首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Above-canopy sprinkler irrigation with saline water favours the absorption of salts by wetted leaves and this can cause a yield reduction additional to that which occurs in salt-affected soils. Outdoor pot experiments with both sprinkler and drip irrigation systems were conducted to determine foliar ion accumulation and performance of maize and barley plants exposed to four treatments: nonsaline control (C), salt applied only to the soil (S), salt applied only to the foliage (F) and salt applied to both the soil and to the foliage (F+S). The EC of the saline solution employed for maize in 1993 was 4.2 dS m–1 (30 mM NaCl and 2.8 mM CaCl2) and for barley in 1994, 9.6 dS m–1 (47 mM NaCl and 23.5 mM CaCl2). The soil surface of all pots was covered so that in the F treatment the soil was not salinized by the saline sprinkling and drip irrigation supplied nutrients in either fresh (treatments C and F) or saline water (treatments S and F+S).Saline sprinkling increased leaf sap Na+ concentrations much more than did soil salinity, especially in maize, even though the saline sprinkling was given only two or three times per week for 30 min, whereas the roots of plants grown in saline soil were continuously exposed to salinity. By contrast, leaf sap Cl concentrations were increased similarly by saline sprinkling and soil salinity in maize, and more by saline sprinkling than saline soil in barley. It is concluded that barley leaves, and to a greater extent maize leaves, lack the ability to selectively exclude Na+ when sprinkler irrigated with saline water. Moreover, maize leaves selectively absorbed Na+ over Cl whereas barley leaves showed no selectivity. When foliar and root absorption processes were operating together (F+S treatment) maize and barley leaves accumulated 11–14% less Na+ and Cl than the sum of individual absorption processes (treatment F plus treatment S) indicating a slight interaction between the absorption processes. Vegetative biomass at maturity and cumulative plant water use were significantly reduced by saline sprinkling. In maize, reductions in biomass and plant water use relative to the control were of similar magnitude for plants exposed only to saline sprinkling, or only to soil salinity; whereas in barley, saline sprinkling was more detrimental than was soil salinity. We suggest that crops that are salt tolerant because they possess root systems which efficiently restrict Na+ and Cl transport to the shoot, may not exhibit the same tolerance in sprinkler systems which wet the foliage with saline water. ei]T J Flowers  相似文献   

2.
Brief pre- and post-irrigation sprinkling treatments using freshwater were tested to determine if these practices could reduce the uptake of salts through leaves when saline water is used to sprinkler irrigate crops. Maize and barley were sprinkler irrigated 2 to 3 times per week for 30 min with saline water (4.2 dS m–1, 30 mmol L–1 NaCl and 2.8 mmoles L–1 CaCl2 for maize and 9.6 dS m–1, 47 mmoles L–1 NaCl and 23.5 mmoles L–1 CaCl2 for barley) in separate experiments with plants grown in pots outdoors. The soil surface of all pots was covered to prevent salinization of the soil by the sprinkling water. One half of the sprinkled plants was grown in nonsaline soil to study the effects of pre-wetting and post-washing when ion uptake was primarily through leaves. The other half of the sprinkled plants was grown in soil salinized by drip irrigation, in order to evaluate the effects of pre-wetting and post-washing when Na+ and Cl- uptake was through both leaves and roots.Post-washing with freshwater (5 min) reduced the leaf sap concentrations of Cl- in saline-sprinkled plants from 56 to 43 mmol L–1 in maize and from 358 to 225 mmol L–1 in barley (averages for plants grown in nonsaline and saline soil). Na+ concentrations in leaf sap were reduced from 93 to 65 mmoles L–1 (maize) and from 177 to 97 mmoles L–1 (barley) by the post-washing. Pre-wetting had a small effect on ion uptake through leaves, the only significant reduction in seasonal means being in leaf Na+ concentrations for plants grown in nonsaline soil. Pre-wetting and post-washing, when combined, reduced leaf Cl- concentrations to levels similar to those of nonsprinkled plants grown in saline soil; however, Na+ concentrations in leaves remained 3.5 times (maize) and 1.5 times (barley) higher than those of nonsprinkled plants. When pre-wetting and post-washing were not applied, sprinkled barley plants grown in saline soil had grain yields which were 58% lower than nonsprinkled plants grown in saline soil, but the reduction in grain yield was only 17% when the freshwater treatments were given. We conclude that a brief period of post-washing with freshwater is essential when saline water is employed in sprinkler irrigation. By comparison, the benefits from pre-wetting were small in these experiments. ei]T J Flowers  相似文献   

