首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Sherwin Wilk 《Life sciences》1983,33(22):2149-2157
Prolyl endopeptidase (E.C. 3.4.21.26) an enzyme previously called post proline cleaving enzyme, TRH-deamidase or kininase B, may play a role in neuropeptide metabolism. This enzyme, highly active in brain and other tissues, catabolizes proline-containing peptides such as substance P, neurotensin, luteinizing hormonereleasing hormone, thyrotropin releasing hormone, bradykinin and angiotensin II. The structure of β-neo-endorphin suggests that this opioid peptide is formed by the action of prolyl endopeptidase on a precursor of higher molecular weight. Formation of two biologically active fragments of substance P also requires the action of this enzyme. This review summarizes the current knowledge of the biochemistry of this enzyme, and its potential significance for neuropeptide physiology and pharmacology.  相似文献   

2.
Characterization of proline endopeptidase from rat brain   总被引:1,自引:0,他引:1  
P C Andrews  C M Hines  J E Dixon 《Biochemistry》1980,19(24):5494-5500
A homogeneous proline endopeptidase from rat brain is characterized with respect to its substrate specificity and the residues essential for catalysis. The two fluorogenic substrate analogues tested, pyroglutamylhistidylprolyl-beta-naphthylamide and pyroglutamy(N-benzylimidazolyl)-histidylprolyl-beta-naphthylamide, have higher Vmax values (19.5 and 26.9 mumol . min-1 . mg-1, respectively) and considerably lower Km values (0.034 and 0.020 mM, respectively) than pyroglutamylhistidylprolylamide (Vmax = 2.9 mumol . min-1 . mg-1 and Km = 4.1 mM). Both fluorogenic substrates give rise to pH optima and pH-rate profiles similar to those of the amide. Values of Km and kcat are determined as a function of pH. Km is pH independent, with the titration curve for kcatKm-1 implicating an active-site residue(s) with a pKa of 6.2. Proline endopeptidase can be completely inactivated by low concentrations of diisopropyl fluorophosphate with an observed second-order rate constant of 2.5 x 10(4) min-1 . M-1. The stoichiometry of the alkylphosphorylation is 0.83 mol/mol of enzyme. The pH dependence of the inactivation by diisopropylfluorophosphate implicates a residue(s) involved in covalent bond formation having a pKa of 6.0. These data suggest that proline endopeptidase is a serine proteinase.  相似文献   

3.
When intact HeLa cells were incubated at 45 degrees C, there was progressive inactivation of proline endopeptidase. Rapid loss of the enzyme did not occur in extracts maintained at 45 degrees C. Since Western blots of sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels showed no decrease in the immunoreactive 70-kDa proline endopeptidase band, its in vivo disappearance apparently results from irreversible denaturation or modification. Loss of proline endopeptidase activity was paralleled by reduced degradation of injected ubiquitin and bovine serum albumin. In contrast, proteolysis of injected lysozyme or pancreatic trypsin inhibitor was barely affected. Electrophoretic analysis of ubiquitin or bovine serum albumin retrieved from heated HeLa cells showed that the injected proteins were intact. Thus, the presence of proline endopeptidase appears to be required for initial cleavage of these two substrates, but it has not been shown that the enzyme is directly responsible. Selective stabilization of a subset of the injected proteins does, however, demonstrate the existence of distinct proteolytic pathways in HeLa cytosol.  相似文献   

4.
Several lines of evidence indicate that proline endopeptidase (PE) could participate to the symptomatology and/or etiology of Alzheimer's disease. Thus, proline endopeptidase appears to contribute to the degradation of neuropeptides involved in learning and memory and could also control the production of the amyloidogenic peptide Abeta. Therefore the design of potent, selective and permeant inhibitors of human PE should lead to potential probes to assess the genuine contribution of this enzyme in Alzheimer's pathology. A novel perhydroindol carboxylic derivative, S17092-1 inhibits the hydrolysis of Z-Gly-Pro-7AMC-hydrolysing activity present in human brain nuclei with a high affinity (Ki = 1 nM) and behaves as a highly potent (Ki = 1.5 nM) inhibitor of partially purified human PE. By contrast, S17092-1 is unable to affect a series of other peptidases including aminopeptidases B and M, dipeptidylaminopeptidase IV, endopeptidases 3.4.24.11, 3.4.24.15, 3.4.24.16, calpains and angiotensin-converting enzyme. Furthermore, we show that the embryonic human kidney 293 cell line displays an intracellular PE-like activity that is blocked after preincubating cells with S17092-1, indicating that this inhibitor penetrates in HEK293 cells and could affect intracellular human PE. Altogether, we establish that S17092-1 behaves as a highly potent, specific and cell permeant inhibitor of human proline endopeptidase and can be seen as a probe to examine PE contribution in Alzheimer's disease.  相似文献   

