首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of collagen gels on the orientation of the polarity of epithelial thyroid cells in culture was studied under four different conditions. (a) Isolated cells cultured on the surface of a collagen gel formed a monolayer. The apical pole was in contact with the culture medium and the basal membrane was attached to the substratum. (b) Isolated cells embedded inside the gel organized within 8 into follicles. The basal pole was in contact with collagen and the apical pole was oriented towards the interior of the follicular lumen. (c) Cells were first organized into floating vesicles, structures in which the apical surface is in contact with the culture medium, and the vesicles were embedded inside the collagen gel. After 3 d, cell polarity was inverted, the apical pole being oriented towards the cavity encompassed by cells. Vesicles had been transformed into follicles. (d) Monolayers formed on collagen gels as in a were overlaid with a second layer of collagen, which was polymerized in contact with the apical cell surface. A disorganization of the continuous pavement occurred within 24 h; cells attached to the upper layer of collagen and reorganized into follicles in the collagen sandwich within 4-8 d. A similar process occurred when the monolayer was grown on plastic and overlaid with collagen, or grown on collagen and covered with small pieces of glass cover slips. No reorganization was observed between two glass surfaces. In conclusion, first, a basal pole was always formed in the area of contact between the cell membrane and an adhesive surface and, second, the interaction of a preformed apical pole with an adhesive surface was not compatible with the stability of this domain of the plasma membrane. The interaction of the cell membrane with extracellular components having adhesive properties appears to be a determinant factor in the orientation and stabilization of epithelial cell polarity.  相似文献   

2.
Actin, myosin, and the actin-associated proteins tropomyosin, alpha-actinin, vinculin, and villin were localized in acinar cells of rat and bovine pancreas, parotid, and prostate glands by means of immunofluorescent staining of both frozen tissue sections and semithin sections of quick-frozen, freeze-dried, and plastic-embedded tissues. Antibodies to actin, myosin, tropomyosin, alpha-actinin, and villin reacted strongly with a narrow cytoplasmic band extending beneath the luminal border of acinar cells. The presence of villin, which has so far been demonstrated only in intestinal and kidney brush border, was further confirmed by antibody staining of blotted electrophoresis gels of whole acinar cell extracts. Fluorescently labelled phalloidin, which reacts specifically with F-actin, gave similar staining, within the cell apex to that obtained with antibodies to actin, myosin, tropomyosin, alpha-actinin, and villin. In contrast, immunostaining with antibodies to vinculin was restricted to the area of the junctional complex. Ultrastructurally, the apical immunoreactive band corresponded to a dense web composed of interwoven microfilaments, which could be decorated with heavy meromyosin. Outside this apical terminal web, antibodies to myosin and tropomyosin gave only a weak immunostaining (confined to the lateral cell borders) whereas antibodies to actin and alpha-actinin led to a rather strong bead-like staining along the lateral and basal cell membrane most probably marking microfilament-associated desmosomes. Anti-villin immunofluorescence was confined to the apical terminal web. It is suggested that the apical terminal web is important for the control of transport and access of secretory granules to the luminal plasma membrane and that villin, which is known to bundle or sever actin filaments in a Ca(++)-dependent manner, might participate in the regulation of actin polymerization within this strategically located network of contractile proteins.  相似文献   

