首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Replication-defective mutants of plasmid ColE1 were isolated from a chimeric plasmid formed by ligating a temperature-sensitive replication derivative of pSC101, pHSG1, with a ColE1-Tn3-containing plasmid. The replication-defective ColE1 mutants isolated were all spontaneous deletion mutants that had lost the ColE1 replication origin and regions adjacent to it. The extent of a deletion was determined by analyzing restriction endonuclease-generated deoxyribonucleic acid fragments of the ColE1 plasmid component of the chimeras by both agarose and polyacrylamide gel electrophoresis. None of the chimeras containing the replication-defective ColE1 mutants was able to replicate in the presence of chloramphenicol. The expression of ColE1 incompatibility was either markedly reduced or not detectable in the replication mutants isolated.  相似文献   

2.
An Escherichia coli mutant (polA1), defective in deoxyribonucleic acid (DNA) polymerase I, (EC 2.7.7.7) is unable to maintain colicinogenic factor E1 (ColE1), whereas several sex factor plasmids are maintained normally in this strain. polA1 mutant strains containing these sex factor plasmids do not exhibit a readily detectable plasmid-induced polymerase activity. A series of E. coli mutants that are temperature sensitive for ColE1 maintenance, but able to maintain other plasmids, were isolated and shown to fall into two phenotypic groups. Mutants in one group are defective specifically in ColE1 maintenance at 43 C, but exhibit normal DNA polymerase I activity. Mutations in the second group map in the polA gene of E. coli, and bacteria carrying these mutations are sensitive to methylmethanesulfonate (MMS). Revertants that were selected either for MMS resistance or the ability to maintain ColE1 were normal for both properties. The DNA polymerase I enzyme of two of these mutants shows a pronounced temperature sensitivity when compared to the wild-type enzyme. An examination of the role of DNA polymerase I in ColE1 maintenance indicates that it is essential for normal replication of the plasmid. In addition, the presence of a functional DNA polymerase I in both the donor and recipient cell is required for the ColV-promoted conjugal transfer of ColE1 and establishment of the plasmid in the recipient cell.  相似文献   

3.
4.
Temperature-sensitive mutants of Escherichia coli defective in the replication of the plasmid colicinogenic factor E1 (ColE(1)) were isolated following mutagenesis of E. coli K12 strain carrying the ColE(1) factor. Following the mutagenic treatment an enrichment procedure utilizing the replacement of thymine with bromouracil in the ColE(1) DNA duplicated at the restrictive temperature was used. The mutants isolated following this enrichment step were the result of a mutation event either in the host chromosome or in the ColE(1) plasmid. The host mutants fell into three phenotypic classes based on the effect each mutation had on the maintenance of a variety of other extrachromosomal DNA elements. Phenotypic class I mutations affected all E. coli plasmids, both the I and F sex factor types as well as the ColE(1) factor. Phenotypic class II mutations affected the maintenance of the ColE(1) and the F sex factor type plasmids and not the I type, while phenotypic class III mutations affected only ColE(1) replication. None of these mutations was found to have a significant effect on the replication of the E. coli chromosome. The plasmid-linked mutations fell into two phenotypic classes on the basis of the ability of the Flac episome to complement the mutation in the ColE(1) plasmid.  相似文献   

5.
Deletion mutants of plasmid ColE1 that involve the replication origin and adjacent regions of the plasmid have been studied to determine the mechanism by which those mutations affect the expression of plasmid incompatibility. It was observed that (i) a region of ColE1 that is involved in the expression of plasmid incompatibility lies between base pairs -185 and -684; (ii) the integrity of at least part of the region of ColE1 DNA between base pairs -185 and -572 is essential for the expression of ColE1 incompatibility; (iii) the expression of incompatibility is independent of the ability of the ColE1 genome to replicate autonomously; (iv) plasmid incompatibility is affected by plasmid copy number; and (v) ColE1 plasmid-mediated DNA replication of the lambda phage-ColE1 chimera lambda imm434 Oam29 Pam3 ColE1 is inhibited by ColE1-incompatible but not by ColE1-compatible plasmids.  相似文献   

