首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dose-response relationships for bronchoconstriction in response to aerosal histamine were assessed before and after vagotomy in 11 dogs anesthetized with barbiturates and in 9 dogs anesthetized with alpha-chloralose-urethan. The dose-response relationships following vagotomy were assessed during spontaneous ventilation and during muscular paralysis and mechanical ventilation with tidal volume (VT) similar to each animal's VT prior to vagotomy. After vagotomy the spontaneous VT of both groups increased but the VT of the alpha-chloralose-urethan group was significantly less than that of the barbiturate group. The histamine responsiveness of the animals anesthetized with barbiturates was significantly greater during mechanical ventilation when VT was reduced to prevagotomy levels compared with during spontaneous ventilation. In contrast, the histamine responsiveness of the alpha-chloralose-urethan group was not significantly changed by reducing VT to prevagotomy levels. In six other dogs anesthetized with pentobarbital sodium and studied after vagotomy, responsiveness to histamine aerosol during controlled ventilation with breaths of prevagotomy VT was greater than responsiveness during mechanical ventilation with large volume breaths given immediately afterward. Thus the magnitude of VT of dogs after vagotomy may influence airway responsiveness, and the influence of anesthetic agents on airway responsiveness after vagotomy may in part be due to their effects on VT. Furthermore, bronchodilation accompanying large volume ventilation persists after vagotomy, suggesting that it is not exclusively mediated by changes in parasympathetic activity.  相似文献   

2.
In critically ill patients, mechanisms underlying diaphragm muscle remodeling and resultant dysfunction contributing to weaning failure remain unclear. Ventilator-induced modifications as well as sepsis and administration of pharmacological agents such as corticosteroids and neuromuscular blocking agents may be involved. Thus, the objective of the present study was to examine how sepsis, systemic corticosteroid treatment (CS) and neuromuscular blocking agent administration (NMBA) aggravate ventilator-related diaphragm cell and molecular dysfunction in the intensive care unit. Piglets were exposed to different combinations of mechanical ventilation and sedation, endotoxin-induced sepsis, CS and NMBA for five days and compared with sham-operated control animals. On day 5, diaphragm muscle fibre structure (myosin heavy chain isoform proportion, cross-sectional area and contractile protein content) did not differ from controls in any of the mechanically ventilated animals. However, a decrease in single fibre maximal force normalized to cross-sectional area (specific force) was observed in all experimental piglets. Therefore, exposure to mechanical ventilation and sedation for five days has a key negative impact on diaphragm contractile function despite a preservation of muscle structure. Post-translational modifications of contractile proteins are forwarded as one probable underlying mechanism. Unexpectedly, sepsis, CS or NMBA have no significant additive effects, suggesting that mechanical ventilation and sedation are the triggering factors leading to diaphragm weakness in the intensive care unit.  相似文献   

3.
We compared respiratory parameters during natural and self-controlled mechanical breathing to investigate mechanisms of respiratory control in alert humans. The self-control of mechanical breathing is realised manually: duration and velocity of air flow are controlled by left and right hands, resp. In this case, the respiratory afferent information is used to control activity of hand muscles but not of breathing muscles. The findings show that lung ventilation during self-controlled mechanical breathing increases by 7.5 l/min. at resting, by 6.3 l/min. during an exercise, as compared with the natural breathing. The increase in the lung ventilation occurs on account of an increase in the tidal volume but the frequency of the self-controlled mechanical breathing tends to be lesser at resting and was statistically significantly lower in exercise that at natural breathing. The exercise increases the lung ventilation by 13.0 l/min. at natural breathing and by 11.8 l/min. during self-controlled mechanical breathing. The findings suggest that the increased lung ventilation during self-controlled mechanical breathing is connected with creation of a new movement skill, and the modified pattern of self-controlled mechanical breathing is caused by a process of cortical transformation of respiratory afferents signals to efferent signals towards the hand muscles.  相似文献   