5.
The presence of a prolyl endopeptidase in the soluble fraction of murine peritoneal macrophages is reported. The prolyl endopeptidase is apparently highly specific for cleaving peptides after proline residues. A sensitive new fluorogenic assay substrate matching this specificity, benzyloxycarbonyl-Ala-Ala-Pro beta-methoxynaphthylamide, is described. The enzyme is rapidly inactivated by benzyloxycarbonyl-Ala-Ala-Pro diazomethyl ketone, one of a class of reagents specific for cysteine proteinases, and by diisopropyl fluorophosphate, an inhibitor of serine proteinases. Culture of macrophages with the addition of low levels of benzyloxycarbonyl-Ala-Ala-Pro diazomethyl ketone to the media allows the selective inhibition of the cytoplasmic enzyme as measured in lysates at the termination of culture. After exposure to inhibitor, macrophages resynthesize the enzyme over a period of days, a process which is inhibited by cycloheximide. Similar amounts of activity were found in both normal peritoneal macrophages and those elicited by prior injection of thioglycollate media. The enzyme from murine macrophages appears similar to that reported in bronchopulmonary lavage fluid and lung tissue and to those isolated from brain and pituitary tissues.  相似文献   

6.
Prolyl endopeptidase is a proteolytic enzyme which could have a neuropeptide catabolising role in the central nervous system. Although prolyl endopeptidase has been described as a cytosolic enzyme, it has become clear that it can also be found in particulate form. The regional and subcellular distribution of this enzyme was evaluated in rat and human brain. The activity of the enzyme was higher in the human than in the rat brain. In the human brain, the activity levels of both soluble and particulate prolyl endopeptidase were the highest in frontal, parietal and occipital cortices and the lowest in the cerebellum. In the rat brain, the regional distribution of the enzyme was more homogeneous. The activity in all the areas of the central nervous system is higher than in peripheral tissues. Subcellular distribution of the enzyme in the brain indicates that prolyl endopeptidase was higher in the cytosolic fraction than in the particulate fractions. The particulate form was enriched in the synaptosomal and the myelinic membranes. The high activity of prolyl endopeptidase in the human cortex suggests that prolyl endopeptidase could play a role in the functions of this brain area.  相似文献   

7.
Prolyl endopeptidase and pyroglutamyl peptidase I are enzymes which participate in the degradation of thyrotropin-releasing hormone (TRH), a hormone which is thought to play an important role in the development of organs and tissues. Here, we have characterized the ontogeny of TRH degrading enzyme activity in the brain cortex, lung, heart, kidney and liver. Overall, prolyl endopeptidase activity was found to be 2 to 5 fold higher in newborn vs. adult rat tissues, with the exception of the soluble form in the liver and the particulate form in the lung. In contrast, the developmental profile of pyroglutamyl peptidase I activity was found to be more variable and tissue dependent. These results corroborate the idea that both enzymes play important, tissue-specific roles during the development and maturation of rat organs.  相似文献   