3.
Royo  A.  Aragüés  R. 《Plant and Soil》1999,209(1):9-20
Evaluation of the salt tolerance of crop cultivars under field conditions is greatly complicated by the typical temporal and spatial variability of soil salinity. We obtained the grain yield – salinity response functions of 124 barley genotypes by growing them in ten salinity treatments imposed by a Triple Line Source Sprinkler (TLS) system during five consecutive years. Additional objectives were to ascertain the consistency and reproducibility over years of these functions, to quantify the deleterious effects of saline sprinkling irrigations, and to assess correlations between salinity tolerance and leaf sap salt concentration. The consistency and reproducibility of the response functions within and between years were adequate (only 8% of the response functions were discarded for statistical reasons). The Y m (grain yield without salinity) and the EC50 (the EC e that reduces yield by 50%) estimates were not correlated (P > 0.05) suggesting that the most productive genotypes were not necessarily less salinity tolerant. Y m was positively and significantly (P < 0.01) correlated with Y6 and Y12 (fitted grain yields at EC e values of 6 dS m-1, and 12 dS m-1, respectively), indicating that it is a useful statistic in the selection of barley genotypes most productive under medium and high salinities. Foliar salt uptake due to saline sprinkling irrigations decreased the EC50 by around 50% as compared with the salinity tolerance obtained with surface irrigation systems. No consistent relationships were found between either Y m or EC50 and the leaf sap osmotic potential, Cl, Ca, Na and K concentrations. They could not therefore be used in screening for salinity tolerance of barley. On the basis of the evidence from the present study, Y m is the best statistic for predicting the most productive barley genotypes in salt-affected soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Wei  Wenxue  Bilsborrow  Paul E.  Hooley  Paul  Fincham  Daron A.  Lombi  Enzo  Forster  Brian P. 《Plant and Soil》2003,250(2):183-191
Dry matter changes and ion partitioning in two near isogenic barley cultivars Maythorpe (relatively salt sensitive) and Golden Promise (relatively salt tolerant) were studied in response to increasing salinity. Although the growth of both cultivars was significantly reduced by exposure to NaCl, the effect was greater in Maythorpe, whilst Golden Promise maintained an increased ratio of young to old leaf blade. Golden Promise maintained significantly lower Na+ concentrations in young expanding tissues compared with Maythorpe. Partitioning of Cl was evident in that both varieties maintained lower Cl concentrations in mesophyll than in epidermal cells. Golden Promise maintained higher K+/Na+ and Ca2+/Na+ ratios in young leaf blade and young sheath tissues than Maythorpe when exposed to salt. Differences in ion partitioning and the maintenance of higher K+ and Ca2+ to Na+ ratios, especially in young growing and recently expanded tissues, would appear to be important mechanisms contributing to the improved salt tolerance of Golden Promise.  相似文献   

5.
Effects of sodium chloride on tobacco plants   总被引:7,自引:1,他引:6  
Abstract The effect of salinity on the growth and ion concentrations in a number of tobacco cultivars is described. Sodium chloride, at a concentration of 200 mol m?3, hardly affected the fresh weight, but significantly reduced the dry weight. The difference in the response of fresh and dry weights to salt was due to a change in succulence (water per unit leaf area); the latter increased with increasing leaf Na+ and Cl? concentration. Under saline conditions, increasing the external Na+: Ca? ratio by decreasing the Ca2+ concentration increased the accumulation of Na+ and Cl? into the leaf tissue.  相似文献   

