首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Cell surface hydrophobicity (CSH) is one of the key physicochemical features of biodemulsifier-producing bacteria that influence their demulsification capability maintenance in petroleum contaminated environments.

Methods

In present study, biodemulsifier-producing bacteria were isolated from petroleum contaminated environments using different isolation media and the correlation between their CSH and demulsifying ability was investigated. The demulsifying ability of isolates was measured through demulsification tests on water in kerosene emulsions. The microbial adhesion to the hydrocarbon (MATH) assay was used to denote their CSH.

Results

The evaluation of CSH showed that majority of biodemulsifier producing bacteria have high CSH which indicating a positive correlation between CSH and demulsifying capability.

Conclusions

According to these results it can be concluded that CSH can be used as an indicator for assessment of biodemulsifier-producing bacteria and screening of new isolates for their biodemulsifier production.
  相似文献   

2.
3.
4.
Pairwise correlations among surface charge, relative hydrophobicity and association with phagocytes were studied in two strains of Neisseria meningitidis both under normal conditions and after different surface modifying treatments. The variations in the values of the three variables depended on both strains and treatment, and correlations were highly significant, although the biological significance of these correlations is questionable.  相似文献   

5.
Summary Individual cells of Flexibacter aurantiacus CW7 and Hyphomicrobium vulgare ZV580 orientate themselves perpendicularly to the interface in air-water, oil-water and solid-water systems. Electrostatic phenomena probably are not involved in this orientation, since no evidence was found of any localized distribution of positively-charged ionogenic groups on the bacterial surface. It is suggested that the orientation results from a relatively hydrophobic portion of each cell being rejected from the aqueous phase of the system. This property also may be related to the formation of rosettes by these bacteria. Electron micrographs of thin sections of cells sorbed to araldite blocks show that the cell proper is not in contact with the solid surface, but is anchored to it by extracellular adhesive material. The extracellular materials may be of a polysaccharide nature.  相似文献   

6.
7.
The cell surface hydrophobicity of three strains of Escherichia coli cultured in liquid medium and on solid medium was measured using various methods including adsorption to pxylene, partition of cells in a polyethylene glycol/dextran (PEG/DEX) two phase system and contact angle measurements. The percentage adsorbed to pxylene ranged from 1.6% to 67% and the percentage of cells in polyethylene glycol phase ranged from 19% to 64%. The contact angle data of less than 40 degrees C revealed a hydrophylic character of the E. coli strains studied here. No relations were found between paraxylene/water partitioning, PEG/DEX partioning and water contact angles. The linear correlation coefficients between the results of the three hydrophobicity assays and the elemental concentration ratios obtained by X-ray photoelectron spectroscopy (XPS) were calculated. A linear correlation was found between the contact angles and the O/C ratios (r=0.91) and the N/C ratios (0.67). The adsorption to pxylene correlates better with N/C ratios (0.88) but does not correlate with O/C ratios (0.46). However, this test correlates with N/P ratios (0.79). No relation was obtained between partition in PEG/DEX system and any elemental concentration ratios. The surface composition determined by XPS was converted into a molecular composition in terms of proteins, polysaccharides, and hydrocarbon-like compounds. The proteins/polysaccharides and the hydrocarbons/polysaccharides seems to determine the contact angle of E. coli but not the adsorption to paraxylene or partition in the PEG/DEX system.  相似文献   

8.
Extended, relaxed, condensed, and interacting forms of the polysaccharide hyaluronan have been observed by atomic force microscopy (AFM). The types of images obtained depend on the properties of the surfaces used. We have investigated several different surface conditions for HA imaging, including unmodified mica, mica chemically modified with two different kinds of amino-terminated silanes (3-aminopropyltriethoxysilane and N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride), and highly oriented pyrolytic graphite. We found the degree of HA molecular extension or condensation to be variable, and the number of bound chains per unit area was low, for all of the mica-based surfaces. HA was more easily imaged on graphite, a hydrophobic surface. Chains were frequently observed in high degrees of extension, maintained by favorable interaction with the surface after molecular combing. This observation suggests that the HA macromolecule interacts with graphite through hydrophobic patches along its surface. AFM studies of HA behavior on differing surfaces under well-controlled environmental conditions provides useful insight into the variety of conformations and interactions likely to be found under differing physiological conditions.  相似文献   