3.
Summary Neuroepithelial bodies (NEB) were identified in the lung of Bufo marinus. The characteristics of the cells and their innervation were studied with electron and fluorescence microscopy before and after close vagosympathetic denervation. The bodies consist of low columnar cells which rest on the epithelial basal lamina. The majority of the cells do not reach the lumen of the lung (basal cells); the few which do (apical cells) are bordered by microvilli and possess a single cilium. The neuroepithelial cell cytoplasm contains a variety of organelles the most characteristic of which are dense cored vesicles. Microspectrofluorometry and electron microscopic cytochemistry indicate significant quantities of 5-hydroxytryptamine in these cells. The neuroepithelial bodies could be divided into three groups on the basis of their innervation: 1) About 60% of the NEBs are innervated solely by nerve fibres containing agranular vesicles which form reciprocal synapses; 2) about 20% are innervated solely by adrenergic nerve fibres which form distinct synaptic contacts; and 3) the remaining 20% are innervated by both types of nerve fibres. It is proposed that the NEBs are receptors monitoring intrapulmonary PCO 2 and so leading to modulation of activity in afferent nerve fibres (type containing agranular vesicles). The presence of NEBs solely with an adrenergic (efferent) innervation poses a problem with this interpretation.  相似文献   

4.
The midgut epithelium of larval and early postlarval brown shrimp has been studied with light and electron microscopy. Ultrastructurally the features of the midgut do not change during these stages of development. On the basis of electron density, two epithelial cell types can be distinguished, and these are referred to as light and dark cells. The dark cells contain more rough endoplasmic reticulum and more free ribosomes than the light cells. Mitochondria in the dark cells have a matrix which is less electron dense than the mitochondrial matrix of the light cells. Both cell types have a microvillous border with a surface coat. The microvilli lack microfilaments within their core, and a terminal web is not differentiated in the stages examined. Tubular smooth endoplasmic reticulum is abundant in the basal portions of the cells. Electron dense, membrane bound vesicles are consistently seen in association with the Golgi apparatus, apical cell surface, and gut lumen and therefore are believed to be secretory granules. Cells in the anterior portion of the midgut often contain very large lipid droplets in the cytoplasm.  相似文献   

5.
Summary The columnar cells in regions 3 and 4 of the ductus epididymidis in rabbits display ultrastructural features characteristic of absorbing cells. The stereocilia show basal anastomoses and often a fibrillar core continuous with a fibrillar web in the apical cytoplasm. Numerous invaginations of the slightly downy apical cell membrane and many thick-walled apical vesicles and vacuoles contain an opaque substance similar to that seen in the lumen. The vacuoles often contain small vesicles or bodies, probably formed from the vacuolar wall by budding. Numerous bodies or vacuoles with moderately dense contents are seen in the Golgi area and in the supranuclear and intranuclear cytoplasm in region 3. In region 4 they are denser and mainly seen above the nucleus. A high acid phosphatase activity was demonstrated in most dense and some light bodies. India ink introduced by way of the rete testis was taken up from the lumen into apical invaginations, vesicles and vacuoles and slowly transferred to denser bodies below the Golgi apparatus.These observations are interpreted as evidence for a resorption of substances from the lumen by a pinocytotic process, and for their storage and perhaps digestion in the dense bodies, which appear to have a lysosomal character. The Golgi apparatus is large with many vesicles of two types and empty cisternae but few typical Golgi vacuoles. The partly granular endoplasmic reticulum is very well developed and has opaque contents. Microtubules run from the terminal bar region into the Golgi area. Thick-walled vesicles occur throughout the cytoplasm, sometimes in continuity with the cell membrane. The basal parts of the cell borders often interdigitate.Supported by a grant from the Swedish State Medical Research Council.  相似文献   

6.
The caecal epithelium of Calicotyle kröyeri consists of a single cell type which functions in the uptake and intracellular digestion of host epidermis and associated mucus. Each cell is columnar with a small basal nucleus and prominent nucleolus. Perinuclear cytoplasm contains narrow profiles of GER and mitochondria with numerous cristae. Golgi complexes are small and indistinct. Most of the cell is filled with vacuoles of heterogeneous content, the largest occupying the cell apex. There is in each cell an apical endocytotic complex comprising cell surface lamellae, apical vesicles and numerous tubular invaginations of the plasmalemma. The limiting membrane of all these components is structurally modified and bears a highly organized array of peg-like structures on its luminal surface. The complex is capable of ingesting particulate food material from the gut lumen for transfer, via vesicles, to the vacuoles for digestion. Most of the vacuoles represent the digestive elements of the cell and, histochemically, are reactive for protein, mucus and carboxylic esterases. Indigestible residues and lipid droplets accumulate in the large apical vacuole and are periodically released to the lumen by exocytosis. Small, undifferentiated caecal cells were occasionally observed in the epithelium, but their development has not been recorded.  相似文献   