6.
In this research, the effect of different SA concentrations (0, 0.5, 1.0, 1.5, and 2.0 mM) on biological and grain yield as well as Na+, K+, Cl?, Ca2+, and Mg2+ distribution and accumulation in barley plants was examined under nonsaline (2 dS m?1) and saline (12 dS m?1) conditions in a three-year field study (2012–2015 growing seasons). Storage factor (SF) was defined as the concentration of an ion in the root, as a proportion of total uptake of that ion, to quantify ion partitioning between root and shoot. Salt stress decreased SF for K+, Ca2+, and Mg2+ and enhanced it for Na+ and Cl?, which led to reduce grain and biological yield. Nonetheless, foliar-applied SA in varying concentrations could lower some of these adverse effects on ion transport and accumulation. At the 2nd and 3rd years, unfavorable climatic conditions such as less precipitation and higher temperature intensified salt stress and decreased the alleviating impact of SA. Foliar application of SA at higher levels increased SF for Na+ and Cl? ions and decreased that for K+ indicating that SA helped barley plants keep more Na+ and Cl? and less K+ ions in the root system, which suggested the probable role of SA in altering ion transport within the plant in favor of salt stress tolerance. SF was found to be more correlated with grain yield under both nonsaline and saline conditions. Overall, SF might be considered as a potential criterion for salt tolerance in barley plants.  相似文献   

7.
Quinoa is regarded as a highly salt tolerant halophyte crop, of great potential for cultivation on saline areas around the world. Fourteen quinoa genotypes of different geographical origin, differing in salinity tolerance, were grown under greenhouse conditions. Salinity treatment started on 10 day old seedlings. Six weeks after the treatment commenced, leaf sap Na and K content and osmolality, stomatal density, chlorophyll fluorescence characteristics, and xylem sap Na and K composition were measured. Responses to salinity differed greatly among the varieties. All cultivars had substantially increased K+ concentrations in the leaf sap, but the most tolerant cultivars had lower xylem Na+ content at the time of sampling. Most tolerant cultivars had lowest leaf sap osmolality. All varieties reduced stomata density when grown under saline conditions. All varieties clustered into two groups (includers and excluders) depending on their strategy of handling Na+ under saline conditions. Under control (non-saline) conditions, a strong positive correlation was observed between salinity tolerance and plants ability to accumulate Na+ in the shoot. Increased leaf sap K+, controlled Na+ loading to the xylem, and reduced stomata density are important physiological traits contributing to genotypic differences in salinity tolerance in quinoa, a halophyte species from Chenopodium family.  相似文献   

8.
Improving salinity tolerance in the most widely cultivated cereal, bread wheat (Triticum aestivum L.), is essential to increase grain yields on saline agricultural lands. A Portuguese landrace, Mocho de Espiga Branca accumulates up to sixfold greater leaf and sheath sodium (Na+) than two Australian cultivars, Gladius and Scout, under salt stress in hydroponics. Despite high leaf and sheath Na+ concentrations, Mocho de Espiga Branca maintained similar salinity tolerance compared to Gladius and Scout. A naturally occurring single nucleotide substitution was identified in the gene encoding a major Na+ transporter TaHKT1;5-D in Mocho de Espiga Branca, which resulted in a L190P amino acid residue variation. This variant prevents Mocho de Espiga Branca from retrieving Na+ from the root xylem leading to a high shoot Na+ concentration. The identification of the tissue-tolerant Mocho de Espiga Branca will accelerate the development of more elite salt-tolerant bread wheat cultivars.  相似文献   

9.
Ion homeostasis is considered to be one of the most important mechanisms underlying salt stress tolerance. We used the Steptoe × Morex barley doubled haploid population to screen for genetic variation in response to salinity stress at an early development stage in a hydroponics system, focusing on ion homeostasis. Salinity induced a strong adverse effect on growth of the parents and their derived population, with Steptoe as the more tolerant parent. Steptoe maintained higher concentrations of K+, Na+ and Cl? in the roots and a similar shoot/root ion ratio (<1) under stress conditions compared to control conditions. In contrast, Morex had higher concentrations of these ions in the shoots under stress and a doubled shoot/root ion ratio relative to control conditions, indicating that salt exclusion might contribute to the higher tolerance of Steptoe. Correlation and path analysis demonstrated that shoot Cl? contents most strongly affected salt tolerance and suggest that both Na+ and Cl? contents are important for salinity stress tolerance in barley. We identified 11 chromosomal regions involved in the control of the variation observed for salt tolerance and various salt stress response traits, including Na+, Cl? and K+ contents in shoots. Two specific regions on chromosomes 2H and 3H were found controlling ion contents and salt tolerance, pointing to genes involved in ion homeostasis that contribute to salt tolerance.  相似文献   

