首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When microsomes from feline ventricular muscle are centrifuged on continuous linear sucrose gradients, the major peak for the distribution pattern of the dihydropyridine binding sites corresponds in position and shape with the distribution of the Mr 300K polypeptide marker for junctional sarcoplasmic reticulum (SR). Plasma membrane vesicles are also present in those gradient fractions and appear to be joined to the junctional SR as native dyads. We now report that when such putative dyads are passed through the French press, both the dihydropyridine binding sites and the plasma membrane marker band together at a new isopycnic point distinct from the junctional SR. We conclude that as has been found in the skeletal muscle system the dihydropyridine binding sites are a marker for the junctional domain of the plasma membrane and that separation of the dyad components of the mammalian myocardium can be attained.  相似文献   

2.
Fixation of purified sarcoplasmic reticulum (SR) membrane vesicles, using glutaraldehyde supplemented with 1% tannic acid, reveals newly visualized ultrastructure in thin sections. The trilaminar appearance of the membrane is highly asymmetric; the outer electron-opaque layer is appreciably wider (70 A) than the inner layer (20 A). The asymmetry is not referable to lack of penetration of the tannic acid since: (a) SR vesicles made permeable with 1 mM EDTA, pH 8.5, show similar asymmetry; (b) treatment of SR with trypsin results in progressive loss in protein content and decrease in the thickness of the outer layer, until in the limit the trilayer has a symmetric appearance; (c) within the same muscle section, the SR membrane appears highly asymmetric whereas the sarcolemma has a more symmetric appearance; (d) reconstituted SR vesicles have a symmetric appearance with equally broad inner and outer layers (approximately 70 A); the symmetric structure is confirmed by freeze-fracture and negative staining electron microscopy. Heavy and light SR vesicles obtained by isopycnic density sedimentation of purified SR have the same asymmetric appearance of the membrane and seem to differ mainly in that the heavy vesicles contain internal contents consisting largely of Ca++-binding protein. The asymmetry of the SR membrane is referable mainly to the unidirectional alignment of the Ca++ pump protein, the major component (90% of the protein) of the membrane. The asymmetry of the SR membrane can be visualized now for the first time in situ in thin sections of muscle.  相似文献   

3.
Summary Dyads (transverse tubule—junctional sarcoplasmic reticulum complexes) were enriched from rat ventricle microsomes by continuous sucrose gradients. The major vesicle peak at 36% sucrose contained up to 90% of those membranes which possessed dihydropyridine (DHP) binding sites (markers for transverse tubules) and all membranes which possessed ryanodine receptors and the putative junctional foot protein (markers for junctional sarcoplasmic reticulum). In addition, the 36% sucrose peak contained half of the vesicles with muscarine receptors. Vesicles derived from the nonjunctional plasma membrane as defined by a low content of dihydropyridine binding sites per muscarine receptor and from the free sarcoplasmic reticulum as defined by the Mr 102K Ca2+ ATPase were associated with a diffuse protein band (22–30% sucrose) in the lighter region of the gradient. These organelles were recovered in low yield. Putative dyads were not broken by French press treatment at 8,000 psi and only partially disrupted at 14,000 psi. The monoclonal antibody GE4.90 against skeletal muscle triadin, a protein which links the DHP receptor to the junctional foot protein in skeletal muscle triad junctions, cross-reacted with a protein in rat dyads of the same Mr as triadin. Western blots of muscle microsomes from preparations which had been treated with 100mm iodoacetamide throughout the isolation procedure showed that cardiac triadin consisted predominantly of a band of Mr 95 kD. Higher molecular weight polymers were detectable but low in content, in contrast with the ladder of oligomeric forms in rat psoas muscle microsomes. Cardiac triadin was not dissolved from the microsomes by hypertonic salt or Triton X-100, indicating that it, as well as skeletal muscle triadin, was an integral protein of the junctional SR. The cardiac epitope was localized to the junctional SR by comparison of its distribution with that of organelle markers in both total microsome and in French press disrupted dyad preparations. Immunofluorescence localization of triadin using mAb GE4.90 revealed that intact rat ventricular muscle tissue was stained following a well-defined pattern of bands every sarcomere. This spacing of bands was consistent with the interpretation that triadin was present in the dyadic junctional regions.  相似文献   

