共查询到20条相似文献,搜索用时 15 毫秒
1.
G. Salahas K. Hatzidimitrakis C. D. Georgiou K. Angelopoulos N. A. Gavalas 《Plant biology (Stuttgart, Germany)》1997,110(4):309-313
The effect of phosphate, sulfate and other inorganic ions on the activity of phosphoenolpyruvate carboxylase (PEPC) from the C4 plant Cynodon dactylon were investigated for the first time, as well as their interaction with Clc-6-P, AMP and ma-late. Activation of PEPC by phosphate and sulfate ions was demonstrated and it was not dependent on the accompanying cations, something that was not clarified for PEPCs from other plant sources. No activation of this enzyme was observed by nitrate. PEPC activation was found to be competitive with glucoses-phosphate (Clc-6-P) and AMP stimulation and less sensitive to malate inhibition. This work showed that PEPC from C4plants could exhibit similar activation properties with the enzyme from CAM plants and different activation properties in plants of the same type, rendering the study of this enzyme from different plant sources necessary. 相似文献
2.
Salahas G. Angelopoulos K. Zervoudakis G. Georgiou C. D. 《Russian Journal of Plant Physiology》2001,48(2):176-180
When Tris–SO4was used as an extraction buffer for phosphoenolpyruvate carboxylase (PEPC) from leaves of the C4plant Cynodon dactylon(L.) Pers., a higher extractable activity was obtained as compared to Tris–HCl, especially at low phosphoenolpyruvate concentrations and an assay pH of 7.2. The Tris–SO4-extracted PEPC activity was stable under dilution and remained unchanged for at least 24 h at 22°C. This enzyme was less sensitive to both activation by glucose-6-phosphate and inhibition by L-malate. The effects of Tris–SO4could be attributed to its preferential exclusion from the enzymic protein domain and, therefore, to a shifting of this oligomeric enzyme to a more aggregable form that is more stable and active. 相似文献
3.
Feeding K+ or Na+ nitrate salts in vivo enhanced the activity of phosphoenolpyruvate carboxylase (PEPC) in the leaf extracts of Alternanthera pungens (C4 plant) and A. sessilis (C3 species). The increase was more pronounced in A. pungens than in A. sessilis. Chloride salts increased the PEPC activity only marginally. However, the sulfate salts were either not effective or inhibitory. Feeding nitrate modulated the regulatory properties of PEPC in A. pungens, resulting in increased KI (malate) and decreased KA (glucose-6-P). The sensitivity of PEPC to malate, which gives a measure of phosphorylation status of the enzyme, indicated that feeding leaves with NO3– enhanced the phosphorylation status of the enzyme. The reduction in PEPC activity due to cycloheximide treatment suggested that increased synthesis of PEPC protein kinase may be one of the reasons for the enhancement in PEPC activity, after the nitrate feeding. We suggest that nitrate salts could be used as a tool to modulate and analyze the properties of PEPC in C3 and C4 plants. 相似文献
4.
A traditional method is reported for purification of phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) from leaves of Amaranthus hypochondriacus L. with a high yield of 50 %, 135-fold purification, and specific activity of 900 mmol kg–1(protein) s–1. PEPC was purified from light-adapted leaves of A. hypochondriacus, involving 40–60 % ammonium sulphate fractionation, followed by chromatography on columns of DEAE-Sepharose, hydroxylapatite (HAP), and Seralose 6-B. The enzyme appeared as a single band on 10 % SDS-PAGE, with a molecular mass of about 100 kDa. Kinetic studies with purified enzyme confirmed the PEPC to be the light-form of the enzyme. Glycerol generally increased the stability of PEPC. The stability and storage of the purified enzyme was studied at temperatures of 4 °C, –20 °C, and liquid nitrogen. PEPC maintained its activity for up to 3 months upon storage with 50 % (v/v) glycerol in liquid nitrogen. 相似文献
5.
Phosphoenolpyruvate carboxylase (PEP carboxylase EC 4.1.1.31) was extracted from various halophytic, semi-halophytic and glycophytic plant species. When the enzyme of those extracts was substrate protected, and in the presence of 1.6 m M PEP in the reaction mixture, the activity of PEP carboxylase was increased by 100 m M NaCl, and the activity range in the presence of NaCl was expanded. No correlation could be established between the response of the enzyme to ions and various plant characteristics, such as taxonomic status, salt tolerance or carbon fixation pathways. Salt activation of PEP carboxylase was substrate (PEP) dependent, but the minimal substrate concentration varied in different species.