4.
目的:分析慢性支气管炎住院患者进行辅助机械通气的危险因素。方法:采取回顾性统计分析方法,收集2009-2014 年5 年 中共1746 例慢性支气管炎住院患者的临床资料,应用SPSS 17 软件分组对年龄、性别、肺气肿、慢性肺源性心脏病、肺性脑病、肺 大泡、肺炎、支气管扩张、哮喘、冠心病、高血压病、糖尿病、低蛋白血症、贫血、肝功能异常、肾功能异常等因素进行卡方检验及危 险因素分析。结果:1746 慢性支气管炎患者中,进行辅助机械通气治疗者626 人(无创辅助通气613人、有创辅助通气187 人),未 进行辅助机械通气治疗者1120人。辅助机械通气治疗者中有439 人单纯行无创辅助通气、13 人单纯行有创辅助通气、174 人为 两种通气方式序贯。统计分析显示:高龄(> 65岁)、慢性肺气肿、慢性肺源性心脏病、肺性脑病、糖尿病、低蛋白血症、肝功能异常、 肾功能异常是慢性支气管炎患者行无创辅助通气的危险因素(OR>1,P<0.05) ;高龄(>65 岁)、男性、慢性肺源性心脏病、肺性脑 病、肺炎、糖尿病、低蛋白血症、贫血、肝功能异常、肾功能异常是慢性支气管炎患者行有创辅助通气的危险因素(OR>1,P<0.05)。 结论:高龄、性别以及一些肺内外合并疾病是慢性支气管炎住院患者行辅助通气的危险因素,提示在临床工作中对这一类患者加 强教育、积极控制合并症具有重要的意义。  相似文献   

5.
The diaphragm, the main muscle of inspiration, is constantly subjected to mechanical loading. One of the very few occasions during which diaphragm loading is arrested is during controlled mechanical ventilation in the intensive care unit. Recent animal studies indicate that the diaphragm is extremely sensitive to unloading, causing rapid muscle fiber atrophy: unloading-induced diaphragm atrophy and the concomitant diaphragm weakness has been suggested to contribute to the difficulties in weaning patients from ventilatory support. Little is known about the molecular triggers that initiate the rapid unloading atrophy of the diaphragm, although proteolytic pathways and oxidative signaling have been shown to be involved. Mechanical stress is known to play an important role in the maintenance of muscle mass. Within the muscle's sarcomere titin is considered to play an important role in the stress-response machinery. Titin is the largest protein known to date and acts as a mechanosensor that regulates muscle protein expression in a sarcomere strain-dependent fashion. Thus, titin is an attractive candidate for sensing the sudden mechanical arrest of the diaphragm when patients are mechanically ventilated, leading to changes in muscle protein expression. Here, we provide a novel perspective on how titin, and its biomechanical sensing and signaling, might be involved in the development of mechanical unloading-induced diaphragm weakness.  相似文献   

6.
Mechanical ventilation is a necessary intervention for patients with acute lung injury. However, mechanical ventilation can propagate acute lung injury and increase systemic inflammation. The exposure to >21% oxygen is often associated with mechanical ventilation yet has not been examined within the context of lung stretch. We hypothesized that mice exposed to >90% oxygen will be more susceptible to the deleterious effects of high stretch mechanical ventilation. C57B1/6 mice were randomized into 48-h exposure of 21 or >90% oxygen; mice were then killed, and isolated lungs were randomized into a nonstretch or an ex vivo, high-stretch mechanical ventilation group. Lungs were assessed for compliance and lavaged for surfactant analysis, and cytokine measurements or lungs were homogenized for surfactant-associated protein analysis. Mice exposed to >90% oxygen + stretch had significantly lower compliance, altered pulmonary surfactant, and increased inflammatory cytokines compared with all other groups. Our conclusion is that 48 h of >90% oxygen and high-stretch mechanical ventilation deleteriously affect lung function to a greater degree than stretch alone.  相似文献   

7.
Despite advances in critical care, the mortality rate in patients with acute lung injury remains high. Furthermore, most patients who die do so from multisystem organ failure. It has been postulated that ventilator-induced lung injury plays a key role in determining the negative clinical outcome of patients exposed to mechanical ventilation. How mechanical ventilation exerts its detrimental effect is as of yet unknown, but it appears that overdistension of lung units or shear forces generated during repetitive opening and closing of atelectatic lung units exacerbates, or even initiates, significant lung injury and inflammation. The term "biotrauma" has recently been elaborated to describe the process by which stress produced by mechanical ventilation leads to the upregulation of an inflammatory response. For mechanical ventilation to exert its deleterious effect, cells are required to sense mechanical forces and activate intracellular signaling pathways able to communicate the information to its interior. This information must then be integrated in the nucleus, and an appropriate response must be generated to implement and/or modulate its response and that of neighboring cells. In this review, we present a perspective on ventilator-induced lung injury with a focus on mechanisms and clinical implications. We highlight some of the most recent findings, which we believe contribute to the generation and propagation of ventilator-induced lung injury, placing a special emphasis on their implication for future research and clinical therapies.  相似文献   