6.
ColE1 copy number mutants.   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

7.
Host mutations in Escherichia coli K12 selected for the temperature-sensitive replication of the bacterial plasmid colicinogenic factor E(1) (ColE(1)) exhibit a pleiotropic effect with respect to the effect of the mutation on other extra-chromosomal elements. The mutations also vary with respect to the time of incubation of the cells at 43 degrees C required for complete cessation of ColE(1) DNA synthesis. While the synthesis of the bacterial chromosome appears unaffected, supercoiled ColE(1) DNA replication stops immediately in some mutants and gradually decreases during several generations of cell growth before stopping in others. Mutations isolated in the ColE(1) plasmid resulted in only a gradual cessation of ColE(1) DNA synthesis over several generations of cell growth at 43 degrees C. Conjugal transfer of the ColE(1) and ColV factors occurs normally in the host mutants when the transfer is carried out at the permissive temperature; however, the presence of a group I mutation in the donor cell prohibited conjugal transfer of either plasmid DNA at 43 degrees C to a normal recipient cell. Similarly, the presence of this mutation in the recipient prevented the establishment of ColE(1) or ColV in the mutant recipient cell upon conjugation with a normal donor at 43 degrees C. Various host ColE(1) replication mutants carrying either ColE(1) or ColE(2) were also defective in the mitomycin C-induced production of colicin E(1) or colicin E(2) at 43 degrees C. The majority of the host mutations examined exhibited a temperature sensitivity to growth in deoxycholate in addition to the inhibition of plasmid DNA replication, suggesting a membrane alteration in these mutants when grown at the restrictive temperature.  相似文献   

8.
9.
Supercoiled plasmid molecules sensitive to nicking by RNase or alkali have been shown to accumulate during replication of colicinogenic factor E1 (ColE1) in Escherichia coli in the presence of chloramphenicol. The possibility that this sensitivity is due to the covalent integration of RNA molecules during the synthesis of plasmid DNA is supported by the demonstration that (a) strands of supercoiled ColE1 newly replicated in the presence of chloramphenicol exhibit sensitivity to RNase and alkali treatment, while (b) RNase- and alkali-resistant circular strands of plasmid DNA synthesized either before or after the addition of chloramphenicol remain resistant during subsequent replication of the plasmid in the presence of chloramphenicol. Furthermore, newly made plasmid DNA strands cannot act as templates for further rounds of replication if they possess an RNA segment. The existence of a repair mechanism for the removal of the RNA segment from supercoiled ColE1 DNA molecules was demonstrated by pulse-chase experiments. It was observed that the proportion of RNase-sensitive molecules is considerably higher in pulse-labeled as compared to continuously labeled ColE1 DNA synthesized in the presence of chloramphenicol, and the proportion of pulse-labeled ColE1 DNA that is RNase sensitive is greatly reduced during a chase period. Removal of the RNA segment is also carried out effectively at the restrictive temperature in temperature-sensitive DNA polymerase I mutants. In a survey of other bacterial mutants defective in the repair of damaged DNA, a substantial increase in the rate of accumulation of RNase-and alkali-sensitive supercoiled ColE1 DNA in the presence of chloramphenicol was observed in recBC and uvrA mutants in comparison with the wild-type strains.  相似文献   

10.
Plasmid pAS8Tcs rep-1::Tn7 (abbreviated pAS8Rep-1), a derivative of the RP4-ColE1 hybrid plasmid pAS8 displaying ColE1-dependent replication/maintenance, was found capable of the introduction of transposon Tn7 into the genome of phytopathogenic Pseudomonas. The plasmid is potentially useful as a general purpose suicidal Tn carrier for bacteria that do not support stable replication/maintenance of ColE1 but are within the conjugational host range of RP4.  相似文献   

11.
Cloning of the exonuclease III gene of Escherichia coli   总被引:7,自引:0,他引:7  
S G Rogers  B Weiss 《Gene》1980,11(3-4):187-195
  相似文献   

12.
The region of R plasmid NR1 that is capable of mediating autonomous replication was cloned by using EcoRI, SalI, and PstI restriction endonucleases. The only EcoRI fragment capable of mediating autonomous replication in either a pol+ or a polA host was fragment B. SalI fragment E joined in native orientation with the part of SalI fragment C that overlapped with EcoRI fragment B, and also two contiguous PstI fragments of sizes 1.6 and 1.1 kilobases from EcoRI fragment B-mediated autonomous replication. When these individual SalI fragments were cloned onto plasmid pBR313 or the individual PstI fragments were cloned onto plasmid pBR322, none of these single fragments could rescue the replication of the ColE1-like vectors in a polA host, even in the presence of a compatible "helper" plasmid derived from a copy mutant of NR1. In contrast to the results reported for closely related R plasmid R6, EcoRI fragment A of NR1 could not rescue the replication of ColE1 derivative RSF2124 in a polA(Am) mutant or in a polA(Ts) mutant at the restrictive temperature. Although capable of autonomous replication, EcoRI fragment B of NR1 (or smaller replicator fragments cloned from it by using other restriction enzymes) was not stably inherited in the absence of selection for the recombinant plasmid. When EcoRI fragment B was ligated to EcoRI fragment A of NR1, the recombinant plasmid was stable. Thus, EcoRI fragment A contained a stability (stb) function. The stb function did not act in trans since EcoRI fragment B was not stably inherited when a ColE1 derivative (RSF2124) ligated to EcoRI fragment A was present in the same cell. A cointegrate plasmid consisting of EcoRI fragment B of NR1 ligated to RSF2124 was also not stably inherited, whereas only EcoRI fragment B was unstable when both RSF2124 and EcoRI fragment B coexisted as autonomous plasmids in the same cell. The incompatibility gene of NR1 was shown to be located within the region of overlap between SalI fragment E and the PstI 1.1-kilobase fragment. A copy mutant of NR1 (called pRR12) was found to have greatly reduced incompatibility with NR1; this Inc- phenotype is cis dominant.  相似文献   