Effects of the stabilizing solutes PEP, betaine, proline and glycerol on the kinetic properties of PEP carboxylase from Zea mays (L.) cv. Hazera were analyzed. In the absence of NaCl the slope of the Hill plot (nIt ) tended to rise in the presence of these solutes. Stabilization of the enzyme with betaine or glycerol caused a decrease in K'. while K' and VTO increased in the presence of PEP. NaCl (100 mM) caused an increase in both K' and Vmax in the protected as well as in the unprotected enzyme, except for PEP protection, where K' decreased somewhat. In the presence of the protectants, glycerol and PEP, the effect of NaCl on Vmax , was 2–4 times higher than its effect on the non-protected enzyme. 相似文献
Effects of the stabilizing solutes PEP, betaine, proline and glycerol on the kinetic properties of PEP carboxylase from Zea mays (L.) cv. Hazera were analyzed. In the absence of NaCl the slope of the Hill plot (n
6.
Assaying for pyruvate,orthophosphate dikinase activity: Necessary precautions with phosphoenolpyruvate carboxylase as coupling enzyme 总被引:1,自引:0,他引:1
Phosphoenolpyruvate carboxylase (EC 4.1.1.31), used as a coupling enzyme in the assay of the pyruvate, orthophosphate dikinase (EC 2.7.9.1) forward reaction, is a serious limiting factor for the overall rate when added at a level of 0.2–0.3 unit/ml of assay medium. Nonlimiting assay conditions are obtained by either increasing the level of the coupling enzyme to 3 units/ml or adding 6mM glucose-6-phosphate as an activator/stabilizer of phosphoenolpyruvate carboxylase.Abbreviations G-6-P
glucose-6-phosphate
- LDH
lactate dehydrogenase
- MDH
malate dehydrogenase
- PEP
phosphoenolpyruvate
- PEPCase
phosphoenolpyruvate carboxylase
- PVP
polyvinylpyrrolidone
- PPDK
pyruvate, orthophosphate dikinase
- U
unit of enzyme activity (mol/min) 相似文献
7.
Bhaskarrao Chinthapalli Chitra Raghavan O. Bläsing P. Westhoff A.S. Raghavendra 《Photosynthetica》2001,38(3):415-419
Phosphoenolpyruvate carboxylase (PEPC) was purified from leaves of four species of Alternanthera differing in their photosynthetic carbon metabolism: Alternanthera sessilis (C3), A. pungens (C4), A. ficoides and A. tenella (C3-C4 intermediates or C3-C4). The activity and properties of PEPC were examined at limiting (0.05 mM) or saturating (10 mM) bicarbonate concentrations.
The Vmax as well as Km values (for Mg2+ or PEP) of PEPC from A. ficoides and A. tenella (C3-C4 intermediates) were in between those of C3 (A. sessilis) and C4 species (A. pungens). Similarly, the sensitivity of PEPC to malate (an inhibitor) or G-6-P (an activator) of A. ficoides and A. tenella (C3-C4) was also of intermediate status between those of C3 and C4 species of A. sessilis and A. pungens, respectively. In all the four species, the maximal activity (Vmax), affinity for PEP (Km), and the sensitivity to malate (KI) or G-6-P (KA) of PEPC were higher at 10 mM bicarbonate than at 0.05 mM bicarbonate. Again, the sensitivity to bicarbonate of PEPC from
C3-C4 intermediates was in between those of C3- and C4-species. Thus the characteristics of PEPC of C3-C4 intermediate species of Alternanthera are intermediate between C3- and C4-type, in both their kinetic and regulatory properties. Bicarbonate could be an important modulator of PEPC, particularly
in C4 plants.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
8.