4.
3H]nitrendipine receptors in skeletal muscle   总被引:39,自引:0,他引:39  
The richest source of receptors for the organic calcium channel blocker [3H]nitrendipine in muscle is the transverse tubule membrane. The tubular membrane preparation binds [3H]nitrendipine with a high affinity and has a very high number of [3H]nitrendipine binding sites. For example, for the transverse tubule membrane preparation from rabbit muscle, the dissociation constant of the nitrendipine-receptor complex is 1.8 +/- 0.3 nM and the maximum binding capacity Bmax = 50 +/- 6 pmol/mg of protein. Similar results have been found with a membrane preparation from frog muscle. The dissociation constant found at equilibrium is near that determined from the ratio of rate constants for association (kappa 1) and dissociation (kappa-1). Binding of [3H] nitrendipine is pH-dependent and reveals the presence of an essential ionizable group with a pK of 5.4 on the nitrendipine receptor. The binding is destroyed by proteases showing that the receptor is a protein. Three different classes of Ca2+ channel blockers inhibit [3H]nitrendipine to its specific site. (i) The dihydropyridine analogs of nitrendipine which are competitive inhibitors of [3H]nitrendipine. These molecules form tight complexes with the nitrendipine receptor with dissociation constants between 1.4 and 4.0 nM. (ii) Other antiarrhythmic molecules like verapamil, amiodarone, bepridil, and F13004 which are noncompetitive inhibitors of [3H]nitrendipine binding with dissociation constants between 0.2 and 1 microM. (iii) Divalent cations like Ni2+, Co2+, Mn2+, or Ca2+ which are noncompetitive inhibitors of [3H]nitrendipine binding with the following rank order of potency: Ni+ (K0.5 = 1.8 mM) greater than Co2+ (K0.5 = 2.7 mM) greater than Mn2+ (K0.5 = 4.8 mM) greater than Ca2+ (K0.5 = 65 mM).  相似文献   

5.
Bovine myocardial sarcolemma and sarcoplasmic reticulum vesicle preparations contained calcium-dependent protease inhibitor protein. No inhibitor was detected in mitochondrial membranes. The membrane-bound inhibitor co-purified with the marker enzymes for sarcolemma and sarcoplasmic reticulum, Na+,K+-ATPase and Ca2+,K+-ATPase respectively, on isopycnic ultracentrifugation through linear sucrose density gradients. Sarcolemma and sarcoplasmic reticulum vesicles contained about 1 mg of inhibitor per g of membrane protein. However, about one-half of the inhibitor in sarcoplasmic reticulum vesicles was not tightly associated with the membrane. The membrane-bound inhibitor may function to modulate calcium-dependent proteolytic cleavage of sarcolemmal or sarcoplasmic reticulum-associated proteins.  相似文献   

6.
The presence of four cation pathways in membrane vesicles isolated from transverse tubules of frog and rabbit skeletal muscle was studied by measuring binding of specific blockers. Transverse tubules purified from frog muscle have a maximal binding capacity for [3H]nitrendipine (a marker for voltage-dependent calcium channels) of 130 pmol/mg of protein; this binding is strongly dependent on temperature and, at 37 degrees C, on the presence of diltiazem. Receptors for [3H]ethylenediamine tetrodotoxin (a marker for voltage-dependent sodium channels) and for 125I-labeled alpha-bungarotoxin (a marker for acetylcholine-mediated channels) showed maximal binding values of about 5 pmol/mg. The number of sodium-pumping sites in the isolated tubule vesicles, inferred from [3H]ouabain binding, was 215 pmol/mg. The high purity of this preparation makes feasible the use of these values as a criterion to judge the degree of purity of isolated preparations, and it allows investigation of transverse tubule contamination in other muscle membrane fractions.  相似文献   