10.
This work investigated the importance of the ability of leaf mesophyll cells to control K+ flux across the plasma membrane as a trait conferring tissue tolerance mechanism in plants grown under saline conditions. Four wheat (Triticum aestivum and Triticum turgidum) and four barley (Hordeum vulgare) genotypes contrasting in their salinity tolerance were grown under glasshouse conditions. Seven to 10‐day‐old leaves were excised, and net K+ and H+ fluxes were measured from either epidermal or mesophyll cells upon acute 100 mM treatment (mimicking plant failure to restrict Na+ delivery to the shoot) using non‐invasive microelectrode ion flux estimation (the MIFE) system. To enable net ion flux measurements from leaf epidermal cells, removal of epicuticular waxes was trialed with organic solvents. A series of methodological experiments was conducted to test the efficiency of different methods of wax removal, and the impact of experimental procedures on cell viability, in order to optimize the method. A strong positive correlation was found between plants' ability to retain K+ in salt‐treated leaves and their salinity tolerance, in both wheat and especially barley. The observed effects were related to the ionic but not osmotic component of salt stress. Pharmacological experiments have suggested that voltage‐gated K+‐permeable channels mediate K+ retention in leaf mesophyll upon elevated NaCl levels in the apoplast. It is concluded that MIFE measurements of NaCl‐induced K+ fluxes from leaf mesophyll may be used as an efficient screening tool for breeding in cereals for salinity tissue tolerance.  相似文献   

11.

Background and Aims

When root-zone O2 deficiency occurs together with salinity, regulation of shoot ion concentrations is compromised even more than under salinity alone. Tolerance was evaluated amongst 34 accessions of Hordeum marinum, a wild species in the Triticeae, to combined salinity and root-zone O2 deficiency. Interest in H. marinum arises from the potential to use it as a donor for abiotic stress tolerance into wheat.

Methods

Two batches of 17 H. marinum accessions, from (1) the Nordic Gene Bank and (2) the wheat belt of Western Australia, were exposed to 0·2 or 200 mol m−3 NaCl in aerated or stagnant nutrient solution for 28–29 d. Wheat (Triticum aestivum) was included as a sensitive check species. Growth, root porosity, root radial O2 loss (ROL) and leaf ion (Na+, K+, Cl) concentrations were determined.

Key Results

Owing to space constraints, this report is focused mainly on the accessions from the Nordic Gene Bank. The 17 accessions varied in tolerance; relative growth rate was reduced by 2–38 % in stagnant solution, by 8–42 % in saline solution (aerated) and by 39–71 % in stagnant plus saline treatment. When in stagnant solution, porosity of adventitious roots was 24–33 %; salinity decreased the root porosity in some accessions, but had no effect in others. Roots grown in stagnant solution formed a barrier to ROL, but variation existed amongst accessions in apparent barrier ‘strength’. Leaf Na+ concentration was 142–692 µmol g−1 d. wt for plants in saline solution (aerated), and only increased to 247–748 µmol g−1 d. wt in the stagnant plus saline treatment. Leaf Cl also showed only small effects of stagnant plus saline treatment, compared with saline alone. In comparison with H. marinum, wheat was more adversely affected by each stress alone, and particularly when combined; growth reductions were greater, adventitious root porosity was 21 %, it lacked a barrier to ROL, leaf K+ declined to lower levels, and leaf Na+ and Cl concentrations were 3·1–9-fold and 2·8–6-fold higher, respectively, in wheat.