8.
Alterations in neonatal airway mechanical properties resulting from ventilatory therapies such as mechanical ventilation have been implicated in airway collapse and chronic disease. Advances in ultrasound (US) technology allow for real-time imaging and accurate measurement of tracheal dimensions in vivo; thus, changes in mechanical properties can be tracked longitudinally. In this report we introduce an adaptation of engineering concepts using US imaging data to study airway mechanics in vivo. In this protocol, tracheal segments are isolated in a spontaneously breathing newborn lamb model and the segments are exposed to time-cycled, pressure-limited mechanical ventilation. Serially, tracheal segments are filled with saline and pressure-volume relationships are recorded with stepwise volume infusions. US dimensional measurements of the segments are made while static (no distending pressure) and at pressure limits during dynamic ventilator cycling. US measurements are used to normalize pressure-volume data for resting volume, calculation of bulk modulus, stress-strain relationships and the adapted Young's modulus associated with tangential wall stress. Temporal changes in bulk and Young's moduli demonstrate the time dependence of alterations in conducting airway mechanical properties in vivo during the course of mechanical ventilation. This methodology will provide a means to evaluate respiratory therapies with respect to airway mechanics.  相似文献   

9.
急性肺损伤(ALI)和急性呼吸窘迫综合征(ARDS)是常见的临床综合征,绝大多数ALI/ARDS患者需机械通气治疗,机械通气在提供可接受的肺部气体交换的同时治疗基础疾病,但机械通气本身也会引起肺部损伤,即机械通气性肺损伤(VILI)。而通过调整机械通气参数的设置,使用保护性通气策略可显著减低ALI/ARDS患者机械通气性肺损伤程度,从而减少肺部感染,缩短机械通气时间和住院时间,降低28天死亡率,明显改善ALI/ARDS患者的生存质量,起到最大程度地肺保护作用。本文从气道平台压,通气容积,呼气末正压等几个不同通气参数方面分别进行综述,讨论ALI/ARDS患者机械通气时使用保护性通气策略对于肺部损伤的影响。  相似文献   

10.
We hypothesized that the influence of acute kidney injury (AKI) on the sensitivity of the lung to an injurious process varies with the severity of the injurious process. Thus, we thought that AKI would exacerbate lung injury from low degrees of lung trauma but attenuate lung injury from higher degrees of lung trauma. C57BL/6 mice underwent AKI (30-min kidney ischemia) or sham surgery, followed at 24 h by 4 h of spontaneous breathing (SB), mechanical ventilation with low tidal volume (7 ml/kg, LTV), or mechanical ventilation with high tidal volume (30 ml/kg, HTV). Compared with LTV, median bronchoalveolar lavage (BAL) protein leak was significantly lower with SB and greater with HTV in both sham and AKI mice. Compared with LTV, median Evans blue dye-labeled albumin extravasation in lungs (L-EBD) was also significantly lower with SB and greater with HTV. L-EBD showed a significant interaction between ventilatory mode and kidney health, such that AKI attenuated the L-EBD rise seen in HTV vs. LTV sham mice. An interaction between ventilatory mode and kidney health could also be seen in BAL neutrophil number (PMN). Thus, AKI attenuated the BAL PMN rise seen in HTV vs. LTV sham mice. These data support the presence of a complex interaction between mechanical ventilation and AKI in which the sensitivity of the lung to trauma varies with the magnitude of the trauma and may involve a modification of pulmonary neutrophil activity by AKI.  相似文献   

