首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Target of rapamycin signaling is a conserved, essential pathway integrating nutritional cues with cell growth and proliferation. The target of rapamycin kinase exists in two distinct complexes, TORC1 and TORC2. It has been reported that protein phosphatase 2A (PP2A) and the Far3-7-8-9-10-11 complex (Far complex) negatively regulate TORC2 signaling in yeast. The Far complex, originally identified as factors required for pheromone-induced cell cycle arrest, and PP2A form the yeast counterpart of the STRIPAK complex, which was first isolated in mammals. The cellular localization of the Far complex has yet to be fully characterized. Here, we show that the Far complex localizes to the endoplasmic reticulum (ER) by analyzing functional GFP-tagged Far proteins in vivo. We found that Far9 and Far10, two homologous proteins each with a tail-anchor domain, localize to the ER in mutant cells lacking the other Far complex components. Far3, Far7, and Far8 form a subcomplex, which is recruited to the ER by Far9/10. The Far3-7-8- complex in turn recruits Far11 to the ER. Finally, we show that the tail-anchor domain of Far9 is required for its optimal function in TORC2 signaling. Our study reveals tiered assembly of the yeast Far complex at the ER and a function for Far complex''s ER localization in TORC2 signaling.  相似文献   

6.
7.
8.
A number of cyclins have been described, most of which act together with their catalytic partners, the cyclin-dependent kinases (Cdks), to regulate events in the eukaryotic cell cycle. Cyclin C was originally identified by a genetic screen for human and Drosophila cDNAs that complement a triple knock-out of the CLN genes in Saccharomyces cerevisiae. Unlike other cyclins identified in this complementation screen, there has been no evidence that cyclin C has a cell-cycle role in the cognate organism. Here we report that cyclin C is a nuclear protein present in a multiprotein complex. It interacts both in vitro and in vivo with Cdk8, a novel protein-kinase of the Cdk family, structurally related to the yeast Srb10 kinase. We also show that Cdk8 can interact in vivo with the large subunit of RNA polymerase II and that a kinase activity that phosphorylates the RNA polymerase II large subunit is present in Cdk8 immunoprecipitates. Based on these observations and sequence similarity to the kinase/cyclin pair Srb10/Srb11 in S. cerevisiae, we suggest that cyclin C and Cdk8 control RNA polymerase II function.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Reconstitution, activities, and structure of the eukaryotic RNA exosome   总被引:4,自引:0,他引:4  
Liu Q  Greimann JC  Lima CD 《Cell》2006,127(6):1223-1237
The RNA exosome is a multisubunit 3' to 5' exoribonuclease complex that participates in degradation and processing of cellular RNA. To determine the activities and structure of the eukaryotic exosome, we report the reconstitution of 9-subunit exosomes from yeast and human and reconstitution of 10- and 11-subunit exosomes from yeast. Comparative biochemical analysis between purified subunits and reconstituted exosomes using AU-rich, polyadenylated (poly[A]), generic, and structured RNA substrates reveals processive phosphorolytic activities for human Rrp41/Rrp45 and the 9-subunit human exosome, processive hydrolytic activities for yeast Rrp44 and the yeast 10-subunit exosome, distributive hydrolytic activities for Rrp6, and processive and distributive hydrolytic activities for the yeast 11-subunit exosome. To elucidate the architecture of a eukaryotic exosome, its conserved surfaces, and the structural basis for RNA decay, we report the X-ray structure determination for the 286 kDa nine-subunit human exosome at 3.35 A.  相似文献   

19.
Yeast Saccharomyces cerevisiae has five cyclin-dependent protein kinases (Cdks), Cdc28, Srb10, Kin28, Ctk1, and Pho85. Any of these Cdks requires a cyclin partner for its kinase activity and a Cdk/cyclin complex, thus produced, phosphorylates a set of specific substrate proteins to exert its function. The cyclin partners of Srb10, Kin28, and Ctk1 are Srb11, Ccl1, and Ctk2, respectively. In contrast to the fact that each of Srb10, Kin28, and Ctk1 has a single cyclin partner, Cdc28 and Pho85 are polygamous; Cdc28 has 9 cyclins and Pho85 has 10 cyclins. Among these Cdks, Kin28 and Cdc28 are essential Cdks and it is well known that Cdc28 kinase plays a major role in regulating cell cycle progression. Pho85 is a non-essential Cdk but its absence causes a broad spectrum of phenotypes such as constitutive expression of PHO5, inability to utilize non-fermentable carbon sources, defects in cell cycle progression, and so on. Pho85 homologues are expanding to higher eukaryotes. Pho85 is most closely related with Cdk5 in terms of the amino acid sequence. The functional analysis of the domains of Pho85 also supports the close relationship between Pho85 and Cdk5, in which it was shown that the method of regulation of these two kinases is similar. Furthermore, forced expression of the mammalian CDK5 gene in a pho85Delta strain canceled a part of the pho85 defects. In this review, we summarize the functions of both Pho85/cyclin kinase and emphasize yeast Pho85 as valuable model systems to elucidate the functions of their homologues in other organisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号