Conclusions

Stagnant treatment plus salinity reduced growth more than salinity alone, or stagnant alone, but some accessions of H. marinum were still relatively tolerant of these combined stresses, maintaining Na+ and Cl ‘exclusion’ even in an O2-deficient, saline rooting medium.Key words: Aerenchyma, combined salinity and waterlogging, leaf Cl, leaf K+, leaf Na+, radial O2 loss, salt tolerance, salinity–waterlogging interaction, sea barleygrass, waterlogging tolerance, wheat, wild Triticeae  相似文献   

12.
Screening methods for salinity tolerance: a case study with tetraploid wheat   总被引:19,自引:1,他引:18  
Munns  Rana  James  Richard A. 《Plant and Soil》2003,253(1):201-218
Fast and effective glasshouse screening techniques that could identify genetic variation in salinity tolerance were tested. The objective was to produce screening techniques for selecting salt-tolerant progeny in breeding programs in which genes for salinity tolerance have been introduced by either conventional breeding or genetic engineering. A set of previously unexplored tetraploid wheat genotypes, from five subspecies of Triticum turgidum, were used in a case study for developing and validating glasshouse screening techniques for selecting for physiologically based traits that confer salinity tolerance. Salinity tolerance was defined as genotypic differences in biomass production in saline versus non-saline conditions over prolonged periods, of 3–4 weeks. Short-term experiments (1 week) measuring either biomass or leaf elongation rates revealed large decreases in growth rate due to the osmotic effect of the salt, but little genotypic differences, although there were genotypic differences in long-term experiments. Specific traits were assessed. Na+ exclusion correlated well with salinity tolerance in the durum subspecies, and K+/Na+ discrimination correlated to a lesser degree. Both traits were environmentally robust, being independent of root temperature and factors that might influence transpiration rates such as light level. In the other four T. turgidum subspecies there was no correlation between salinity tolerance and Na+ accumulation or K+/Na+ discrimination, so other traits were examined. The trait of tolerance of high internal Na+ was assessed indirectly, by measuring chlorophyll retention. Five landraces were selected as maintaining green healthy leaves despite high levels of Na+ accumulation. Factors affecting field performance of genotypes selected by trait-based techniques are discussed.  相似文献   

13.

Salinity has been observed to be a global problem that impede the physiological characteristics of plants. Salicylic acid (SA) as a phytohormone play multifaceted role in plants in terms of development as well as stress management. The current study was conducted to evaluate the effect of salinity and salicylic acid on the performance of wheat and barley plants under field experimentation followed by on-farm study to validate the results. This research was firstly conducted in a 4-year research barley field (2012–2013 and 2013–2014) and wheat (2014–2015 and 2015–2016) and subsequently in an on-farm research in four places (2017–2018). Results depicted that salinity decreased plant yield components and altered ion concentrations (Na+/K+) causing reduced grain and biological yield. However, SA foliar application induced yield components, especially grain number of plants in both years in non-saline and saline conditions. Exogenously SA application not only led to higher grain yield of barley and wheat but also significantly improved their salt tolerance. Our findings revealed that optimum SA concentrations for achieving highest barley yield were 0.85 and 0.78 mM under saline and non-saline conditions, respectively, while on-farm scale studies observed that foliar application of SA increased grain and biological yield of wheat in Ardakan, Ashkzar (saline soil and water) and Mehrabad (non-saline field) regions. There was no significant effect in Tijerd, a completely non-saline field. The grain yields were higher in SA-treated Ardakan, Ashkzar, and Mehrabad plants in field by 19, 16, and 15%, respectively. Based on present detailed studies, it was concluded that SA improved salinity tolerance and increased crop yield. So, optimum concentration (1.0–1.5 mM) with proper time application (double ridges), SA increased wheat and barley yields up to 20%. Therefore, SA priming could be used as a potent strategy to cope up salinity stress from plants.

