首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gaseous nitrogen (N) emissions, especially emissions of dinitrogen (N2) and ammonia (NH3), have long been considered as the major pathways of N loss from flooded rice paddies. However, no studies have simultaneously evaluated the overall response of gaseous N losses to improved N fertilization practices due to the difficulties to directly measure N2 emissions from paddy soils. We simultaneously quantified emissions of N2 (using membrane inlet mass spectrometry), NH3 and nitrous oxide (N2O) from a flooded paddy field in southern China over an entire rice‐growing season. Our field experiment included three treatments: a control treatment (no N addition) and two N fertilizer (220 kg N/ha) application methods, the traditional surface application of N fertilizer and the incorporation of N fertilizer into the soil. Our results show that over the rice‐growing season, the cumulative gaseous N losses from the surface application treatment accounted for 13.5% (N2), 19.1% (NH3), 0.2% (N2O) and 32.8% (total gaseous N loss) of the applied N fertilizer. Compared with the surface application treatment, the incorporation of N fertilizer into the soil decreased the emissions of NH3, N2 and N2O by 14.2%, 13.3% and 42.5%, respectively. Overall, the incorporation of N fertilizer into the soil significantly reduced the total gaseous N loss by 13.8%, improved the fertilizer N use efficiency by 14.4%, increased the rice yield by 13.9% and reduced the gaseous N loss intensity (gaseous N loss/rice yield) by 24.3%. Our results indicate that the incorporation of N fertilizer into the soil is an effective agricultural management practice in ensuring food security and environmental sustainability in flooded paddy ecosystems.  相似文献   

2.
烤烟烟叶中N,K营养及N,K平衡的初步研究   总被引:4,自引:0,他引:4  
研究了滇中地区烤烟中部叶片旺长期(移栽后60-65d)N、K营养及N、K平衡。结果表明:⑴烟叶一般N含量为2.5%-4%,K含量为1%-3%,N/K比为2.5-3.5。⑵烟叶N含量>4%,就有N过剩的症状产生。⑶烟叶N含量<2.5%,K含量<1%,就表现出N、K缺乏症状。⑷烟叶N/K比失调,过高或过低,都会影响烟株正常生长。  相似文献   

3.
减量施氮对冬小麦-夏玉米种植体系中氮利用与平衡的影响   总被引:29,自引:4,他引:29  
研究了冬小麦-夏玉米种植体系中减量施N对作物N利用与平衡的影响,结果表明,与原有高量施N处理(N240和N360)相比,在冬小麦季减半施N未引起产量和吸N量的变化。但在原有低量施N处理(N120)下减半施N显著降低了小麦产量和吸N量;在夏玉米季,在上季减半施N的基础上停止施N后作物产量和吸N量均比原固定施N处理显著下降,N平衡计算结果表明,减量施N条件下0~1m土壤N残留和表观损失的数量均显著低于原有施N量处理,作物N利用率显著提高,但在1~2m层次中累积的硝态氮却不因减量施N而下降,说明这一土层的硝态氮可能难以被作物吸收利用,由此可见,在前茬高施N量下减少氮肥用量有利于提高作物的氮肥利用率、减少N残留与表观损失。  相似文献   

4.
Production and sources of N2O were determined in soil columns amended with autoclaved yeast cells either mixed into or added as 0.5 cm3 lumps to the soil in combination with no or 200 g NO3 --N g-1. At four occasions over a two-week study period, subsets of cores were measured for N2O production during 4-hour incubations under atmospheres of ambient air, 10 Pa of C2H2, and N2, respectively. Denitrification enzyme activity (DEA) was assessed in subsamples of cores that had been incubated continuously under air.Autoclaved yeast provided a C-source readily available for denitrifying bacteria in the soil. Nitrous oxide production was negligible in unamended columns whereas accumulated N2O losses in the presence of yeast material were substantial, varying between 15 to 49 ng N2O-N g-1 h-1. Mixing yeast into the soil caused the highest production of N2O followed by the yeast lump and no yeast treatments. Incubation in the presence of 10 Pa C2H2 indicated that denitrification was the sole source of N2O, in accordance with an increase in DEA. Nitrous oxide production and DEA peaked after 4–7 days of incubation, and both were unaffected by additional NO3 -. Two-to four-fold responses to anaerobiosis and accumulation of NO3 - and NH4 + in proximity of the lumps indicated that N2O production here was limited by relatively low C-availability. In contrast, 10- to 12-fold responses to anaerobiosis and no accumulation of inorganic N suggested a higher C-availability where yeast was mixed into the soil.  相似文献   