7.
The protonephridial system consists of terminal cell, protonephridial capillary, protonephridial tubule and efferent duct. The terminal cell is an elongated, thin-walled, fenestrated basket containing a ciliary flame circumscribed by a palisade of straight microvilli. The filtration area is confined to the terminal cell and consists of slits bridged by a filtration membrane. The cilia, as well as the microvilli, projects into the proximal bell-shaped part of the thin-walled protonephridial capillary. The terminal cells are often found in pairs connected to the same capillary, which has a very narrow lumen. The proximal part of the thick-walled, convoluted protonephridial tubule is ciliated and shows characteristic foldings of the luminal plasma membrane and numerous small vesicles in the cytoplasm. The cells of the following, non-ciliated part of the tubule have interdigitating lateral surfaces and the bases deeply invaginated to form compartments with numerous mitochondria; in the cytoplasm are many large vesicles, possibly containing lipid droplets, and small amounts of glycogen. The distal protonephridial tubule resembles various epithelia with an osmoregulatory function, including the vertebrate nephron.  相似文献   

8.
Initial stimulation of the rat plantar sweat gland with pilocarpine caused a variable degree of distension of the apical membrane of the secretory cell. This appeared to be a process of filtration of secretory cell cytoplasm through the apical terminal web. Further stimulation resulted in luminal dilatation, cytoplasmic depletion, and morbidity of some cells. These morphological changes in the footpad gland, which thus can no longer be considered as eccrine, were accompanied by a fall in potassium and a rise in sodium concentration within the secretory cells. The mode of secretion induced by pharmacological stimulation was fundamentally the same as that in the glands of species responsive to thermal stimulation.  相似文献   

9.
Summary During the course of chromate-induced acute renal failure (ARF), urinary kallikrein excretion (UKE), a serine protease of distal tubule origin in the normal animal was decreased but tissue kallikrein concentration (TK) was increased, suggesting intracellular accumulation. Severe morphological lesions were observed in proximal tubular cells which showed brush border damage, numerous vesicles, necrosis and liquefaction of cytoplasmic material. Less marked changes were also present in distal tubules: large apical vacuoles and swollen mitochondria. Compared to normal rats, using the peroxidase-anti-peroxidase (PAP) method for light microscopy, greater kallikrein immunoreactivity was detected along the apical pole in distal tubules, on the membrane and in the cytoplasm as well as in the glomerulus. By immunoelectron microscopy, kallikrein was found in the connecting apical area, along the luminal, basolateral and basement membranes, in some vesicles, in Golgi apparatus and on ribosomes bound to endoplasmic reticulum. In the glomerulus, kallikrein was observed along the luminal surface of endothelial cell. After 14 days a progressive recovery of renal function, tissue morphology and UKE towards control values was observed. The presence of immunoreactive kallikrein in the glomerulus observed only during ARF confirmed the previous demonstration of kallikrein mRNA in the glomerulus. The cellular accumulation results more likely from a dysfunction of a general secretory mechanism due to cell membrane alteration than from a specific inhibition of kallikrein production and secretion.  相似文献   