13.
recB recJ mutants ofSalmonella typhimurium are deficient in transduction of chromosomal markers and ColE1-derived plasmids, and also in the maintenance of ColE1 and F plasmids. Plasmid instability is less severe inrecD recJ strains; ColE1 plasmid DNA preparations from these strains show an increased yield of high molecular weight (HMW) linear multimers and a concomitant reduction in plasmid monomers compared to the wild type. Plasmids remain unstable inrecA recD recJ mutants; since these do not produce HMW linear concatemers, we propose that a decrease in monomer production leads to plasmid instability.recB recJ strains also display decreased viability, a component of which may be related to their deficiency in DNA repair. In contrast to their severe defects in recombination, DNA repair and plasmid maintenance,recB recJ mutants ofS. typhimurium behave similarly to the wild type in the segregation of chromosome duplications. The latter observation suggests that neither RecBCD nor RecJ functions are required for chromosomal recombination events that do not involve the use of free ends as recombination substrates.  相似文献   

14.
recB recJ mutants ofSalmonella typhimurium are deficient in transduction of chromosomal markers and ColE1-derived plasmids, and also in the maintenance of ColE1 and F plasmids. Plasmid instability is less severe inrecD recJ strains; ColE1 plasmid DNA preparations from these strains show an increased yield of high molecular weight (HMW) linear multimers and a concomitant reduction in plasmid monomers compared to the wild type. Plasmids remain unstable inrecA recD recJ mutants; since these do not produce HMW linear concatemers, we propose that a decrease in monomer production leads to plasmid instability.recB recJ strains also display decreased viability, a component of which may be related to their deficiency in DNA repair. In contrast to their severe defects in recombination, DNA repair and plasmid maintenance,recB recJ mutants ofS. typhimurium behave similarly to the wild type in the segregation of chromosome duplications. The latter observation suggests that neither RecBCD nor RecJ functions are required for chromosomal recombination events that do not involve the use of free ends as recombination substrates.  相似文献   

15.
Construction and characterization of a class of multicopy plasmid cloning vehicles containing the replication system of miniplasmid P15A are described. The constructed plasmids have cleavage sites within antibiotic resistance genes for a variety of commonly employed site-specific endonucleases, permitting convenient use of the insertional inactivation procedure for the selection of clones that contain hybrid DNA molecules. Although the constructed plasmids showed DNA sequence homology with the ColE1 plasmid within the replication region, were amplifiable by chloramphenicol or spectinomycin, required DNA polymerase I for replication, and shared other replication properties with ColE1, they were nevertheless compatible with ColE1. P15A-derived plasmids were not self-transmissible and were mobilized poorly by Hfr strains; however, mobilization was complemented by the presence of a ColE1 plasmid within the same cell.  相似文献   

16.
Starting from pAO3, a plasmid consisting of a quarter of colicinogenic factor E1 (ColE1) DNA, various small ColE1 derivatives were constructed by in vitro recombination and their ability to achieve autonomous replication was examined. The 436 base pair HaeIII-C fragment of pAO3 contained information for replication when it was recombined with the non-replicating Amp fragment. However, when it was connected to other DNA fragments, the resulting hybrid molecules were not isolated as plasmids. The present results indicate that the additional region of about 240 base pairs next to the HaeIII-C fragment of ColE1 is also essential for the maintenance of a plasmid state. Moreover, using various small ColE1 derivatives, the DNA region responsible for the interference and incompatibility functions of ColE1 DNAs was located. The results indicate that the interference and incompatibility functions are coded by the same ColE1 DNA segment and are not essential for the maintenance of a plasmid state.  相似文献   