9.
The barrier functions of the stratum corneum and the epidermal layers present a tremendous challenge in achieving effective transdermal delivery of drug molecules. Although a few reports have shown that poly(amidoamine) (PAMAM) dendrimers are effective skin-penetration enhancers, little is known regarding the fundamental mechanisms behind the dendrimer-skin interactions. In this Article, we have performed a systematic study to better elucidate how dendrimers interact with skin layers depending on their size and surface groups. Franz diffusion cells and confocal microscopy were employed to observe dendrimer interactions with full-thickness porcine skin samples. We have found that smaller PAMAM dendrimers (generation 2 (G2)) penetrate the skin layers more efficiently than the larger ones (G4). We have also found that G2 PAMAM dendrimers that are surface-modified by either acetylation or carboxylation exhibit increased skin permeation and likely diffuse through an extracellular pathway. In contrast, amine-terminated dendrimers show enhanced cell internalization and skin retention but reduced skin permeation. In addition, conjugation of oleic acid to G2 dendrimers increases their 1-octanol/PBS partition coefficient, resulting in increased skin absorption and retention. Here we report that size, surface charge, and hydrophobicity directly dictate the permeation route and efficiency of dendrimer translocation across the skin layers, providing a design guideline for engineering PAMAM dendrimers as a potential transdermal delivery vector.  相似文献   

10.
Bacteria adhere to almost any surface, despite continuing arguments about the importance of physico-chemical properties of substratum surfaces, such as hydrophobicity and charge in biofilm formation. Nevertheless, in vivo biofilm formation on teeth and also on voice prostheses in laryngectomized patients is less on hydrophobic than on hydrophilic surfaces. With the aid of micro-patterned surfaces consisting of 10-microm wide hydrophobic lines separated by 20-microm wide hydrophilic spacings, we demonstrate here, for the first time in one and the same experiment, that bacteria do not have a strong preference for adhesion to hydrophobic or hydrophilic surfaces. Upon challenging the adhering bacteria, after deposition in a parallel plate flow chamber, with a high detachment force, however, bacteria were easily wiped-off hydrophobic lines, most notably when these lines were oriented parallel to the direction of flow. Adhering bacteria detached slightly less from the hydrophilic spacings in between, but preferentially accumulated adhering on the hydrophilic regions close to the interface between the hydrophilic spacings and hydrophobic lines. It is concluded that substratum hydrophobicity is a major determinant of bacterial retention while it hardly influences bacterial adhesion.  相似文献   

11.
12.
Summary Sonic oscillation was used for the purpose of obtaining clean, chemically intact cell walls. The rate of disruption was determined for cells ofHanseniaspora uvarum andSaccharomyces cerevisiae. The carbohydrate fractions of cell walls ofHanseniaspora uvarum, H. valbyensis, Kloeckera apiculata, Saccharomycodes ludwigii andSaccharmyces cerevisiae were shown to be similar. Chromatography of cell wall hydrolysates of all these species demonstrated that glucose and mannose were the only sugars present (in about equal amounts) besides traces of glucosamine. The cell walls ofH. uvarum contained 78.1 per cent carbohydrates, 7 per cent protein and approximately 0.05 per cent of chitin. Fractionation of the polysaccharides lead to a recovery of 83.3 per cent of the carbohydrates present (30.4 per cent glucan and 34.9 per cent mannan). Saccharomyces cerevisiae cell walls were found to have a carbohydrate content of 82.8 per cent, 6.5 per cent protein and a trace of chitin (0.04 per cent). Nadsonia elongata contained a relatively large amount of chitin (ca. 5 per cent) and lacked mannan in its cell walls. It was concluded thatHanseniaspora andSaccharomycodes are closely related to theSaccharomyceteae but they have little in common with species ofNadsonia.  相似文献   

13.
The influence of membrane surface charge on biofouling community composition during activated sludge filtration in a membrane bioreactor was investigated in this study using polyacrylonitrile-based membranes. Membranes with different surface properties were synthesized by phase inversion followed by a layer-by-layer modification. Various characterization results showed that the membranes differed only in their surface chemical composition and charge, ie two of them were negative, one neutral and one positive. Membrane fouling experiments were performed for 40 days and the biofouling communities were analyzed. PCR-DGGE fingerprinting indicated selective enrichment of bacterial populations from the sludge suspension within the biofilms at any time point. The biofilm community composition seemed to change with time. However, no difference was observed between the biofilm community of differently charged membranes at specific time points. It could be concluded that membrane charges do not play a decisive role in the long-term selection of the key bacterial foulants.  相似文献   