This article reports marked modulation of the activity and regulatory properties of phosphoenolpyruvate carboxylase (PEPC) by temperature and light in leaf discs as well as leaves of Amaranthus hypochondriacus. The activity of PEPC increased by 1.7-fold at 45 degrees C over 25 degrees C. Warm temperature also stimulated the photoactivation of PEPC. The activation by light of PEPC was 1.9-fold at 25 degrees C and increased to 2.2-fold at 45 degrees C. The sensitivity of PEPC to its inhibitor malate was less and the activation by glucose-6-phosphate (G-6-P) or inorganic phosphate (Pi) was more at 45 degrees C than that at 25 degrees C. These effects of temperature were quite pronounced in light. Similar responses were observed when detached leaves were exposed to varying ambient temperature (dry heat). The activity of PEPC increased by 1.6-fold at 45 degrees C over 25 degrees C in the dark. The activation of PEPC by light was 2.1-fold at 25 degrees C and increased to 2.6-fold at 45 degrees C. Inhibition by malate was less and activation by G-6-P or Pi was more at 45 degrees C than that at 25 degrees C. Thus, there was a marked modulation of not only the activity but also the regulatory properties of the enzyme by temperature and light, independently as well as cooperatively with each other. Further experiments suggested that PEPC was able to memorize to a significant extent the changes induced by warm temperature and that these changes were complemented by subsequent illumination. These effects were not due to changes in PEPC protein levels. We conclude that temperature and light can modulate PEPC activity and regulatory properties not only individually but also in a significantly cooperative manner with each other. As significant increases in temperature are common during daytime in tropical or subtropical conditions, we suggest that the synergistic effects of temperature and light are quite relevant in optimizing the activity of PEPC in leaves of C(4) plants. 相似文献
9.
Martin Denecke Margot Schulz Christoph Fischer Heide Schnabl 《Physiologia plantarum》1993,87(1):96-102
Stomatal phosphoenolpyruvate carboxylase (PEPCase EC 4.1.1.31), extracted from abaxial epidermal peels of Vicia faba L. cv. Frühe Weiβkeimige, was partially purified by ammoniumsulfate precipitation, and molecular sieve (Sepharosc S-400) and ion exchange (DEAE-Sepharose) chromatography. The partially purified enzyme, essentially free of a PEPCase isoform existing in mesophyll and epidermal cells, had a specific activity of 300 nkat mg-1 protein at 25°C. Western immunoblot analysis revealed that the stomatal enzyme had two bands (M: of 110000 and 112000), crossreacting with PEPCase antibodies raised against PEPCase from Ka-lanchoe daigremontiana . The native molecular mass of the enzyme (467000) points to a tetrameric subunit structure. The temperature optimum was found to be 35°C; cold treatments of PEPCase before assaying were accompanied by inactivation. The energy of activation was calculated to 51 kJ mol-1 . The kinetic behaviour of the enzyme at fixed MgCl2 concentrations is characterized by a pH optimum between pH 8.0–8.2 with or without 1 m M malate or 5 m M glucose-6-phosphate (Glc-6-P), but a combination of both effectors resulted in a shift of the optimum to pH 7.6. The enzyme showed a pH sensitive inhibition by 1 m M malate and an activation by Glc-6-P. At low pH (6–7), Glc-6-P was able to compensate for the malate induced inhibition of the enzyme. Malate and Glc-6-P both affected Km(PEP) , drastically and influenced Vmax at pH 7, but not at pH 8.3. The inhibition constant of malate was determined to be 1.2 m M at pH 7. From the Dixon plot, a competitive inhibition of malate was assumed under defined assay conditions. 相似文献
10.
Effects of altered phosphoenolpyruvate carboxylase activities on transgenic C3 plant Solanum tuberosum 总被引:10,自引:0,他引:10
Johanna Gehlen Ralph Panstruga Helga Smets Sabine Merkelbach Michael Kleines Petra Porsch Matthias Fladung Irmgard Becker Thomas Rademacher Rainer E. Häusler Heinz-Josef Hirsch 《Plant molecular biology》1996,32(5):831-848