5.
Summary Laboratory incubation experiment was conducted with a clay loam alluvial lowland rice soil to study the relative effectiveness of two sources of Zn (ZnEDTA and ZnSO4) in maintaining Zn availability in soil under two moisture regimes (saturated and waterlogged) both in presence as well as absence of added organic matter. The results showed that ZnEDTA was always more effective than ZnSO4 in maintaining higher amount of zinc in available form in soil for a longer perid. Results of greenhouse experiment conducted with rice showed that concentration and uptake of Zn by roots were generally higher with ZnEDTA than with ZnSO4 both in presence and absence of added organic matter, whereas in respect of shoot this was true only in absence of added organic matter.  相似文献   

6.
7.
长期施肥对NO3^——N深层积累和土壤剖面中水分分布的影响   总被引:12,自引:4,他引:12  
研究了旱地农业系统中,长期不同施肥条件下,降水对NO3^--N积累、剖面水分分布以及N有收量、回收率影响及其相互之间的关系。结果表明,降水和氮肥施用量显著影响作物产量。施用氮肥在土壤剖面中造成NO3^--N深层积累,其中NPM处理累积层位于60-120cm,累积量相当于3.0年的年度施肥量(120kg·hm^-2),NP处理累积层位于80-140cm,相当于1.4年施肥量。随着降水的年际间波动,进化论在丰水年、平水年还是干旱年,NPM处理耗水量>NP处理>M处理>P,CK处理。12年不同施肥造成了土壤剖面水分差异。冬小麦播种前不同施肥处理0-100cm水分剖面分布差别不大,NPM处理、NP处理(除丰水年外),土壤100-300cm含水量迅速降低,干旱年M处理缓慢降低,P和CK处理在任何年份变化都不大,氮肥回收率随着降水的波动也呈现相应的高低变化,NPM、NP处理的高低波动幅度最大。NPM、NP处理NO3^--N累积与N素回收率的降低、土壤水分亏缺基本吻合。由此也反映了水分-作物-施肥三者之间存在的内在制约关系。  相似文献   

8.
土壤动物对高寒森林凋落物养分元素动态具有重要影响, 但这种影响受控于凋落物质量及环境条件。为了解土壤动物对高寒森林凋落物不同分解时期凋落物中N和P元素动态的影响, 采用凋落物分解袋的方法, 于凋落物第一年分解的不同时期, 即冻结前期、冻结期、融化期、生长季节初期、生长季节中期和生长季节末期, 研究了3.00和0.04 mm孔径凋落物袋中川西亚高山和高山森林的代表性植物——康定柳(Salix paraplesia)、方枝柏(Sabina saltuaria)、红桦(Betula albosinensis)和岷江冷杉(Abies fargesii var. faxoniana)凋落物中的N和P元素动态特征。结果表明: 康定柳和红桦凋落物中的N元素呈现出释放—富集—释放的模式, 方枝柏、岷江冷杉凋落物中的N元素则表现为释放—富集模式; 凋落物P元素总体表现为释放模式, 但4种植物凋落物均在生长季节中期具有明显的富集过程; 从凋落物分解的第一年来看, 土壤动物明显促进了4种植物凋落物N的释放, 而抑制了P的释放; 不同时期土壤动物对凋落物中N和P释放量的影响存在显著差异, 且分别与正积温呈极显著正相关和极显著负相关关系; 相对于阔叶植物凋落物, 土壤动物对针叶植物凋落物中N和P元素动态的影响更为显著。这些结果为深入了解高寒森林生态系统土壤动物与凋落物分解等物质循环过程的相互联系具有重要意义。  相似文献   