7.
S49 Mouse lymphoma wild-type cells were grown in spinner cultures of 40 liters to a density of approximately 3 million cells/ml. Growth of cells to high density (2-3 million cells/ml) required that the cell suspensions be bubbled with oxygen. Cells from 40 liter cultures were collected by centrifugation and disrupted by nitrogen cavitation. Highly purified membranes (0.35 g membrane protein) that were rich in beta-adrenergic receptor (0.4-0.7 pmol receptor/mg membrane protein) were prepared by differential centrifugation and then solubilized with the plant glycoside, digitonin (1.5% digitonin at 3 mg of membrane protein/ml). Beta-adrenergic receptors were isolated and purified by sequential affinity chromatography, ion-exchange chromatography, and steric exclusion high-pressure liquid chromatography. The extract was subjected to affinity chromatography on a derivatized Sepharose-4B CL column to which the high-affinity, beta-adrenergic antagonist (-)alprenolol had been immobilized. Following extensive washing, the receptor bound to this matrix was eluted using a 0-100 micromolar linear gradient of (-)alprenolol. The receptor eluted as a sharp peak at 30 micromolar ligand and displayed a specific activity of 280 pmol receptor/mg of protein. Ion-exchange chromatography on DEAE-Sephacel increased the specific activity to 950 pmol/mg of protein. The final step in the purification, steric-exclusion high-pressure liquid chromatography on two TSK-3000 and one TSK-2000 columns, tandem linked, resulted in a beta-adrenergic receptor preparation with a specific activity of 6700 pmol/mg of protein (15,900-fold purification). Autoradiography of the radioiodinated pure receptor, the receptor photolabeled with [125I]iodoazidobenzylpindolol or silver-staining of chemical amounts of protein revealed that the Mr of the pure receptor is 66,000 upon polyacrylamide gel electrophoresis in sodium dodecyl sulfate under reducing conditions. The receptor is a beta2-subtype adrenergic receptor.  相似文献   

8.
beta-adrenergic receptors were solubilized from rat erythrocyte plasma membranes using digitonin. Solubilized receptors were then reconstituted into phospholipid vesicles by the addition of dimyristoylphosphatidylcholine and removal of detergent. Vesicles were separated from residual soluble receptors and detergent by rate-zonal ultracentrifugation. Vesicles were monolamellar, 500-900 A in diameter, and had a lipid content of 6 mumol phospholipid/mg protein. Specific binding of the beta-adrenergic ligand [3H]dihydroalprenolol ([3H]DNA) was 0.9-1.9 pmol/mg protein. Reconstitution of receptors into vesicles restored their ability to bind [125I]iodohydroxybenzylpindolol ([125I]IHYP). This ligand does not bind to detergent-solubilized receptors. [125I]IHYP binding was saturable [Kd = 84 pM] and competed appropriately with (+) and (-) isomers of beta-adrenergic agonists and antagonists. These receptor vesicles therefore appear to be an excellent model system for the study of beta-adrenergic receptor function in a defined lipid milieu.  相似文献   

9.
The binding of dihydropyridine (PN200-110) to skeletal muscle microsomes (which were 84% sealed inside-out vesicles) was not influenced by the addition of calcium or magnesium nor by addition of their chelators (EDTA or EGTA) unless the vesicles were pretreated with the calcium-magnesium ionophore A23187 and EDTA to remove entrapped cations. Separation of inside-out vesicles from right-side-out vesicles by wheat germ agglutinin chromatography revealed that only the right-side-out vesicles exhibited a calcium-, magnesium-, and chelator-dependent binding of PN200-110. Dihydropyridine binding to cardiac sarcolemma membranes (which were 46% inside-out) and to solubilized skeletal muscle membranes was inhibited by EDTA and could be fully restored by 10 microM calcium or 1 mM magnesium. Calcium increased PN200-110 binding to partially purified rabbit skeletal muscle calcium channels from 3.9 pmol/mg protein to 25.5 pmol/mg protein with a pK0.5 = 6.57 +/- 0.059 and a Hill coefficient of 0.56 +/- 0.04. Magnesium increased binding from 0.7 pmol/mg protein to 16.8 pmol/mg protein with a pK0.5 = 3.88 +/- 0.085 and a Hill coefficient of 0.68 +/- 0.074. These studies suggest that calcium binding to high affinity sites or magnesium binding to low affinity sites on the extracellular side of skeletal muscle T-tubule calcium channels regulates dihydropyridine binding. Further, similar calcium and magnesium binding sites exist on the cardiac calcium channel and serve to allosterically regulate dihydropyridine binding.  相似文献   