14.
The effects of seven growth media on cell surface hydrophobicity of a collection of Staphylococcus aureus and coagulase-negative staphylococci isolated from bovine mastitis were compared in the salt-aggregation test. Thirty-three per cent of Staph. aureus strains showed extremely high cell surface hydrophobicity (auto-aggregated) and 28% were moderately hydrophobic while 26% were hydrophilic after growth on horse blood agar at 37 degrees C for 18 h. There were great variations in the proportion and degree of the hydrophobicity depending on the medium used. Cultivations on/in capsule-inducing media caused a shift from a high to a low degree of hydrophobicity, although a microscopically detectable capsule or slime layer was seen in only one strain. This strain and encapsulated reference strains had a hydrophilic cell surface and migrated faster in free zone electrophoresis than cells of unencapsulated strains. Cells of strains grown on staphylococcus medium 110 agar migrated faster than those grown on horse blood agar regardless of their capsule production. Coagulase-negative staphylococci showed uniformly hydrophilic cell surface after cultivation on horse blood agar, but not when grown in tryptic soy broth or proteose peptone broth. It was concluded that most of the Staph. aureus strains from bovine mastitis under a variety of growth conditions in stationary phase culture constantly expressed hydrophobic cell surface.  相似文献   

15.
The effects of seven growth media on cell surface hydrophobicity of a collection of Staphylococcus aureus and coagulase-negative staphylococci isolated from bovine mastitis were compared in the salt-aggregation test. Thirty-three per cent of Staph. aureus strains showed extremely high cell surface hydrophobicity (auto-aggregated) and 28% were moderately hydrophobic while 26% were hydrophilic after growth on horse blood agar at 37°C for 18 h. There were great variations in the proportion and degree of the hydrophobicity depending on the medium used. Cultivations on/in capsule-inducing media caused a shift from a high to a low degree of hydrophobicity, although a microscopically detectable capsule or slime layer was seen in only one strain. This strain and encapsulated reference strains had a hydrophilic cell surface and migrated faster in free zone electrophoresis than cells of unencapsulated strains. Cells of strains grown on staphylococcus medium 110 agar migrated faster than those grown on horse blood agar regardless of their capsule production. Coagulase-negative staphylococci showed uniformly hydrophilic cell surface after cultivation on horse blood agar, but not when grown in tryptic soy broth or proteose peptone broth. It was concluded that most of the Staph. aureus strains from bovine mastitis under a variety of growth conditions in stationary phase culture constantly expressed hydrophobic cell surface.  相似文献   

16.
The surfaces of mutants of Escherichia coli and Pseudomonas aeruginosa were markedly more hydrophobic than the corresponding wild types, as were the latter when the organisms were pre-treated with chlorhexidine diacetate (CHA) or phenoxyethanol (POE). A combination of CHA and POE demonstrated that only at higher concentrations was there a marked effect on hydrophobicity compared with that of either drug used alone. The three methods used to determine hydrophobicity correlated well as long as constant conditions were employed.  相似文献   

17.
The effects of rhamnolipids produced by Pseudomonas aeruginosa ATCC9027 on the cell surface hydrophobicity (CSH) and the biodegradation of phenanthrene by two thermophilic bacteria, Bacillus subtilis BUM and P. aeruginosa P-CG3, and mixed inoculation of these two strains were investigated. Rhamnolipids significantly reduced the CSH of the hydrophobic BUM and resulted in a noticeable lag period in the biodegradation. However, they significantly increased the CSH and enhanced the biodegradation for the hydrophilic P-CG3. In the absence of rhamnolipids, a mixed inoculation of BUM and P-CG3 removed 82.2% of phenanthrene within 30 days and the major contributor of the biodegradation was BUM (rapid degrader) while the growth of P-CG3 (slow degrader) was suppressed. Addition of rhamnolipids promoted the surfactant-mediated-uptake of phenanthrene by P-CG3 but inhibited the uptake through direct contact by BUM. This resulted in the domination of P-CG3 during the initial stage of biodegradation and enhanced the biodegradation to 92.7%.  相似文献   

