cough characteristic of an asthma exacerbation.  相似文献   

18.
The infection with Trypanosoma cruzi leads to a vigorous and apparently uncontrolled inflammatory response in the heart. Although the parasites trigger specific immune response, the infection is not completely cleared out, a phenomenon that in other parasitic infections has been attributed to CD4+CD25+ T cells (Tregs). Then, we examined the role of natural Tregs and its signaling through CD25 and GITR in the resistance against infection with T. cruzi. Mice were treated with mAb against CD25 and GITR and the parasitemia, mortality and heart pathology analyzed. First, we demonstrated that CD4+CD25+GITR+Foxp3+ T cells migrate to the heart of infected mice. The treatment with anti-CD25 or anti-GITR resulted in increased mortality of these infected animals. Moreover, the treatment with anti-GITR enhanced the myocarditis, with increased migration of CD4+, CD8+, and CCR5+ leukocytes, TNF-alpha production, and tissue parasitism, although it did not change the systemic nitric oxide synthesis. These data showed a limited role for CD25 signaling in controlling the inflammatory response during this protozoan infection. Also, the data suggested that signaling through GITR is determinant to control of the heart inflammation, parasite replication, and host resistance against the infection.  相似文献   

19.
The outer membrane protein A of Acinetobacter baumannii (AbOmpA) is an important pathogen-associated molecular pattern that induces host cell death. We determined the gene expression profiles of human laryngeal epithelial HEp-2 cells in response to the sublethal concentration of recombinant AbOmpA (rAbOmpA) and investigated the molecular mechanisms by which rAbOmpA induces an innate immune response. The microarray analysis showed that rAbOmpA sequentially regulated a relatively small set of genes, including those associated with signal transductions and molecules involved in immune response. Among the differentially expressed genes involved in innate immune responses, the surface expression of Toll-like receptor 2 and the production of inducible nitric oxide synthase (iNOS) were prominently observed. However, rAbOmpA did not induce the production of proinflammatory cytokines and chemokines. rAbOmpA activated c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase mitogen-activated protein kinases (MAPKs). Inhibition of JNK MAPK suppressed iNOS production in the rAbOmpA-treated HEp-2 cells. These results suggest that interaction of laryngeal epithelial cells with AbOmpA has a significant impact on the induction of innate immunity during the early stages of A. baumannii infection.  相似文献   

20.
Apoptotic death results from disrupting the balance between anti-apoptotic and pro-apoptotic cellular signals. The inter- and intracellular messenger nitric oxide is known to mediate either death or survival of neurones. In the present work, cerebellar granule cells were used as a model to assess the survival role of nitric oxide and to find novel signal transduction pathways related to this role. It is reported that sustained inhibition of nitric oxide production induces apoptosis in differentiated cerebellar granule neurones and that compounds that slowly release nitric oxide significantly revert this effect. Neuronal death was also reverted by a caspase-3-like inhibitor and by a cyclic GMP analogue, thus suggesting that nitric oxide-induced activation of guanylate cyclase is essential for the survival of these neurones. We also report that the Akt/GSK-3 kinase system is a transduction pathway related to the survival action of nitric oxide, as apoptosis caused by nitric oxide deprivation is accompanied by down-regulation of this, but not of other, kinase systems. Conversely, treatments able to rescue neurones from apoptosis also counteracted this down-regulation. Furthermore, in transfection experiments, overexpression of the Akt gene significantly decreased nitric oxide deprivation-related apoptosis. These results are the first evidence for a mechanism where endogenous nitric oxide promotes neuronal survival via Akt/GSK-3 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号