8.
J Momand  S Clarke 《Biochemistry》1987,26(24):7798-7805
We have been interested in the metabolic fate of proteins containing aspartyl succinimide (Asu) residues. These residues can be derived from the spontaneous rearrangement of Asp and Asn residues and from the spontaneous demethylation of enzymatically methylated L-isoAsp and D-Asp residues. Incubation of the synthetic hexapeptide N-Ac-Val-Tyr-Pro-Asu-Gly-Ala with the cytosolic fraction of human erythrocytes resulted in rapid cleavage of the prolyl-aspartyl succinimide bond producing the tripeptide N-Ac-Val-Tyr-Pro. The rate of this reaction is equal for both L- and D-Asu-containing peptides and is 10-fold greater than the rate of cleavage of a corresponding peptide containing a normal Pro-Asp linkage. When the aspartyl succinimide ring was replaced with an isoaspartyl residue, the cleavage rate was about 5 times that of the normal Pro-Asp peptide. The tripeptide-producing activity copurified on DEAE-cellulose chromatography with an activity that cleaves N-carbobenzoxy-Gly-Pro-4-methylcoumarin-7-amide, a post-proline endopeptidase substrate. These two activities were both inhibited by an antiserum to rat brain post-proline endopeptidase, and it appears that they are catalyzed by the same enzyme. This enzyme has a molecular weight of approximately 80,000 and is covalently labeled and inhibited by [3H]diisopropyl fluorophosphate. The facile cleavage of the succinimide- and isoaspartyl-containing peptides by this post-proline endopeptidase suggests that it may play a role in the metabolism of peptides containing altered aspartyl residues.  相似文献   

9.
Coenzyme A (CoA), its related compounds and acylcarnitine non-competitively inhibited the activity of proline endopeptidase (PEPase) purified from rat liver cytosol. The degree of inhibition was in the order of acyl-CoA greater than CoA greater than dephospho-CoA greater than or equal to acylcarnitine. However, carnitine did not inhibit the enzyme activity. Among the compounds examined, n-decanoyl-CoA showed the highest inhibitory activity (Ki = 9 microM). These results suggest that both the acyl group and CoA contribute to the inhibition of PEPase by acyl-CoA. The abilities of n-decanoyl-CoA and its related compounds to quench the intrinsic fluorescence at 332 nm from PEPase excited at 280 nm, was used as a probe for the binding affinity of the enzyme for these compounds. The quenching of fluorescence by CoA was nearly equal to that by n-decanoyl-CoA. n-Decanoylcarnitine and carnitine were unable to quench the fluorescence. These results indicate that n-decanoyl-CoA at least binds to PEPase through its CoA portion.  相似文献   

10.
A proline dipeptidase (EC 3.4.13.9) from guinea pig brain was purified to over 90% homogeneity by a combination of ammonium sulfate fractionation, DEAE-cellulose chromatography, calcium phosphate-cellulose chromatography, chromatofocusing, and gel filtration on Sephadex G-200. A purification factor of 2718-fold was obtained with a yield of 7%. The purified enzyme was found to have an apparent molecular weight of 132,000 and to consist of two dissimilar subunits of molecular weights 64,000 and 68,000. The substrate specificity of the enzyme is not that of a strict proline dipeptidase. Although it preferentially hydrolyzes proline dipeptides (Leu-Pro) it also hydrolyzes prolyl dipeptides (Pro-Leu) and dipeptides not containing proline (Leu-Leu). The purified enzyme preparation exhibited weak aminoacylproline aminopeptidase activity against Arg-Pro-Pro but it did not exhibit any post-proline dipeptidyl aminopeptidase, post-proline cleaving endopeptidase, proline iminopeptidase, prolyl carboxypeptidase or carboxypeptidase P activities when tested with a large variety of peptides and arylamides. With all of the proline and prolyl dipeptides examined the enzyme exhibited biphasic kinetics (two distinct slopes on Lineweaver-Burk plots). However, with Leu-Leu as substrate normal Michaelis-Menten kinetics were obeyed.  相似文献   

11.
Prolyl endopeptidase is a serine proteinase that specifically cleaves peptides on the carboxy side of proline residues. Wilk & Orlowski [(1983) J. Neurochem. 41, 69-75] have shown that benzyloxycarbonyl-prolyl-prolinal (Z-prolyl-prolinal) is a potent inhibitor of prolyl endopeptidase. We show that Z-prolyl-prolinal is a slow-binding inhibitor of mouse brain prolyl endopeptidase with Ki 0.35 +/- 0.05 nM. Kinetic analysis indicates that the mechanism is a simple, but slow, reversible equilibrium between free and bound enzyme (E + I in equilibrium EI) with rate constants for association (kon) and dissociation (koff) of 1.6 X 10(5) M-1.s-1 and approx. 4 X 10(-5) s-1 respectively. Slow-binding inhibition is dependent on the presence of the aldehyde group since the alcohol (Z-prolyl-prolinol) is a rapid and 50,000-fold poorer inhibitor (Ki 19 microM). Prolyl endopeptidase from human brain is also inhibited by Z-prolyl-prolinal with kinetics similar to those of the mouse brain enzyme.  相似文献   