11.
Without proper knowledge of mechanical ventilation effects, physicians can aggravate an existing lung injury. A better understanding of the interaction between airflow and airway tissue during mechanical ventilation will be helpful to physicians so that they can provide appropriate ventilator parameters for intubated patients. In this study, a computational model incorporating the interactions between airflow and airway walls was developed to investigate the effects of airway tissue flexibility on airway pressure and stress. Two flow rates, 30 and 60 l/min, from mechanical ventilation were considered. The transient waveform was active inhalation with a constant flow rate and passive exhalation. Results showed that airway tissue flexibility decreased airway pressure at bifurcation sites by approximately 25.06% and 16.91% for 30 and 60 l/min, respectively, and increased wall shear stress (WSS) by approximately 74.00% and 174.91% for 30 and 60 l/min, respectively. The results from the present study suggested that it is very important to consider the interaction between airflow and airway walls when computational models are developed. Results of this study help to better quantify how the airflow rate used in mechanical ventilation, in conjunction with airway tissue flexibility, affects airway pressure and stresses.  相似文献   

12.
Previous studies showed that repeated lung lavage leads to a severe lung injury with very poor gas exchange, a substantial protein leak into the alveoli with hyaline membrane formation, pulmonary hypertension, and migration of granulocytes (PMN) into the alveolar spaces. Depletion of PMN leads to a better gas exchange and a markedly decreased protein leak with only scanty hyaline membranes. In this study we show that there is sustained pulmonary hypertension after the lung lavage, but in PMN-depleted rabbits there is no postlavage increase in pulmonary arterial pressure. Changing the shunt fraction by manipulating mean airway pressure still leads to a hypoxic vasoconstriction with increase of pulmonary arterial pressure. Thus, after lung lavage, pulmonary reactivity to hypoxia is still preserved. Comparisons between high-frequency ventilation and conventional mechanical ventilation at the same mean airway pressures showed that equal mean airway pressure in these two very different modes of ventilation do not translate into the same mean functional lung volumes.  相似文献   

13.
Inhomogeneously compliant lungs need special treatment during ventilation as they are often affected by respiratory insufficiency which is frequently caused by a regional collapse of the airways. To treat respiratory insufficiency atelectatic areas have to be recruited. Beside conventional mechanical ventilation, high-frequency oscillatory ventilation (HFOV) is an efficient method for airway reopening. Using a transparent in-vitro model of the human lung the influence of varying frequencies on the reopening behavior of atelectatic regions is investigated for volume controlled ventilation. The experiments show that higher ventilation frequencies at constant tidal volume enhance the probability of successful reopening of collapsed lung regions and thus, lead to a more homogeneous distribution of air within the lung. This effect can be attributed (i) to larger flow velocities and thus larger pressure losses in the free pathways as the ventilation frequency increases and (ii) to higher inertia effects. In consequence, the static pressure in the branches above the atelectatic regions increases until it reaches a level at which recruitment is achieved.  相似文献   

14.
Patients with severe acute lung injury are frequently administered high concentrations of oxygen (>50%) during mechanical ventilation. Long-term exposure to high levels of oxygen can cause lung injury in the absence of mechanical ventilation, but the combination of the two accelerates and increases injury. Hyperoxia causes injury to cells through the generation of excessive reactive oxygen species. However, the precise mechanisms that lead to epithelial injury and the reasons for increased injury caused by mechanical ventilation are not well understood. We hypothesized that alveolar epithelial cells (AECs) may be more susceptible to injury caused by mechanical ventilation if hyperoxia alters the mechanical properties of the cells causing them to resist deformation. To test this hypothesis, we used atomic force microscopy in the indentation mode to measure the mechanical properties of cultured AECs. Exposure of AECs to hyperoxia for 24 to 48 h caused a significant increase in the elastic modulus (a measure of resistance to deformation) of both primary rat type II AECs and a cell line of mouse AECs (MLE-12). Hyperoxia also caused remodeling of both actin and microtubules. The increase in elastic modulus was blocked by treatment with cytochalasin D. Using finite element analysis, we showed that the increase in elastic modulus can lead to increased stress near the cell perimeter in the presence of stretch. We then demonstrated that cyclic stretch of hyperoxia-treated cells caused significant cell detachment. Our results suggest that exposure to hyperoxia causes structural remodeling of AECs that leads to decreased cell deformability.  相似文献   

15.
We did Read CO2 rebreathing tests in 8 adult males. Both at natural breathing, and at self-controlled mechanical ventilation, volunteers increased ventilation proportionally to growth end-tidal PCO2. Inside individual distinctions of responses to CO2 during controlled mechanical ventilation are result of the voluntary motor control.  相似文献   