10.
To compare surface sarcolemmal with T-tubular distributions of [3H]saxitoxin (STX)- and [3H]nitrendipine (NTD)-binding sites, we centrifuged membrane vesicles from sheep and bovine ventricles on a 10-40% linear sucrose gradient from which fractions were assayed for STX and NTD binding; for markers of surface sarcolemma (ouabain-sensitive Na,K-ATPase activity, [3H]quinuclidinyl benzilate binding); and for markers of junctional sarcoplasmic reticulum known to be preferentially associated with T-tubules (ryanodine-sensitive Ca2+ uptake, calsequestrin, an Mr 300,000 putative phosphorylatable "foot" protein, and electron microscopically visible junctional sarcoplasmic reticulum-plasmalemma complexes). We identified three distinct peaks in the sucrose gradient, each characterized by significant high and low affinity STX- and high affinity NTD-binding: Peak I (approximately 19% sucrose), highly enriched in surface sarcolemma; Peak III (approximately 36% sucrose), enriched in junctional sarcoplasmic reticulum markers and hence in junctional sarcoplasmic reticulum complexes with T-tubule; and Peak II (approximately 27% sucrose), showing greatest specific STX binding and only moderate NTD binding, enriched in T-tubular membrane, unassociated with junctional sarcoplasmic reticulum. For ventricular myocytes, the ratio NTD sites/STX sites was 2.5 for surface sarcolemma, but only approximately 1.0 for T-tubules. Unlike data published for mammalian skeletal muscle, sheep and beef cardiac NTD receptors were not significantly more concentrated in T-tubular than in surface plasmalemma.  相似文献   

11.
Fractionation of liver plasma membranes prepared by zonal centrifugation   总被引:37,自引:23,他引:14       下载免费PDF全文
1. Plasma membranes were isolated from crude nuclear sediments from mouse and rat liver by a rate-dependent centrifugation through a sucrose density gradient contained in the ;A' type zonal rotor. 2. The membranes were further purified by isopycnic centrifugation, and characterized enzymically, chemically and morphologically. 3. When the plasma-membrane fraction of sucrose density 1.17g/cm(3) was dispersed in a tight-fitting homogenizer, two subfractions of densities 1.12 and 1.18 were obtained by isopycnic centrifugation. 4. The light subfraction contained 5'-nucleotidase, nucleoside diphosphatase, leucine naphthylamidase and Mg(2+)-stimulated adenosine triphosphatase activities at higher specific activities than unfractionated membranes. The heavy subfraction was deficient in the above enzymes but contained higher Na(+)+K(+)-stimulated adenosine triphosphatase activity. 5. The light subfraction contained twice as much phospholipid and cholesterol, and three times as much N-acetylneuraminic acid relative to unit protein weight as the heavy subfraction. Polyacrylamide-gel electrophoresis indicated differences in protein composition. 6. Electron microscopy showed the light subfraction to be vesicular. The heavy subfraction contained membrane strips with junctional complexes in addition to vesicles.  相似文献   