12.
An extracellular proline iminopeptidase, with a molecular mass of about 53 kDa, was purified from Arthrobacter nicotianae 9458 and characterized. The enzyme had temperature and pH optima of 37 degrees C and 8.0, respectively, was completely inactivated by heating for 1 min at 80 degrees C and showed highest activity on Pro-pNA. The proline iminopeptidase was characterized by activity at low temperature, NaCl concentrations up to 7.5% and by high sensitivity to pH values 6.0, serine enzyme inhibitor PMSF and divalent cations, Fe2+, Sn2+, Cu2+, Zn2+, Hg2+, Co2+ and Ni2+. The extracellular proline iminopeptidase from A. nicotianae 9458 was able to hydrolyze proline-containing peptides at the pH, temperature and NaCl concentration typical of the surface of smear-ripened cheese and may contribute to proteolysis of these cheeses during ripening.  相似文献   

13.
Locust adipokinetic hormone (AKH, pGlu-Leu-Asn-Phe-Thr-Pro-Asn-Trp-Gly-Thr-NH2) was used as the substrate to measure neuropeptide-degrading endopeptidase activity in neutral membranes from ganglia of the locust Schistocerca gregaria. Initial hydrolysis of AKH at neural pH by peptidases of washed neural membranes generated pGlu-Leu-Asn and Phe-Thr-Pro-Asn-Trp-Gly-Thr-NH2 as primary metabolites, demonstrating that degradation was initiated by cleavage of the Asn-Phe bond. Amastatin protected the C-terminal fragment from further metabolism by aminopeptidase activity without inhibiting AKH degradation. The same fragments were generated on incubation of AKH with purified pig kidney endopeptidase 24.11, and enzyme known to cleave peptide bonds that involve the amino group of hydrophobic amino acids. Phosphoramidon (10 microM), a selective inhibitor of mammalian endopeptidase 24.11, partially inhibited the endopeptidase activity of locust neural membranes. This phosphoramidon-sensitive activity was shown to enriched in a synaptic membrane preparation with around 80% of the activity being inhibited by 10 microM-phosphoramidon (IC50 = 0.2 microM). The synaptic endopeptidase was also inhibited by 1 mM-EDTA, 1 mM-1,10-phenanthroline and 1 microM-thiorphan, and the activity was maximal between pH 7.3 and 8.0. Localization of the phosphoramidon-sensitive enzyme in synaptic membranes is consistent with a physiological role for this endopeptidase in the metabolism of insect peptides at the synapse.  相似文献   

14.
Brain endopeptidase generates enkephalin from striatal precursors   总被引:1,自引:0,他引:1  
An enzyme capable of converting putative opioid peptide intermediates to free enkephalin has been purified 300-fold from washed rat brain membranes. The action of this enzyme, an enkephalin-generating endopeptidase (EGE), was compared with the action of carboxypeptidase B after trypsin treatment on enkephalin precursor peptides present in rat striata. After Sephadex G-100 gel filtration of striatal material, fractions were radioimmunoassayed for enkephalin content using an antiserum specific for the carboxyl terminal of enkephalin. Additionally, aliquots of the column fractions were treated with either trypsin and carboxypeptidase B, trypsin and EGE, or EGE alone. The peak of enkephalin immunoreactivity increased with the enzymes' treatment indicating the conversion of the low molecular weight proenkephalin precursor peptides to enkephalin. Trypsin and EGE generated almost as much enkephalin as trypsin and carboxypeptidase B in the conditions of the experiment. Thus EGE is capable of processing precursors to enkephalin after the action of trypsin-like enzyme(s) in the brain. The gel filtration fractions containing enkephalin and its low molecular weight precursors were pooled and one-half treated with EGE. The contents were analyzed by HPLC and the increase in immunoreactivity co-eluted with enkephalin and Leu-enkephalin. Small peptides found to be the most potent competitive inhibitors of this enzyme are Met-Arg-Phe-Ala, and Met-Arg-Phe.  相似文献   