10.
The occurrence and distribution of neuroepithelial endocrine (NEE) cells was demonstrated electron- and fluorescence-microscopically in the lungfish Protopterus aethiopicus. They were only found to occur solitarily in the basal part of the cilio-mucous epithelium which is restricted to the pneumatic duct and adjacent parts of the common anterior chamber. The NEE cells show a yellow, formaldehyde-induced fluorescence. Electron-microscopically, all the NEE cells are characterized by membrane-bound electron-dense secretory granules with varying diameters, ranging from 75 to 150 nm. These granules are distributed throughout the cytoplasm with a higher concentration in the basal region. The NEE cells were regularly found to contain paracrystalline inclusions with a tubule-like substructural arrangement. A small part of the NEE cells appeared to reach the luminal surface by means of a long slender process bearing specialized beaded microvilli on its apical pole. Intraepithelial nerve fibres, with the ultrastructural characteristics of afferent fibres, were found running parallel to the airway surface. Nerve profiles, largely resembling the latter, can be seen in the proximity of the basolateral plasma membrane of the NEE cells. In addition, nerve terminals containing an aggregation of small clear vesicles are in close contact with the NEE cells. In conclusion, it appears that, as has so far been assumed in higher vertebrates, the NEE cells in the lung of Protopterus may perceive changes in the airway gases whereupon they could respond by releasing a chemical modulator, influencing contacting afferent nerve terminals or nearby smooth muscle bundles. Furthermore, intraepithelial nerve fibres or NEE cells might be stretch-sensitive.  相似文献   

11.
The central aspect of epithelial cells is their polarized structure, characterized by two distinct domains of the plasma membrane, the apical and the basolateral membrane. Apical protein sorting requires various signals and different intracellular routes to the cell surface. The first apical targeting motif identified is the membrane anchoring of a polypeptide by glycosyl-phosphatidyl-inositol (GPI). A second group of apical signals involves N- and O-glycans, which are exposed to the luminal side of the sorting organelle. Sucrase-isomaltase (SI) and lactase-phlorizin hydrolase (LPH), which use separate transport platforms for trafficking, are two model proteins for the study of apical protein sorting. In contrast to LPH, SI associates with sphingolipid/cholesterol-enriched membrane microdomains or "lipid rafts". After exit form the trans-Golgi network (TGN), the two proteins travel in distinct vesicle populations, SAVs (SI-associated vesicles) and LAVs (LPH-associated vesicles) . Here, we report the identification of the lectin galectin-3 delivering non-raft-dependent glycoproteins in the lumen of LAVs in a carbohydrate-dependent manner. Depletion of galectin-3 from MDCK cells results in missorting of non-raft-dependent apical membrane proteins to the basolateral cell pole. This suggests a direct role of galectin-3 in apical sorting as a sorting receptor.  相似文献   

12.
Monoclonal antibodies binding to the rod portion of brush border myosin were used to localize myosin in chicken intestinal brush border cells by indirect immunofluorescence. Isolated cells, or cells still attached in a sheet, were analyzed by conventional epifluorescence microscopy, which showed that most of the immunoreactive myosin is localized in the apical brush border (terminal web), and in a basal region. In addition, a weak, diffuse granular and rod-like labeling was detected throughout the cell body. Using the laser-scanning confocal microscope (White et al., 1987), a more precise localization of the myosin within the terminal web and the cell body was obtained. In the terminal web, most of the myosin was concentrated in a circumferential ring, below the plasma membrane, and the remaining myosin was found in the inter-rootlet area. These two populations of myosin were topologically strictly related, since they were found in the same optical sections. In the cell body, as well as in the basal region, the myosin was found to be associated with the outer limiting membrane of the cell, in a cortical location, whereas essentially no myosin was detected in the cytoplasm.  相似文献   

13.
Summary The ultimobranchial glands of the chicken were examined by electron microscopy and immunocytochemistry using a calcitonin antiserum. Electron microscopy confirmed the presence of C-cells, containing numerous secretory granules storing calcitonin, in the luminal lining of cyst-like structures found in these glands. These cells were furnished with prominent microvillar projections at their luminal surface, and the cytoplasm of the apical region was filled with fibril material. Furthermore, the cells contained prominent junctional complexes and desmosomes at their apico-lateral surfaces. In these C-cells, secretory granules were concentrated near the lumen and some were attached to the apical cell membrane. The luminal content of the cysts had a colloid-like and flocculent appearance, and was frequently seen attached to the cytoplasmic projections or apical cell membrane of the C-cells. Since the cysts progressively increase in volume and number with age, it is suggested that they may partly play a role in the storage of excess or unneeded hormonal products.  相似文献   