12.
Sarcolemmal vesicles were prepared from bovine cardiac muscle by differential and discontinuous sucrose density gradient centrifugation. Na+/K+-ATPase was purified 33-fold to a specific activity of 53 +/- 0.5 (12) mumol Pi X mg-1 X h-1, binding sites for strophantin 20-fold to a density of 56.3 +/- 5.3 (14) pmol/mg and that for the calcium antagonist nitrendipine 5.5-fold to a density of 0.72 +/- 0.07 (6) pmol/mg. The specific activity of the Na+/Ca2+ exchanger was 61.1 +/- 3.7 (6) nmol/mg. The vesicles had an intravesicular volume of 20 +/- 4 (4) microliter/mg and 56.9 +/- 6 (4)% of the vesicles were right-side-out oriented. Several peptides of the purified membranes were phosphorylated in the presence of Mg . ATP and EGTA. Most of the radioactive phosphate was incorporated into a peptide with an apparent molecular mass of 22 kDa. Denaturation of the membranes at 100 degrees C changed the mobility of this peptide to 15 kDa and 11 kDa. This peptide could not be distinguished from a sarcoplasmic reticulum peptide of similar molecular mass. The phosphorylation of the sarcolemmal peptide was stimulated by Ca2+/calmodulin, cAMP and the catalytic subunit of cAMP-dependent protein kinase. A comparison of the phosphorylation of sarcolemmal membranes with that of sarcoplasmic reticulum showed that Ca2+/calmodulin stimulated in each membrane, the phosphorylation of the 22-kDa peptide and a 44-kDa peptide, and in the sarcoplasmic reticulum the phosphorylation of an additional peptide of 55-kDa. Ca2+/calmodulin-dependent phosphorylation of a 55-kDa peptide could not be demonstrated in sarcolemma, regardless if sarcolemmal membranes were incubated together with sarcoplasmic reticulum or if the phosphorylation was carried out in the presence of purified cardiac myosin light chain kinase or phosphorylase kinase. 'Depolarization' induced Ca2+ uptake which was measured according to Bartschat, D.K., Cyr, D.L. and Lindenmayer, G.E. [(1980) J. Biol. Chem. 255, 10044-10047] was 5 nmol/mg protein. This uptake was not enhanced after preincubation of the vesicles with Mg . ATP or Mg . ATP and cAMP-dependent protein kinase. The value of 5 nmol/mg protein is in agreement with the theoretical amount of Ca2+ which can be accumulated by the bovine cardiac sarcolemma in the absence of a driving force other than the Ca2+ gradient. The potassium-stimulated Ca2+ uptake was not blocked by the organic Ca2+ channel blockers. Prolonged incubation of Mg . ATP with sarcolemmal vesicles in the presence of various ATPase inhibitors led to the hydrolysis of ATP. The liberated phosphate precipitated with Ca2+ in the presence of LaCl3. These precipitates amounted to an apparent Ca2+ uptake ranging from 50 to over 1000 nmol/mg. The results suggest that potassium-stimulated Ca2+ uptake of bovine cardiac sarcolemmal vesicles is not enhanced in the presence of ATP or by phosphorylation of a 22-kDa peptide.  相似文献   

13.
A procedure was developed for the large scale preparation of membranes from pig atria which are enriched 10-13 fold in the muscarinic acetylcholine receptor. The procedure involved differential centrifugation and sucrose-gradient centrifugation in solutions containing 150 mM-NaClO4 and 5 mM-EDTA to minimize membrane aggregation. The final membrane preparation bound about 1.1 pmol of L-quinuclidinyl benzilate/mg of protein. Comparable results were obtained with either fresh or frozen tissue. About the same yield (120 pmol of L-quinuclidinyl benzilate sites/100 g of tissue) and specific activity of membranes were obtained from different regions of the atria. The final preparation was stable at -80 degrees C in buffered sucrose solutions. The membranes appeared mostly as sheets or fragments and partly as closed vesicles in the electron microscope and were heterogeneous in isopycnic Percoll gradients. Marker enzyme studies showed that the receptor was enriched in parallel with the plasma membrane markers guanylate cyclase (particulate form) and (Na+ + K+)-activated ATPase. Some contamination by mitochondrial outer and endoplasmic reticulum membranes was evident from the distribution of monoamine oxidase and glucose-6-phosphatase activity, but the preparation was largely free of sarcoplasmic reticulum, mitochondrial inner, and lysosomal membranes.  相似文献   