16.
We extended the theoretical analysis of Otis et al. (J. Appl. Physiol. 8: 427-443, 1956) to study the effects of collateral ventilation on lung mechanics and gas distribution. Equations were developed to express the effective compliance, the effective resistance, and the distribution of airflow and tidal volume in a two-compartment model incorporating a collateral communication. The analysis of the model showed that, in general, collateral ventilation tends to attenuate the degree of frequency dependence of compliance and resistance, the magnitude of this effect being dependent on the mechanical properties of the model, including collateral resistance. The influence of collateral ventilation is important when the model simulates the mechanical characteristics of the emphysematous lung (marked time-constant inequality with regionally high airway resistance, and relatively low collateral resistance). Under these conditions, a large fraction of the tidal volume of the high airway resistance lung compartment is contributed by the collateral communication. The effects of collateral ventilation on the mechanical behavior of the model are negligible when collateral resistance largely exceeds airway resistance (simulating experimental findings in normal lungs). The present theoretical data suggest that the use of equations based on a model incorporating collateral ventilation is justified, at least in predicting the mechanical and gas-distribution behavior of the lung in emphysema.  相似文献   

17.
E G King 《CMAJ》1979,121(7):901-904
Mechanical ventilation and respiratory disease impose both theoretical and practical limitations on the interpretation of hemodynamic measurements. To properly interpret such information a thorough understanding of the circulatory changes associated with normal breathing, mechanical ventilation and respiratory disease is vital. There are a variety of factors involved in patients with obstructive lung disease and those receiving mechanical ventilation that complicate the usual interpretation of hemodynamic data obtained from flow-directed catheters. An awareness of the potential pitfalls of hemodynamic monitoring in such situations is important in the efficient use of the hemodynamic data obtained.  相似文献   

18.
Summary The renewal of air is essential for good hygiene in housing. The list of polluting elements in dwellings is very long: particles, smells, acarus, allergens, formaldehyde, radon. All these polluting elements influence negatively our health. Apart from the complete elimination of the generating cources of polluting elements, an important factor for the pollution treatment is a good-working ventilation. Mechanical ventilation is the only system allowing an acceptable permanent ventilation during all seasons. It can be simple flow by mechanical exhaust and natural air income, or double flow by both mechanical exhaust and air supply. Double flow ventilation allows the filtering of fresh air and the heat transfer from exhaust to fresh air. It enables the elimination of certain allergens and the lowering, to a reasonable value, of the concentration of other polluting agents present in the dwellings inside air.  相似文献   

19.
We evaluated the effects of the different patterns of chest wall deformation that occur with different body positions and modes of breathing on regional lung deformation and ventilation. Using the parenchymal marker technique, we determined regional lung behavior during mechanical ventilation and spontaneous breathing in five anesthetized recumbent dogs. Regional lung behavior was related to the patterns of diaphragm motion estimated from X-ray projection images obtained at functional residual capacity (FRC) and end inspiration. Our results indicate that 1) in the prone and supine positions, FRC was larger during mechanical ventilation than during spontaneous breathing; 2) there were significant differences in the patterns of diaphragm motion and regional ventilation between mechanical ventilation and spontaneous breathing in both body positions; 3) in the supine position only, there was a vertical gradient in lung volume at FRC; 4) in both positions and for both modes of breathing, regional ventilation was nonlinearly related to changes in lobar and overall lung volumes; and 5) different patterns of diaphragm motion caused different sliding motions and differential rotations of upper and lower lobes. Our results are inconsistent with the classic model of regional ventilation, and we conclude that the distribution of ventilation is determined by a complex interaction of lung and chest wall shapes and by the motion of the lobes relative to each other, all of which help to minimize distortion of the lung parenchyma.  相似文献   

20.
Cardiopulmonary interactions induced by mechanical ventilation are complex and only partly understood. Applied tidal volumes and/or airway pressures largely mediate changes in right ventricular preload and afterload. Effects on left ventricular function are mostly secondary to changes in right ventricular loading conditions. It is imperative to dissect the several causes of haemodynamic compromise during mechanical ventilation as undiagnosed ventricular dysfunction may contribute to morbidity and mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号