18.
【目的】探究清香型白酒中不同乳酸菌和酵母菌的相互作用,了解不同菌株的发酵性能,为更深入地认识白酒发酵机理、实现发酵过程优化提供理论基础。【方法】利用程序控温和固态发酵模拟清香型白酒酿造环境,测定纯培养和共培养中菌株的理化指标、活菌数以及主要代谢产物的变化。【结果】Saccharomyces cerevisiae YJ1糖消耗快产乙醇和酯类物质多,Lactobacillus plantarum JMRS4糖消耗快产酸较多。共培养中乳酸菌对Saccharomyces cerevisiae YJ1的生长和产乙醇抑制较大,对Candida aaseri MJ7产乙醇几乎无影响。乳酸菌对Pichia kudriavzevii MJ14的生物量和乙醇代谢抑制作用较小,还对其产己酸乙酯、乙酸乙酯和异戊醇等代谢产物有促进作用;而反过来Pichia kudriavzevii MJ14对3株乳酸菌产乳酸均有抑制作用,对产乙酸则有促进作用。【结论】建立了一种固态培养方法,结合清香型白酒发酵温度变化规律,有效模拟了实际发酵环境。Pichia kudriavzevii MJ14在与乳酸菌共培养中受到的抑制较小并能有效抑制乳酸菌产乳酸,Saccharomyces cerevisiae YJ1能代谢产生多种风味物质,对清香型白酒酿造有重要意义。  相似文献   

19.
We examine the correlation between the sequence and tertiary structure for 212 domains from globular proteins and polypeptides. The sequence of each domain is described as a set of 25 features: the mole percent of 20 amino acids, the number of residues in the domain, and the abundance of four simple patterns in the hydrophobicity profile of the sequence. Each domain, then, is described as a location in 25-dimensional sequence-feature space. We use pattern-recognition methods to find the two axes through the 25-dimensional sequence-feature space that best discriminate, respectively, predominantly α-helix domains from predominantly β-strand domains (the “secondary structure vector,” SV) and parallel α/β domains from other domains (the “parallel vector,” PV). When we divide the domains into two categories based on whether the cysteine content is above (CYS -RICH ) or below (NORMAL ) 4.5%, we find the secondary structure vector for the subset of CYS -RICH domains points in a significantly different direction than the equivalent vector for the NORMAL domains. Thus, CYS -RICH and NORMAL , domains are best treated separately. The secondary structure vector and the parallel vector for NORMAL domains describes statistically meaningful information, but the secondary structure vector for CYS -RICH domains may not be as reliable. We show how the secondary structure content of a NORMAL domain can be predicted by projecting the domain in the feature space onto the secondary structure vector. We subdivide the domains into five structural classes based on whether there is a parallel or mixed β-sheet in the domain and whether there are more helix or strand residues: NORMAL ALPHA , NORMAL BETA , NORMAL PARALLEL , CYS -RICH ALPHA , and CYS -RICH BETA . When we project the NORMAL domains onto the plane containing the origin of the feature space and SV and PV, we see that ALPHA , BETA , and PARALLEL , domains cluster in the plane, with the BETA cluster partially overlapping the PARALLEL cluster. The separations between the clusters are such that, by looking at the location of any given NORMAL domain in the plane, we can correctly predict its structural class with 83% accuracy. CYS -RICH ALPHA and BETA domains cluster when projected onto the CYS -RICH SV vector, and the classes can be preducted with 83% accuracy, but this accuracy for CYS -RICH domains may not be statistically meaningful.  相似文献   

20.
Summary In a systematic study of about 300 supposedly anascosporogenous yeast cultures it was found that nine strains actually did form ascospores. A further investigation of these strains, together with a comparative study of evidently closely related asporogenous strains, led to the following results. Mycocandida pinoyisimilis (A. Cast.) Red. et Cif. var. Citelliana Red. et Gif. proved to be identical with Saccharomyces fragilis Jörgensen. Monilia pseudotropicalis A. Cast. = Candida pseudotropicalis (A. Cast.) Basgal has to be considered as the imperfect stage of Saccharomyces fragilis Jörgensen. Monilia macedoniensis A. Cast. = Blastodendrion macedoniense (A. Cast.) Lang, et Guerra, as well as the variety macedoniensoides [= Candida macedoniensis (A. Cast.) Berkh. var. macedoniensoides (A. Cast.) Westerdijk], should in future be designated as: Saccharomyces macedoniensis Diddens et Lodder.The yeast incorrectly named by Beijerinck: Saccharomyces fragrans proved to be the imperfect stage of Saccharomyces macedoniensis Diddens et Lodder. Hence the correct designation of the species in question appears to be: Candida macedoniensis (A. Cast.) Berkh. Monilia javanica Went et Prinsen Geerligs proved to be identical with Hansenula anomala (Hansen) Sydow.A Monilia species isolated by Molle from intertrigo blastomicetico proved to be identical with Hansenula javanica (Groenewege) Dekker. Candida pelliculosa Red. is the imperfect stage of the last mentioned species.A strain received from Ota, and labeled: Myceloblastanon gifuense Taniguchi — which, however, did not answer the diagnosis of this species — proved to be identical with Debaryomyces Matruchoti Grigoraki et Péju.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号