14.
Lu49888, a photoaffinity analog of verapamil, was used to identify specific binding sites for phenylalkylamines of calcium channels present in rabbit skeletal muscle microsomes. Direct binding equilibrium measurements and displacement curves of Lu49888 by its non-radioactive analog yielded an apparent single class of binding sites with Kd and Bmax values of 16.5 nM and 7.5 pmol/mg respectively. Lu49888 was specifically incorporated into three proteins of apparently 165 kDa, and 33 kDa. Incorporation into the 55-kDa protein was blocked by 10--50-fold higher concentrations of unlabeled phenylalkylamines compared to incorporation into the 165-kDa protein, suggesting that the 165-kDa and 55-kDa proteins contain a high and a low-affinity verapamil-binding site respectively. The photoaffinity-labeled proteins were solubilized by 1% digitonin or 1% Chaps in roughly equal amounts. The 165-kDa protein bound to wheat-germ-agglutinin(WGA)--Sepharose and sedimented in sucrose density gradients with the same constant as the purified dihydropyridine receptor, which has been reconstituted to a functional calcium channel. The 55-kDa membrane protein did not bind to the WGA-Sepharose column and sedimented in sucrose density gradients with a lower s value than the 165-kDa protein. The 165-kDa but not the 55-kDa membrane protein was specifically labeled by azidopine, the photoaffinity analogue of dihydropyridines. The 55-kDa protein of the purified dihydropyridine receptor was not significantly labeled by Lu49888 showing that the 55-kDa protein of the membrane is unrelated to the purified high-affinity dihydropyridine receptor.  相似文献   

15.
SR vesicles from rabbit slow-twitch muscle reveal high activity (0.7-0.9 mumol/mg X min) of "basic" or Mg2+-ATPase. This enzyme differs in its biochemical properties from the well characterized Ca2+ pump ATPase. It is active in millimolar concentration of magnesium or calcium. The activity is inhibited by various detergents except for digitonin. This enzyme seems to be an integral membrane protein since it remains in the membrane after removal of peripheral proteins with EDTA. It can be partially solubilized from the membrane using digitonin without a decrease in specific activity. Ion exchange chromatography on DEAE-Sephacel of the post digitonin supernatant allows us to obtain a 5-fold increase in Mg2+-ATPase specific activity concomitantly with the enrichment in two proteins of Mr = 30,000 and 150,000.  相似文献   

16.
"Light" noradrenaline storage vesicles from nerve endings have been isolated by differential centrifugation and differential gradient centrifugation. They have been further purified by isopycnic sucrose/D2O centrifugation. By using these centrifugation techniques, we obtained an isopycnic gradient fraction in which noradrenaline was enriched about 41 times versus a total homogenate. This factor could be raised to 61 by using seminal ducts of castrated rats. Comparison of the distribution patterns in sucrose/D2O isopycnic gradients indicated that light noradrenaline vesicles of nerve endings contain Mg2+-stimulated ATPase and ATP, but that only a minor part of the dopamine beta-hydroxylase can be associated with these vesicles.  相似文献   

17.
Solubilization of the calcium antagonist receptor from rat brain   总被引:7,自引:0,他引:7  
[3H]Nitrendipine binds with high affinity to a calcium antagonist receptor in rat brain membranes. At 4 degrees C, treatment with digitonin solubilized the calcium antagonist receptor as a stable complex with [3H]nitrendipine. The nitrendipine concentration that gave a half-maximal amount of the solubilized [3H]nitrendipine-receptor complex was identical to the Kd for specific nitrendipine binding to brain membranes. Nitrendipine dissociated from digitonin-solubilized and membrane-bound receptors with a half-time of 24 to 30 min at 20 degrees C. Verapamil increased and diltiazem decreased the dissociation rate to a similar extent in both preparations indicating that the solubilized receptor contains both the dihydropyridine and diltiazem/verapamil binding sites. Sucrose gradient sedimentation experiments gave a value of S20, omega = 19.2 for the receptor-digitonin complex. The solubilized calcium antagonist receptor binds specifically to wheat germ agglutinin-Sepharose columns consistent with an identification as a glycoprotein.  相似文献   