9.
Estavillo  J.M.  Rodrí  M.  Lacuesta  M.  González-Murua  C. 《Plant and Soil》1997,188(1):49-58
It is essential to establish more accurate N balances for different soil-plant systems in order to improve N use efficiency. In this study the N balance was studied in a poorly drained clayey loam soil under natural grassland supplied with either calcium ammonium nitrate or cattle slurry at two application rates. The aim was to determine the efficiency of the N applied and the factors which affect this efficiency. Mineralization-immobilization of N was calculated by balance between the quantified inputs and outputs of N. As N inputs increased, output via herbage yield was accompanied by an increase in apparent immobilization of N in the soil and by larger losses of N by denitrification. The difference between cattle slurry and N fertilizer was that the slurry behaved as a slow release fertilizer, its supply of mineral N being greater in the periods of time when fertilizer was applied a long time ago. Denitrification losses (up to 17% of the N applied) are suggested to be the main factor to mitigate in order to increase N use efficiency. A decrease in net mineralization (up to 136 kg N ha-1 year-1) was observed which was related to the mineral N application rate. There was evidence to suggest that this decrease was due both to the immobilization of the N applied and to a decrease in the rate of gross mineralization when mineral N was applied. Microbial biomass determinations could not explain the changes in the mineralization-immobilization equilibrium of N because of the great coefficients of variation for this determination (mean value of 18%). Nevertheless, it contributed to verify and explain some of the changes observed in this equilibrium.  相似文献   

10.
The natural abundance of 15N in plant biomass has been used to infer how N dynamics change with elevated atmospheric CO2 and changing water availability. However, it remains unclear if atmospheric CO2 effects on plant biomass 15N are driven by CO2-induced changes in soil moisture. We tested whether 15N abundance (expressed as δ15N) in plant biomass would increase with increasing soil moisture content at two atmospheric CO2 levels. In a greenhouse experiment we grew sunflower (Helianthus annuus) at ambient and elevated CO2 (760 ppm) with three soil moisture levels maintained at 45, 65, and 85% of field capacity, thereby eliminating potential CO2-induced soil moisture effects. The δ15N value of total plant biomass increased significantly with increased soil moisture content at both CO2 levels, possibly due to increased uptake of 15N-rich organic N. Although not adequately replicated, plant biomass δ15N was lower under elevated than under ambient CO2 after adjusting for plant N uptake effects. Thus, increases in soil moisture can increase plant biomass δ15N, while elevated CO2 can decrease plant biomass δ15N other than by modifying soil moisture.  相似文献   

11.
12.
Summary Tracer studies were made on balance and chemical distribution of added fertilizer under field conditions using a modified type of lysimeter at different moisture regimes. A modified chemical method was also used for the determination of different forms of organic N.An average of 25 per cent of the isotope enriched nitrogen applied to soil could not be accounted for at the end of the 3 years of experiment. The amount of residual added N in soil was around 33 per cent of which 27 per cent was in 0–20 cm layers and only 6 per cent was found in 20–50 cm layers. The average crop recoveries were around 43 per cent. Only 0.18 per cent of NO3–N was leached from the irrigated plots.The alkali-stable N (amino acid-N) fraction was higher for irrigated (19 per cent) than nonirrigated plots (15 per cent). There were no difference in the amounts of fixed NH4, non-hydrolyzed and alkali-labile N fractions for irrigated and non-irrigated plots. Only an average of 1.5 per cent of total fertilizer N was found as fixed NH4–N form but the total fixed NH4–N was higher (10–13 per cent) than that reported by other workers for surface soil layers. The sum of different soil-nitrogen fractions were always higher than the total nitrogen in soil.  相似文献   

13.
Net productions of permanent soil atmosphere gases (N2, CO2, O2) and temporary gases (N2O, NO) were monitored in soil cores using a non-interfering, fully automated measuring technique allowing highly time resolved measurements over prolonged periods. The influence of changes in available organic carbon on CO2, N2O, NO and N2 production was studied by changing the soil carbon content through aerobic preincubations of different length, up to 21 days.The aerobic preincubation caused an increase in NO3 - concentration and a decrease in available carbon content. Available carbon content dominated both CO2 and total N gas (N2+N2O+NO) production during anaerobiosis. Both CO2 and total N gas production rates decreased with increasing length of the previous aerobic preincubation, this in spite of the higher initial NO3 - concentration.Total denitrification rates were closely related to the anaerobic CO2 production rates. No relation was found between water soluble carbon content and total denitrification. The N2O/N2 ratio could be explained by an interaction of carbon availability, NO3 - concentration and enzyme status. Net N2O consumption was monitored. The balance between cumulative total N gas production and NO3 - consumption varied according to the different treatments. Cumulative N2O production exceeded cumulative N2 production for 0 up to 5 days.  相似文献   