14.
Summary Tarsal glands are located in the 6th tarsomere of adult honeybee queens, workers and drones. Their structural features are not cast or sex specific. The glandular epithelium is lined by a thin endocuticular layer. A cuticular pocket is formed from a postimaginal delamination of the cuticle secreted by the glandular epithelium. The apical plasma membrane of the glandular cells shows numerous cristae and microvilli lining large crypts that communicate with the subcuticular space. Pinocytotic vesicles, multivesicular bodies and residual dense bodies are present in the apical part of the glandular cells. The RER is well developed in perinuclear and basal parts of the glandular cells, but the Golgi apparatus is a discrete organelle without secretory granules. No exocytotic secretory structures were observed. To reach the glandular pocket, the non-proteinaceous secretory product must pass across the subcuticular space, the cuticular intima, the space between the intima and the cuticular wall, and the cuticular wall of the glandular pocket.  相似文献   

15.
The structure of the intestinal villus of the rat was studied in thin sections of tissue fixed in buffered osmium tetroxide and embedded in methacrylate. The simple columnar epithelium investing the villus is surmounted by a striated border consisting of slender projections of the cell surface. These microvilli are arranged in almost crystalline, hexagonal array, and increase the apical surface area of the cell by a factor of 24. The core of each microvillus is filled with fine fibrils which arise from the filamentous substance of the terminal web underlying the striated border. Each microvillus is covered by a tubular extension of the plasma membrane of the epithelial cell. Pinocytotic vesicles originating from the plasma membrane occur at the bases of the intermicrovillous spaces. The nucleus, mitochondria, and the endoplasmic reticulum of the epithelial cell display no unusual features. Small bits of ergastoplasm occur in the apical cytoplasm. A thin basement membrane separates the epithelium from the lamina propria which consists of vessels, nerves, and numerous lymphocytes, eosinophiles, mast cells, plasma cells, smooth muscle fibers, and macrophages suspended in a delicate stroma of fibroblasts and collagen fibers. Intercellular fat droplets often occur in this stroma, even in animals fasted for 40 hours. The blood capillaries are distinguished by their extremely attenuated, fenestrated endothelial cells. The lacteal has a thicker endothelium which, although not fenestrated, appears to have significant interruptions, especially at the margins between neighboring lining cells. Strands of smooth muscle always accompany the lacteal but do not form an integral part of its wall. Unmyelinated nerves, many of which are too small to be distinguished with the light microscope, course through the lamina propria in association with the vessels. The nerve fibers evidently do not cross the basement membrane into the epithelium. Neuromuscular junctions or other terminal apparatus were not found.  相似文献   