15.
beta-Endorphin is converted into the biologically active fragment gamma-endorphin by an endopeptidase which we term "gamma-endorphin generating endopeptidase". Subcellular and regional distributions of this endopeptidase activity in rat brain were studied by a newly developed assay. After subcellular fractionation of rat brain tissue gamma-endorphin generating endopeptidase activity was predominantly recovered in the cytosolic fraction. A 10 to 15 fold lower activity was present in synaptosomes, mitochondria and synaptic membranes. Hardly any endopeptidase activity was detected in nuclei and myelin. The endopeptidase activity in cytosolic and particulate fraction was found throughout brain, pituitary and spinal cord in a rather homogeneous fashion. Cytosolic activity in all brain parts was 10 to 15 fold higher than the activity in the particulate fraction. It is suggested that rather the beta-endorphin distribution than the endopeptidase is restricting for gamma-endorphin production in certain brain parts.  相似文献   

16.
A prolyl endopeptidase (PE) was purified 83 times from human urine by DEAE-cellulose and Sepharose Mercurial chromatographies. In this work we studied the specificity of PE using different fluorogenics substrates. Further characterization of the enzyme was carried out using BK and it's analogue, Abz-RPPGFSPFRQ-EDDnp and Abz-FPQ-EDDnp, for measure of enzymatic activity of prolyl endopeptidase (Abz=ortho-aminobenzoic acid; EDDnp=N-[2, 4-dinitrophenyl]ethylenediamine). The substrate Abz-FPQ-EDDnp was considered as specific for PE. The endopeptidase PE, with a molecular weight of 45 kDa, was inhibited 100% by EDTA and pOHMB and resistant to PMSF, thyorphan, E64 and phosphoramidon, when we used the mentioned substrates. These results suggest that PE is a metallo endopeptidase that contains a thiol group important for it's activity. It was also able to hydrolyze in Abz-RPPGFSPFRQ-EDDnp the F-R peptide bound, differing from those obtained upon BK molecule, where the enzyme prefer the peptide bound located after double proline. In the substrate Abz-FPQ-EDDnp PE hydrolyzes the P-Q peptide bound. Furthermore the urinary PE is particularly unable to hydrolyze peptides with single prolines such as substance P, neurotensin and LHRH. The determined K(m) for Abz-RPPGFSPFRQ-EDDnp and Abz-FPQ-EDDnp were 0.74 and 0.65 uM, respectively. The optimum pH for the PE activity, using the substrate Abz-RPPGFSPFRQ-EDDnp was approximately 9.0, but using the specific substrate Abz-FPQ-EDDnp was 6.5 and 8.0. Endopeptidases, which are situated at brush border surface from proximal tubules, have an important role in kidney handling of many peptides, which are filtered by the glomerulus. The prolyl endopeptidase located at distal tubule could have an important physiological function in control of kinin formed in this portion. It's known that all components from kallicrein-kinin system like low molecular weigh kininogen and kallikrein are presents in this portion.  相似文献   

17.
Specific inhibition of endopeptidase 24.16 by dipeptides.   总被引:7,自引:0,他引:7  
The inhibitory effect of various dipeptides on the neurotensin-degrading metallopeptidase, endopeptidase 24.16, was examined. These dipeptides mimick the Pro10-Tyr11 bond of neurotensin that is hydrolyzed by endopeptidase 24.16. Among a series of Pro-Xaa dipeptides, the most potent inhibitory effect was elicited by Pro-Ile (Ki approximately 90 microM) with Pro-Ile greater than Pro-Met greater than Pro-Phe. All the Xaa-Tyr dipeptides were unable to inhibit endopeptidase 24.16. The effect of Pro-Ile on several purified peptidases was assessed by means of fluorigenic assays and HPLC analysis. A 5 mM concentration of Pro-Ile does not inhibit endopeptidase 24.11, endopeptidase 24.15, angiotensin-converting enzyme, proline endopeptidase, trypsin, leucine aminopeptidase, pyroglutamyl aminopeptidase I and carboxypeptidase B. The only enzyme that was affected by Pro-Ile was carboxypeptidase A, although it was with a 50-fold lower potency (Ki approximately 5 mM) than for endopeptidase 24.16. By means of fluorimetric substrates with a series of hydrolysing activities, we demonstrate that Pro-Ile can be used as a specific inhibitor of endopeptidase 24.16, even in a complex mixture of peptidase activities such as found in whole rat brain homogenate.  相似文献   