14.
细根分解受根序和土壤深度的潜在影响。使用根序法分根,将落叶松Larix gmelini根系分为两类:一级根、二级根为一类(1—2级根),即低级根;三级根和四级跟为另一类(3—4级根),即高级根。采用埋袋法对落叶松低级根和高级根在不同土壤深度(0—10、10—20 cm和20—30 cm)进行了为期862 d的分解实验,探讨不同根序细根分解规律,养分释放及其影响。结果表明:1—2级根的分解速率比3—4级分解速率慢,这种规律同时存在于不同深度的土壤中。在空间上,低级根和高级根的分解速率均随土壤深度的增加而降低,高级根的降低趋势更明显。随着分解时间的进行,各个土层之间的分解率在低级根之间差异更大。细根分解过程中,落叶松不同根序养分的释放特征不同。N释放速率总体上随细根根序增加而增大,随土壤深度的增加而降低。  相似文献   

15.
We investigated the effect of (a) different local climate and (b) thinning of the forest canopy on growth and N status of naturally regenerated European beech seedlings in a beech forest on shallow rendzina soil in southern Germany. For this purpose, a 15N-tracing experiment was conducted during the growing season of the year 2000 with beech seedlings growing on a warm, dry SW-exposed site and a cooler, moist NE-exposed site, and in a thinned and a control stand at each site. Biomass, 15N uptake and partitioning and total N concentrations of beech seedlings were determined. Site and thinning produced clear differences, particularly at the end of the growing season. Biomass and cumulative 15N uptake of beech seedlings then increased due to thinning on the NE site and decreased on the SW site. Total N concentrations in leaves, roots and stems of beech seedlings responded similarly. Therefore, growth and N status of beech seedlings are found to be favoured by thinning under cool-moist conditions. However, under higher temperature and reduced water availability—conditions that are prognosticated in the near future—thinning reduces N uptake and plant N concentration and, thus, impairs N balance and growth of beech regeneration.  相似文献   

16.
The effect of nitrate and ammonium application (0, 50, 100 and 150 mg N kg-1 soil) was studied in an incubation experiment. Four Belgian soils, selected for different soil characteristics, were used. The application of both nitrate and ammonium caused an increase of the NO and N2O emission. The NO production from nitrate and ammonium was found to be of the same order of magnitude. At low pH the NO production was found to be highest from nitrate, at higher pH values the production was found to be higher from ammonium. This seems to be the result of the negative effect of low pH on nitrification.The ANOVA analysis was carried out to separate the effect of the form of nitrogen, quantily of N applied and soil characteristics. The total production of NO was found to depend for 97% on the soil characteristics and for 3% on the quantity of N added. The total N2O production depended for 100% on the soil characteristics.Stepwise regression analysis showed that the total NO production was best predicted by a combination of the factors CaCO3 content and NH4 + concentration in the soil. Total N2O production was best described by a combination of CaCO3, water soluble carbon (WSC) and sand-content.The N2O/NO ratio was found to be highly variable, indicating that their productions react differently to changes in conditions, or are partly independent.It may be concluded that to NO and N2O from soils both nitrification and denitrification may be equally important, their relative importance depending on local conditions such as substrate availability, water content of the soil etc. However, the NO production seems to be more nitrification dependent than the N2O production. ei]{gnE}{fnMerckx}{edSection editor}  相似文献   