Phosphoenolpyruvate carboxylase (PEPC) genes from Corynebacterium glutamicum (cppc), Escherichia coli (eppc) or Flaveria trinervia (fppc) were transferred to Solanum tuberosum. Plant regenerants producing foreign PEPC were identified by Western blot analysis. Maximum PEPC activities measured in eppc and fppc plants grown in the greenhouse were doubled compared to control plants. For cppc a transgenic plant line could be selected which exhibited a fourfold increase in PEPC activity. In the presence of acetyl-CoA, a known activator of the procaryotic PEPC, a sixfold higher activity level was observed. In cppc plants grown in axenic culture PEPC activities were even higher. There was a 6-fold or 12-fold increase in the PEPC activities compared to the controls measured in the absence or presence of acetyl-CoA, respectively. Comparable results were obtained by transient expression in Nicotiana tabacum protoplasts. PEPC of C. glutamicum (PEPC C.g.) in S. tuberosum leaf extracts displays its characteristic K
m(PEP) value. Plant growth was examined with plants showing high expression of PEPC and, moreover, with a plant cell line expressing and antisense S. tuberosum (anti-sppc) gene. In axenic culture the growth rate of a cppc plant cell line was appreciably diminished, whereas growth rates of an anti-sppc line were similar or slightly higher than in controls. Malate levels were increased in cppc plants and decreased in antisense plants. There were no significant differences in photosynthetic electron transport or steady state CO2 assimilation between control plants and transformants overexpressing PEPC C.g. or anti-sppc plants. However, a prolonged dark treatment resulted in a delayed induction of photosynthetic electron transport in plants with less PEPC. Rates of CO2 release in the dark determined after a 45 min illumination period at a high proton flux density were considerably enhanced in cppc plants and slightly diminished in anti-sppc plants. When CO2 assimilation rates were corrected for estimated rates of mitochondrial respiration in the light, the electron requirement for CO2 assimilation determined in low CO2 was slightly lower in transformants with higher PEPC, whereas transformants with decreased PEPC exhibited an appreciably elevated electron requirement. The CO2 compensation point remained unchanged in plants (cppc) with high PEPC activity, but might be increased in an antisense plant cell line. Stomatal opening was delayed in antisense plants, but was accelerated in plants overexpressing PEPC C.g. compared to the controls.Abbreviations
CO2 compensation point
- CO2
quantum efficiency of CO2 assimilation
- PSII
quantum efficiency of photosystem II electron transport
- A
CO2 assimilation rate
- Ci
intercellular CO2 concentration; e, electron
- PFD
photon flux density
- QA
primary quinone electron acceptor of photosystem II
- QN
non-photochemical chlorophyll a fluorescence quenching
- qP
photochemical chlorophyll a fluorescence quenching 相似文献
11.
渗透胁迫对杜氏盐藻胞内甘油含量及相关酶活性影响 总被引:8,自引:0,他引:8
杜氏盐藻(Dunaliella salina)是一种抗渗透能力强的单细胞绿藻,甘油在其渗透调节过程中发挥重要作用。本实验对5种不同NaCl浓度条件下,盐藻的生长、细胞内甘油含量及甘油代谢相关酶的活性变化进行了测定。结果表明,NaCl浓度过高或过低均影响盐藻的生长;高渗胁迫条件下甘油含量迅速增加,3-磷酸甘油磷酸酶的活性和二羟丙酮还原酶催化二羟丙酮转化为甘油的活性明显增加;而低渗胁迫条件下的甘油含量会迅速降低,3-磷酸甘油磷酸酶的活性丧失,二羟丙酮还原酶催化甘油转化为二羟丙酮的活性增加。基于此实验结果,我们对盐藻渗透胁迫条件下细胞内的甘油代谢过程与其抗渗透胁迫能力的相关性进行了探讨。 相似文献
12.
Kinetic analyses were performed on the nonphosphorylated and in vitro phosphorylated forms of recombinant Sorghum C4 phospho enolpyruvate carboxylase (C4 PEPC). The native enzyme was purified by immunoaffinity chromatography and its integrity demonstrated by Western blot analyses using anti N- and C-terminus antibodies. At suboptimal pH (7.1 to 7.3) and PEP concentration (2.5 mM), phosphorylation, positive metabolite effectors e.g., glucose-6-phosphate, glycine and dihydroxyacetone-phosphate, or an increase in pH strongly activated the enzyme and lowered the inhibitory effect of L-malate. C4 PEPC phosphorylation strengthened the effect of the positive effectors thereby decreasing further the enzyme's sensitivity to this inhibitor. L-malate also decreased the phosphorylation rate of C4 PEPC, a process antagonized by positive metabolite effectors. This was shown both in vitro, in a reconstituted phosphorylation assay containing the catalytic subunit of a cAMP-dependent protein kinase or the Sorghum leaf PEPC-PK and in situ, during induction of C4 PEPC phosphorylation in mesophyll cell protoplasts. 相似文献
13.
14.