16.
We have localized horseradish peroxidase (HRP) in the mouse uterus after intravenous administration on days 1 and 5 of pregnancy in an effort to understand how serum proteins reach the uterine lumen. Direct movement of HRP into uterine and glandular lumina was blocked by the epithelial tight junctions on both days. In luminal and glandular epithelial cells at both times, HRP was localized in endocytic vesicles along the basolateral membranes, multivesicular bodies (mvb), elongated dense bodies below the nucleus (bdb), and many small vesicles near the apical surface of the cells. The uptake of HRP was most extensive in the luminal epithelium on day 1: the number of tracer-containing apical vesicles and bdb was largest, and there were also clusters of vesicles containing the tracer above the nucleus. Acid phosphatase was localized on day 1 in mvb and bdb in both cell types, indicating that these structures are lysosomes. It appeared that HRP followed two pathways after basolateral endocytosis by the epithelial cells: it was transported to the apical region of the cells, where it was present in small vesicles that may release their contents into the uterine or glandular lumina, or it was transported to lysosomes. To investigate whether macromolecules may be transported from the uterine lumen to the stroma, we also studied endocytosis at the apical pole of luminal epithelial cells after intraluminal injection of HRP. There was no detectable uptake of HRP from the lumen on day 1, and no tracer was detected in the intercellular spaces or basement membrane region. On day 5, a large amount of HRP was taken up from the lumen into apical endocytic vesicles, mvb, and dense bodies, but tracer was not present in the Golgi apparatus, lateral intercellular spaces, or the basement membrane region at the times studied. These observations indicate that there was no transport of luminal macromolecules to the uterine stroma on day 1, while the possibility of transport on day 5 requires further study.  相似文献   

17.
An electron microscopic study of the intestinal villus. I. The fasting animal   总被引:22,自引:0,他引:22  
The structure of the intestinal villus of the rat was studied in thin sections of tissue fixed in buffered osmium tetroxide and embedded in methacrylate. The simple columnar epithelium investing the villus is surmounted by a striated border consisting of slender projections of the cell surface. These microvilli are arranged in almost crystalline, hexagonal array, and increase the apical surface area of the cell by a factor of 24. The core of each microvillus is filled with fine fibrils which arise from the filamentous substance of the terminal web underlying the striated border. Each microvillus is covered by a tubular extension of the plasma membrane of the epithelial cell. Pinocytotic vesicles originating from the plasma membrane occur at the bases of the intermicrovillous spaces. The nucleus, mitochondria, and the endoplasmic reticulum of the epithelial cell display no unusual features. Small bits of ergastoplasm occur in the apical cytoplasm. A thin basement membrane separates the epithelium from the lamina propria which consists of vessels, nerves, and numerous lymphocytes, eosinophiles, mast cells, plasma cells, smooth muscle fibers, and macrophages suspended in a delicate stroma of fibroblasts and collagen fibers. Intercellular fat droplets often occur in this stroma, even in animals fasted for 40 hours. The blood capillaries are distinguished by their extremely attenuated, fenestrated endothelial cells. The lacteal has a thicker endothelium which, although not fenestrated, appears to have significant interruptions, especially at the margins between neighboring lining cells. Strands of smooth muscle always accompany the lacteal but do not form an integral part of its wall. Unmyelinated nerves, many of which are too small to be distinguished with the light microscope, course through the lamina propria in association with the vessels. The nerve fibers evidently do not cross the basement membrane into the epithelium. Neuromuscular junctions or other terminal apparatus were not found.  相似文献   

18.
Morphology of the bovine epididymis   总被引:1,自引:0,他引:1  
The epididymis of the bull was divided into six regions, and morphological differences between regions were studied. The epithelium of all regions contained four cell types: principal and basal epithelial cells, and intraepithelial lymphocytes and macrophages. The epithelium of regions II-V also contained a few apical cells. Principal cells of all regions possessed an endocytotic apparatus including stereocilia underlain by canaliculi, coated vesicles, and subapical vacuoles (up to 1 micron in diameter); however, large vacuoles with a flocculent content and multivesicular bodies (up to 5 microns in diameter) were most numerous in regions II, III, and IV. The unique features of principal cells of region I were the presence of well-developed Golgi bodies, few lipid droplets, and whorls of smooth endoplasmic reticulum in the supranuclear cytoplasm. Numerous mitochondria, distended cisternae of rough endoplasmic reticulum, and dense granules characterized the infranuclear cytoplasm of the principal cells of regions II-VI; however, these features were more developed in region V. Apical cells were characterized by the apical location of the nucleus, many mitochondria in the apical cytoplasm, and few microvilli at the luminal border. Basal cells with few cytoplasmic lipid droplets were present throughout the length of the epididymis but appeared more numerous in region V. Intraepithelial lymphocytes were present at all levels of the epithelium but were never seen in the lumen. Intraepithelial macrophages containing heterogeneous granules, eccentric nuclei, and pseudopods were invariably seen near the basal area of the epithelium in all regions. These observations are discussed in an effort to define the role of each cell type in the epididymal epithelium.  相似文献   