18.
Considerable disagreement exists between results reported by various authors for lipid composition and enzyme activity in purified muscle membrane fractions presumed to be sarcolemma, although an explanation for these discrepancies has not been presented. We have prepared muscle light surface membrane fractions of comparable density (1.050–1.120) by a low-salt sucrose method and by an LiBr-KCl extraction procedure and compared them for density profile, total lipid and cholesterol content, protein composition and ATPase activity. In addition, sodium channels characteristic of excitable membranes have been quantitated in each preparation using [3H]saxitoxin binding assays, and the density of acetylcholine receptors determined in fractions from control and denervated muscle using α-[125I]bungarotoxin. Although both fractions contain predominantly surface membrane, the LiBr fraction consistently shows the higher specific activity of p-nitrophenylphosphatase, higher free cholesterol content, and higher density of sodium channels and acetylcholine receptors. The density distribution of sodium channels appears uniform throughout both fractions. Quantitative differences were seen between sodium dodecyl sulfatepolyacrylamide gel electrophoresis patterns of membrane proteins from the two preparations although most bands are represented in both. A majority of the low-salt sucrose light membrane proteins were accessible in varying degrees to labelling with diazotized diiodosulfanylic acid in intact muscle. These results suggest that light surface membrane fractions may be mixtures of sarcolemma and T-tubular membranes. Using our preparative methods, the LiBr fraction may contain predominantly sarcolemma while low-salt sucrose light membranes may be enriched in T-tubular elements.  相似文献   

19.
We demonstrate here that rat lung membrane vasoactive intestinal peptide (VIP) receptors can be extracted in the active state using digitonin. Sepharose 4B gel filtration chromatography was utilized to demonstrate the formation of specific binding complexes between 125I-VIP and solubilized receptors. A rapid soluble receptor assay was established to separate 125I-VIP-receptor complexes from free 125I-VIP, which entailed differential precipitation of the 125I-VIP-receptor complex with polyethylene glycol and bovine gamma-globulin. Using this assay, several detergents were tested for their suitability to extract active VIP receptors, and most favorable results were obtained with digitonin, as judged by specific binding of 125I-VIP to the solubilized receptors. Time course studies indicated that the binding of 125I-VIP to digitonin extract was more rapid than to rat lung membranes. Scatchard analyses of competitive binding data indicated the presence of two classes of binding sites in the digitonin extract, as in the membrane. The values for the dissociation constants (Kd) were 200 pM for Class I and 8 nM for Class II receptors while the values for binding capacity (Bmax) were 200 and 2300 fmol/mg for Class I and II sites, respectively. Although the binding parameters of the two classes were similar to those in the membrane, the pharmacological properties were different, as evidenced by the inability of rat growth hormone releasing factor, a potent VIP agonist in the membrane, to displace specifically bound 125I-VIP from solubilized receptors. The ability to solubilize active VIP receptors represents an important step toward purification of the functional protein.  相似文献   

20.
Ca2+-induced Ca2+ release and pH-induced Ca2+ release activities were identified in sarcoplasmic-reticulum (SR) vesicles isolated from adult- and fetal-sheep hearts. Ca2+-induced Ca2+ release and pH-induced Ca2+ release appear to proceed via the same channels, since both phenomena are similarly inhibited by Ruthenium Red. Ca2+ release from fetal SR vesicles is inhibited by higher concentrations of Ruthenium Red than is that from adult membranes. Both fetal and adult SR vesicles bind ryanodine. Fetal SR shows higher ryanodine-binding capacity than adult SR vesicles. Scatchard analysis of ryanodine binding revealed only one high-affinity binding site (Kd 6.7 nM) in fetal SR vesicles compared with two distinct binding sites (Kd 6.6 and 81.5 nM) in the adult SR vesicles. SR vesicles isolated from fetal and adult hearts were separated on discontinuous sucrose gradients into light (free) and heavy (junctional) SR vesicles. Heavy SR vesicles isolated from adult hearts exhibited most of the Ca2+ release activities. In contrast, Ca2+-induced Ca2+ release, pH-induced Ca2+ release and ryanodine receptors were detected in both light and heavy fetal SR. These results suggest that fetal SR may not be morphologically and functionally as well differentiated as that of adult cardiac muscle and that it may contain a greater number of Ca2+-release channels than that present in adult SR membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号