The rate and extent of light activation of PEPC may be used as another criterion to distinguish C3 and C4 plants. Light stimulated phosphoenolypyruvate carboxylase (PEPC) in leaf discs of C4 plants, the activity being three times greater than that in the dark but stimulation of PEPC was limited about 30% over the dark-control in C3 species. The light activation of PEPC in leaves of C3 plants was complete within 10 min, while maximum activation in C4 plants required illumination for more than 20 min, indicating that the relative pace of PEPC activation was slower in C4 plants than in C3 plants. Similarly, the dark-deactivation of the enzyme was also slower in leaves of C4 than in C3 species. The extent of PEPC stimulation in the alkaline pH range indicated that the dark-adapted form of the C4 enzyme is very sensitive to changes in pH. The pH of cytosol-enriched cell sap extracted from illuminated leaves of C4 plants was more alkaline than that of dark-adapted leaves. The extent of such light-dependent alkalization of cell sap was three times higher in C4 leaves than in C3 plants. The course of light-induced alkalization and dark-acidification of cytosol-enriched cell sap was markedly similar to the pattern of light activation and dark-deactivation of PEPC in Alternanthera pungens, a C4 plant. Our report provides preliminary evidence that the photoactivation of PEPC in C4 plants may be mediated at least partially by the modulation of cytosolic pH.Abbreviations CAM
Crassulacean acid metabolism
- G-6-P
glucose-6-phosphate
- PMSF
phenylmethylsulfonyl fluoride
- PEPC
phosphoenolpyruvate carboxylase
- PEPC-PK
phosphoenolpyruvate ca carboxylase-protein kinase 相似文献
15.
The effects of NaCl on the kinetic properties of desalted phosphoenolpyruvate carboxylase (PEP carboxylase, EC 4.1.1.31) from two halophytes, Suaeda monoica Forssk. ex. J.F. Gmel and Chloris gayana Kunth. were investigated. The tolerance of PEP carboxylase to NaCl in the reaction medium depends on the enzyme pre-conditioning as well as on the concentration of its substrate PEP in the assay medium. Addition of PEP to the extraction and the storage medium, stabilizes the enzyme. Such a pre-treated enzyme is inhibited by NaCl in the presence of low concentrations of PEP in the assay medium but is activated by NaCl in the presence of PEP at concentrations above 1.0 m M . NaCl modifies the nH value, K' and Vmax , and seems to act as an allosteric effector. 相似文献
16.
cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene 下载免费PDF全文
Gowik U Burscheidt J Akyildiz M Schlue U Koczor M Streubel M Westhoff P 《The Plant cell》2004,16(5):1077-1090
C(4) photosynthesis depends on the strict compartmentalization of CO(2) assimilatory enzymes. cis-regulatory mechanisms are described that ensure mesophyll-specific expression of the gene encoding the C(4) isoform of phosphoenolpyruvate carboxylase (ppcA1) of the C(4) dicot Flaveria trinervia. To elucidate and understand the anatomy of the C(4) ppcA1 promoter, detailed promoter/reporter gene studies were performed in the closely related C(4) species F. bidentis, revealing that the C(4) promoter contains two regions, a proximal segment up to -570 and a distal part from -1566 to -2141, which are necessary but also sufficient for high mesophyll-specific expression of the beta-glucuronidase reporter gene. The distal region behaves as an enhancer-like expression module that can direct mesophyll-specific expression when inserted into the ppcA1 promoter of the C(3) plant F. pringlei. Mesophyll expression determinants were restricted to a 41-bp segment, referred to as mesophyll expression module 1 (Mem1). Evolutionary and functional studies identified the tetranucleotide sequence CACT as a key component of Mem1. 相似文献
17.
The activity of phosphoenolpyruvate carboxylase (PEPC, EC4.1.1.31) for the C4 photosynthesis is known to be regulated mainly in response to light/dark transitions through reversible phosphorylation by a specific protein kinase (PK). PEPC-PK with an M(r) of 30 kDa was purified about 1.4 million-fold to homogeneity from maize leaves and characterized. The purified PEPC-PK was readily inactivated under mild oxidative conditions, but the activity could be recovered by dithiothreitol (DTT). The recovery by DTT was strongly accelerated by thioredoxin (Trx) from E. coli. Trxs of plant origin such as Trx-m from spinach chloroplast and Trx-h from rice cytoplasm were also effective. These results suggest the possibility of PEPC-PK being redox-regulated via Trx in vivo. 相似文献
18.