19.
During the course of chromate-induced acute renal failure (ARF), urinary kallikrein excretion (UKE), a serine protease of distal tubule origin in the normal animal was decreased but tissue kallikrein concentration (TK) was increased, suggesting intracellular accumulation. Severe morphological lesions were observed in proximal tubular cells which showed brush border damage, numerous vesicles, necrosis and liquefaction of cytoplasmic material. Less marked changes were also present in distal tubules: large apical vacuoles and swollen mitochondria. Compared to normal rats, using the peroxidase-anti-peroxidase (PAP) method for light microscopy, greater kallikrein immunoreactivity was detected along the apical pole in distal tubules, on the membrane and in the cytoplasm as well as in the glomerulus. By immunoelectron microscopy, kallikrein was found in the connecting apical area, along the luminal, basolateral and basement membranes, in some vesicles, in Golgi apparatus and on ribosomes bound to endoplasmic reticulum. In the glomerulus, kallikrein was observed along the luminal surface of endothelial cell. After 14 days a progressive recovery of renal function, tissue morphology and UKE towards control values was observed. The presence of immunoreactive kallikrein in the glomerulus observed only during ARF confirmed the previous demonstration of kallikrein mRNA in the glomerulus. The cellular accumulation results more likely from a dysfunction of a general secretory mechanism due to cell membrane alteration than from a specific inhibition of kallikrein production and secretion.  相似文献   

20.
The development and modulation of Sertoli cell junctions was studied in newborn and adult mink during the active and inactive spermatogenic phases. The techniques used were electron microscopy of freeze-fractured replicas and thin sections of tissues infused with horseradish peroxidase as a junction permeability tracer. In the newborn, freeze-fractured developing junctions had either spherical or fibrillar particles. In addition, junctional domains where particles were associated preferentially with the E-face, and others where particles were associated preferentially with the P-face, were found developing either singly or conjointly within a given membrane segment, thus yielding a heterogeneous junctional segment. Coincidently with the development of a tubular lumen and the establishment of a competent blood-testis barrier, junctional strands were composed primarily of particulate elements associated preferentially with the E-face. In adult mink during active spermatogenesis, cell junctions were found on the entire lateral Sertoli cell plasma membrane from the basal to the luminal pole of the cell. In the basal third of the Sertoli cell, membranous segments that faced a spermatogonium or a migrating spermatocyte displayed forming tight, gap, and adherens junctions. In the middle third, abutting membrane segments localized above germ cells were involved in continuous zonules and in adherens junctions. In the apical or luminal third, the zonules were discontinuous, and the association of junctional particles with the E-face furrow was lost. Gap junctions increased in both size and numbers. Junctional vesicles that appeared as annular gap and tight-junction profiles in thin sections or as hemispheres in freeze-fracture replicas were present. Reflexive tight and gap junctions were formed through the interaction of plasma membrane segments of the same Sertoli cell. Internalized junctional vesicles were also present in mature spermatids. During the inactive spermatogenic phase, cell junctions were localized principally in the basal third of the Sertoli cell; junctional strands resembled those of the newborn mink. During the active spermatogenic phase, continuous zonules were competent in blocking passage of the protein tracer. During the inactive phase the blood-testis barrier was incompetent in blocking entry of the tracer into the seminiferous epithelium. It is proposed that modulation of the Sertoli cell zonules being formed at the base and dismantled at the apex of the seminiferous epithelium follows the direction of germ cell migration and opposes the apicobasal direction of junction formation reported for most epithelia.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号