18.
The octadecaneuropeptide ODN (QATVGDVNTDRPGLLDLK), a biologically active fragment of diazepam-binding inhibitor, exerts a number of behavioral and neurophysiological activities. The presence of a proline residue in the sequence of ODN led us to investigate the role of proline endopeptidase (PEP) in the catabolism of this neuropeptide. The effect of PEP on the breakdown of ODN and related analogs was studied by combining RP-HPLC analysis and MALDI-TOF MS characterization. Incubation of ODN with PEP generated two products, i.e. ODN3-18 and ODN5-18 which resulted from cleavage of the Ala-Thr and Val-Gly peptide bonds. S 17092, a specific PEP inhibitor, significantly reduced the PEP-induced cleavages of ODN. Similarly, [Ala2]OP showed S 17092-sensitive post-alanine cleavage, while [pGlu1]ODN and OP (ODN11-18) were not catabolized by the enzyme. For all these peptides, cleavage of the Pro-Gly peptide bond by PEP was never observed, even after prolonged incubation times. In contrast, PEP hydrolyzed human urotensin II at the canonical post-proline site. Collectively, these data suggest that the Ala2 residue is the preferential cleavage site of ODN and that the Pro-Gly bond of ODN is not hydrolyzed by PEP. In addition, this study reveals for the first time that the endoproteolytic activity of PEP can specifically take place after a valine moiety.  相似文献   

19.
The activity of prolyl endopeptidase in homogenates of mouse tissues was determined 30 min after intraperitoneal injection of N-benzyloxycarbonyl-prolyl-prolinal (1.25 mg/kg), a potent transition state analog inhibitor (K1 = 14 nM) of prolyl endopeptidase (EC 3.4.21.26). A more than 85% decrease of enzyme activity was obtained in all tissues. The in vivo degradation of potential prolyl endopeptidase substrates was studied by following the release of sulfamethoxazole from N-benzyloxycarbonylglycyl-prolyl-sulfamethoxazole, a model synthetic substrate of the enzyme. When this substrate was given intraperitoneally, its enzymatic degradation was blocked after administration of the inhibitor in a dose- and time-dependent manner, indicating inhibition of the enzyme in vivo. Of interest is the long duration of the inhibition. After a relatively low inhibitor dose (5 mg/kg) significant inhibition was seen in most tissues even after 6 h. The brain was particularly sensitive to the effect of the inhibitor. Since prolyl endopeptidase readily degrades many proline-containing neuropeptides, the inhibitor should be of value in studies on the role of the enzyme in neuropeptide metabolism.  相似文献   

20.
Lens neutral endopeptidase (EC 3.4.24.5) was previously thought to be unique to the eye lens. We report here the finding of a neutral endopeptidase, in a variety of bovine and human tissues, which is very similar both biochemically and immunologically to the lens endopeptidase. SDS/polyacrylamide-gel electrophoresis of partially purified enzyme fractions from various bovine tissues shows the characteristic pattern of at least eight bands with Mr values ranging from 24,000 to 32,000 which was described for the bovine-lens neutral endopeptidase. The relative activity of the enzyme varies from tissue to tissue with lung having the highest activity. Partially purified enzyme fractions from these tissues cross-react with antiserum raised in rabbit against bovine lens endopeptidase showing apparent identity when examined side by side in Ouchterlony double-diffusion tests. The human enzyme also cross-reacts with the antiserum but when tested by double-diffusion against the bovine enzyme the precipitin lines show spurring at the joining edges indicating a structural difference between the human and the bovine enzymes. It was also found by Western blot experiments, after denaturing polyacrylamide-gel electrophoresis of the enzyme, that the polypeptide components of the human and bovine enzymes show somewhat different banding patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号