Illumination increased markedly the affinity to bicarbonate of phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) in leaves of Amaranthus hypochondriacus L., a C4 plant. When leaves were illuminated, the apparent Km for (HCO3-) of PEPC decreased by about 50% concurrent with a 2- to 5-fold increase in Vmax and 3- to 4-fold increase in Ki for malate. The inclusion of ethoxyzolamide, an inhibitor of carbonic anhydrase, during the assay had no effect on kinetic and regulatory properties of PEPC indicating that carbonic anhydrase was not involved during light-induced sensitization of PEPC to HCO3-. Pretreatment of leaf discs with cycloheximide (CHX), a cytosolic protein synthesis inhibitor, suppressed significantly the light-enhanced decrease in apparent Km (HCO3-). Further, in vitro phosphorylation of purified dark-form PEPC by protein kinase A (PKA) decreased the apparent Km (HCO3-) of the enzyme, in addition increasing Ki (malate) as expected. Such changes, due to in vitro phosphorylation of purified PEPC by PKA, occurred only with wild-type PEPC, but not in the mutant form of maize (S15D) which is already a mimic of the phosphorylated enzyme. These results suggest that phosphorylation of the enzyme is important during the sensitization of PEPC to HCO3- by illumination in C4 leaves. Since illumination is expected to increase the cytosolic pH and the availability of dissolved HCO3- in mesophyll cells, the sensitization by light of PEPC to HCO3- could be physiologically quite significant. 相似文献
19.
A kinetic study of the effects of phosphate and organic phosphates on the activity of phosphoenolpyruvate carboxylase from Crassula argentea 总被引:4,自引:0,他引:4
The effects of phosphate and several phosphate-containing compounds on the activity of purified phosphoenolpyruvate carboxylase (PEPC) from the crassulacean acid metabolism plant, Crassula argentea, were investigated. When assayed at subsaturating phosphoenolpyruvate (PEP) concentrations, low concentrations of most of the compounds tested were found to stimulate PEPC activity. This activation, variable in extent, was found in all cases to be competitive with glucose 6-phosphate (Glc-6-P) stimulation, suggesting that these effectors bind to the Glc-6-P site. At higher concentrations, depending upon the effector molecule studied, deactivation, inhibition, or no response was observed. More detailed studies were performed with Glc-6-P, AMP, phosphoglycolate, and phosphate. AMP had previously been shown to be a specific ligand for the Glc-6-P site. The main effect of Glc-6-P and AMP on the kinetic parameters was to decrease the apparent Km and increase Vmax/Km. AMP also caused a decrease in the Vmax of the reaction. In contrast, phosphoglycolate acted essentially as a competitive inhibitor increasing the apparent Km for PEP and decreasing Vmax/Km. Inorganic phosphate had a biphasic effect on the kinetic parameters, resulting in a transient decrease in Km followed by an increase of the apparent Km for PEP with increasing concentration of phosphate. The Vmax also was decreased with increasing phosphate concentrations. Further, the enzyme appeared to respond to the complex of phosphate with magnesium. In the presence of a saturating concentration of AMP, no activation but rather inhibition was observed with increasing phosphate concentration. This is consistent with the binding of phosphate to two separate sites--the Glc-6-P activation site and an inhibitory site, a phenomenon that may be occurring with other phosphate containing compounds. High concentrations of phosphate with magnesium were found to protect enzyme activity when PEPC, previously shown to contain an essential arginine at the active site, was incubated with the specific arginyl reagent 2,3-butanedione, consistent with the binding of phosphate at the active site. Data were successfully fitted to a rapid equilibrium model allowing for binding of the phosphate-magnesium complex to both the activation site and the active site which accounts for the activation/deactivation observed at low substrate concentrations. Effects on the Vmax of the reaction are also addressed. Factors controlling the differential affinity of various effectors to the active site or activation site appear to include charge distribution, size, and other steric factors. 相似文献
20.
George Zervoudakis Christos D. Georgiou Manolis Mavroidis George Kokolakis Kostas Angelopoulos 《Physiologia plantarum》1997,101(3):563-569
Cytosolic pyruvate kinase (EC 2.7.1.40) from leaves of the C4 plant Cynodon dactylon (L.) Pers. was purified 56-fold to apparent homogeneity by polyethylene glycol fractionation and column chromatography including Q-Sepharose anion exchanger, ADP-Agarose and gel filtration. Nondenaturing PAGE of the final preparation resulted in a single protein band that co-migrated with the pyruvate kinase activity. Gel filtration and SDS-PAGE (± DTT) showed that this enzyme has a molecular mass of 200 kDa and is a homotetramer with a subunit molecular mass of 50 kDa. The subunits are not associated to each other with S-S bonds. The enzyme has a pH optimum of 6.2 and is heat stable. Typical Michaelis-Menten kinetics was obtained for both substrates, PEP and ADP, with Km values of 64 and 235 μ M , respectively. Initial velocity studies indicated a sequential binding of the substrates to the enzyme. 相似文献