17.
不同前茬作物条件下烤烟氮磷钾养分平衡   总被引:6,自引:0,他引:6  
Liu F  Zhao ZX  Li ZH  Gao FH  Wang GL  Zhou GS  Nie JM  Peng Y 《应用生态学报》2011,22(10):2622-2626
在石林烟区通过田间试验研究了油菜、小麦、大麦和绿肥4种前茬作物对烤烟氮磷钾养分平衡的影响.结果表明:不同前茬处理间土壤氮素有效性、烟株生物量和氮磷钾养分吸收量、土壤氮磷钾养分残留以及氮素表观损失和磷钾表观盈余总体上差异显著.绿肥茬处理烤烟移栽前土壤起始无机氮最高,生长期间土壤净矿化氮最多,烟叶成熟时烟株生物量和氮、钾吸收量最大;油菜茬处理烤烟上述指标均次之;两者上述指标均明显高于大麦茬和小麦茬处理.吸磷量也以绿肥茬和油菜茬处理大于其他两处理.烤烟收获后土壤残留无机氮以绿肥茬处理最高,油菜茬次之,大麦茬和小麦茬最低;而土壤有效磷、钾含量则相反,以绿肥茬最低,大麦茬和小麦茬最高.烤烟生长期间氮素表观损失以绿肥茬处理明显高于其他处理;而磷钾表观盈余则以小麦茬和大麦茬两处理总体明显高于其他两处理.综上,烤烟氮磷钾养分的投入应根据前茬作物不同而适当调整,以绿肥和油菜为前茬时应明显减少氮肥施用量;以大麦和小麦为前茬时可以相对减少磷钾肥施用量.  相似文献   

18.
三峡库区典型茶园土壤水分对不同降雨模式的响应   总被引:1,自引:0,他引:1  
土壤水分是坡面产流和生物地球化学过程的关键控制因素。降水事件可以通过引起土壤剖面不同深度的土壤水分响应,从而影响流域中的径流路径、产流机制和土壤侵蚀过程等。基于三峡库区典型分布的茶园为对象,通过长期定点、高频的气象和水分数据观测,研究不同降雨模式下茶园不同土层深度(0—10、10—20、20—30、30—40cm)土壤水分的时空变化特征,分析茶园不同深度土壤在雨季的水分动态变化规律和对不同降雨模式的响应特征。结果表明:(1)研究区内的降雨和土壤水分含量均表现出明显的季节性特征。降雨在7月达到最大值,土壤水分含量则在8月达到峰值。表明降雨是影响土壤水分含量变化的重要因子,土壤水分对降雨有着明显的响应过程。(2)在相同降雨条件下,土壤含水量具有明显的垂直梯度变化。随着土层深度的增加,土壤水分对降雨的响应逐渐呈现出滞后现象。表层土壤(0—20cm)对降雨的响应较为迅速且幅度更加明显,深层土壤(30—40cm)水分含量变化相对稳定,并且对降雨的响应时间更加滞缓。随着土层深度的增加,土壤水分含量的变化幅度逐渐趋于平稳。(3)土壤水分含量对不同的降雨模式表现出显著差异。在较大雨强条件下,土壤水分变...  相似文献   

19.
In a field experiment using microplots, a flooded Crowley silt loam (Typic Albaqualfs) rice soil was fertilized with 15N labelled (60–74 atom %) urea and KNO3. Emission of N2, N2O and CH4 and accumulation in soil were measured for 21 d after fertilizer application.Emission of 15N2-N measured from the urea and KNO3 treated plots ranged from <15 to 570 and from 330 to 3,420 g ha–1 d–1, respectively. Entrapped 15N2-N in the urea treated microplots was significantly lower (<15 g to 2.1 kg ha–1) on all sampling dates compared to the 15N2-N gas accumulation in the KNO3 treated plots (6.4 to 31.5 kg ha–1). Emissions of N2O-N were low and did not exceed 4 g ha–1 d–1. Fluxes of CH4 from the fertilizer and control plots were low and never exceeded 33 g ha–1 d–1. Maximum accumulation of CH4 in the flooded soil measured 460 and 195 g ha–1 for the urea and KNO3 treatments, respectively.  相似文献   

20.
Summary Antitranspirant treatment with Tag — a polyethylene based emulsion-reduced transpiration and increased height of potted pine seedlings under simulated hot and dry conditions when soil was moist. Under cool, humid conditions reduction of transpiration was very much less and growth was slightly reduced. Application of antitranspirants to pine seedling transplants, under hot dry field conditions, failed to improve, their water balance or to reduce mortality. Physiological tests made during the field trial and experiments with potted seedlings showed that when the soil is dry xeromorphic plants efficiently reduce their water loss and under such conditions anti-transpirants are of no benefit. It is calculated that antitranspirants would only be advantageous under moist soil and high evaporative demand conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号