17.
Transmission of ColE1/pMB1-derived plasmids, such as pBR322, from Escherichia coli donor strains was shown to be an efficient way to introduce these plasmids into Agrobacterium. This was accomplished by using E. coli carrying the helper plasmids pGJ28 and R64drd11 which provide the ColE1 mob functions and tra functions, respectively. For example, the broad host-range replication plasmid, pGV1150, a co-integrate plasmid between pBR322 and the W-type mini-Sa plasmid, pGV1106, was transmitted from E. coli to A. tumefaciens with a transfer frequency of 4.5 x 10(-3). As pBR322 clones containing pTiC58 fragments were unable to replicate in Agrobacterium, these clones were found in Agrobacterium only if the acceptor carried a Ti plasmid, thus allowing a co-integration of the pBR322 clones with the Ti plasmid by homology recombination. These observations were used to develop an efficient method for site-specific mutagenesis of the Ti plasmids. pTiC58 fragnents, cloned in pBR322, were mutagenized in vitro and transformed into E. coli. The mutant clones were transmitted from an E. coli donor strain containing pGJ28 and R64drd11 to an Agrobacterium containing a target Ti plasmid. Selecting for stable transfer of the mutant clone utilizing its antibiotic resistance marker(s) gave exconjugants that already contained a co-integrate plasmid between the mutant clone and the Ti plasmid. A second recombination can dissociate the co-integrate plasmid into the desired mutant Ti plasmid and a non-replicating plasmid formed by the vector plasmid pBR322 and the target Ti fragment. These second recombinants lose the second plasmid and they are identified by screening for the appropriate marker combination.  相似文献   

18.
Summary After transfer from a mutagenized host, twenty one ColE2 plasmid mutants were isolated after screening 10,000 clones for abnormal colicin production. Analysis by SDS polyacrylamide slab gel electrophoresis of proteins synthesized after mitomycin C-induction of mutant cultures, indicates that all but two of the mutations are in the structural gene for colicin E2. Of these, nine produce fragments of colicin in both whole cells and minicells and some are suppressed by nonsense suppressors.Studies with a nonsense mutant producing only a small colicin E2 fragment (ColE2-421) suggest that colicin E2 is not involved in plasmid DNA replication, in the control of its own synthesis, or required for cell death when cells become committed to colicin production. The two plasmid mutants outside the colicin gene segregate plasmid-free cells at 33°, 37° and 43°. One segregates fairly rapidly (about 4% per generation) though the colicin-producing cells make normal amounts of colicin, whilst the other segregates more slowly and the colicin-producing cells make much reduced amounts of colicin.  相似文献   

19.
Hybrid plasmids were constructed in vitro by linking the Inc P-1 broad host range plasmid RK2 to the colicinogenic plasmid ColE1 at their EcoRI endonuclease cleavage sites. These plasmids were found to be immune to colicin E1, non-colicin-producing, and to exhibit all the characteristics of RK2 including self-transmissibility. These joint replicons have a copy number of 5 to 7 per chromosome which is typical of RK2, but not ColE1. Unlike ColE1, the plasmids will not replicate in the presence of chloramphenicol and are maintained in DNA polymerase I mutants of Escherichia coli. In addition, only RK2 incompatibility is expressed, although functional ColE1 can be rescued from the hybrids by EcoRI cleavage. This suppression of ColE1 copy number and incompatibility was found to be a unique effect of plasmid size on ColE1 properties. However, the inhibition of ColE1 or ColE1-like plasmid replication in chloramphenicol-treated cells is a specific effect of RK2 or segments of RK2 (Cri+ phenotype). This phenomenon is not a function of plasmid size and requires covalent linkage of RK2 DNA to ColE1. A specific region of RK2 (50.4 to 56.4 × 103 base-pairs) cloned in the ColE1-like plasmid pBR313 was shown to carry the genetic determinant(s) for expression of the Cri+ phenotype.  相似文献   

20.
Mutants of the dnaA, dnaC, dnaD, polC, dnaF and dnaG gene loci were tested for their capacity for colicinogenic plasmid E1 (ColE1) replication at a non-permissive temperature. It was found that ColE1 replication was independent of the dnaA gene function and dependent on dnaC, D, F and G. ColE1 replication in the polC mutant E486 continued for several hours but at a greatly reduced rate. No effect was found of the dnaG mutation on thymine-deprivation-induced "priming" of ColE1 replication at the non-permissive temperature. The mutants also were tested for aberrant replication intermediates of plasmid DNA as well as a temperature sensitive supercoiled DNA-protein relaxation complex. RNA-containing supercoils were found to accumulate in a poIC mutant also blocked for protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号