  相似文献   

14.
Control of ion loading into the xylem has been repeatedly named as a crucial factor determining plant salt tolerance. In this study we further investigate this issue by applying a range of biophysical [the microelectrode ion flux measurement (MIFE) technique for non‐invasive ion flux measurements, the patch clamp technique, membrane potential measurements] and physiological (xylem sap and tissue nutrient analysis, photosynthetic characteristics, stomatal conductance) techniques to barley varieties contrasting in their salt tolerance. We report that restricting Na+ loading into the xylem is not essential for conferring salinity tolerance in barley, with tolerant varieties showing xylem Na+ concentrations at least as high as those of sensitive ones. At the same time, tolerant genotypes are capable of maintaining higher xylem K+/Na+ ratios and efficiently sequester the accumulated Na+ in leaves. The former is achieved by more efficient loading of K+ into the xylem. We argue that the observed increases in xylem K+ and Na+ concentrations in tolerant genotypes are required for efficient osmotic adjustment, needed to support leaf expansion growth. We also provide evidence that K+‐permeable voltage‐sensitive channels are involved in xylem loading and operate in a feedback manner to maintain a constant K+/Na+ ratio in the xylem sap.  相似文献   

15.
Leidi  E.O.  Saiz  J.F. 《Plant and Soil》1997,190(1):67-75
Physiological responses to salt stress were studied in two cotton cultivars previously selected on the basis of growth under salinity. Plants were grown in nutrient solutions under controlled conditions. In the first experiment, the genotypes were grown at different salt concentrations (0, 100 and 200 mt M NaCl) and growth rates, water contents and ion accumulation were determined. In a second experiment, both genotypes were grown at the same salt concentration (200 mt M NaCl). Dry matter partitioning in individual leaves, stem and roots, water contents, specific leaf area (SLA), ion accumulation (K+, Na+, Cl) and leaf water potentials were measured. Finally, an experiment with low salt levels (2.7 and 27 mt M NaCl) was run to compare K and Na+ uptake and distribution.There were no differences in growth between the cultivars in the absence of salt stress, whereas under stress genotype Z407 had higher leaf area and dry matter accumulation than P792. Leaf water potential and leaf water content were lower in cv P792 than in cv Z407. There were no significant differences in the levels of Cl accumulation between genotypes. The main feature of the tolerant genotype (Z407) was a higher accumulation of Na+ in leaves and an apparent capacity for K+ redistribution to younger leaves.We postulate that the higher tolerance in Z407 is the result of several traits such as a higher Na+ uptake and water content. Adaptation through adequate, but tightly controlled ion uptake, typical of some halophytes, matched with efficient ion compartmentation and redistribution, would result in an improved water uptake capacity under salt stress and lead to maintenance of higher growth rates.  相似文献   

16.
Irrigated olive is rapidly increasing in arid and semiarid areas, many of which may be negatively affected by soil salinity. We evaluated changes in trunk growth and leaf Cl, Na+ and K+ concentrations in young Arbequina olives (Olea europaea L.) grown in a saline-sodic field over a three-year period. The trunk diameter was measured at the beginning and the end of the 1999 (70 trees), 2000 (59 trees) and 2001 (42 trees) growing periods. Leaves, sampled in August of each year, were analyzed for Cl, Na+ and K+ concentrations. Soil salinity (apparent electrical conductivity, ECa) of each monitored tree was measured 14 times during the 1999–2001 experimental period with an electromagnetic sensor and converted to root zone electrical conductivity of the soil saturation extract (ECe) based on ECa–ECe calibration curves. Salinity tolerance was determined using the Maas and Hoffman threshold–slope response model. Based on salinity thresholds (ECethr), the tolerance of olive in terms of trunk growth was high in 1999 (ECethr = 6.7 dS m–1), but declined with age and time of exposure to salts by 30% in 2000 (ECethr = 4.7 dS m–1) and by 55% in 2001 (ECethr = 3.0 dS m–1). Based on the high absolute slopes obtained in all years (values between 16% and 23% dS–1 m), olive was classified as very sensitive to ECe values above the threshold. Trunk growth thresholds based on leaf ion concentrations varied, depending on years, between 2.6 and 4.0 mg g–1 (Clthr) and between 1.0 and 1.2 mg g–1 (Nathr), indicating that Arbequina olive was less sensitive to leaf Cl and much more sensitive to leaf Na+ than values reported as toxic in greenhouse studies. Leaf K+ slightly decreased with increasing salinity, whereas the K+/Na+ ratio sharply decreased with increasing salinity. We concluded that the initial salinity tolerance of olive was high, but declined sharply with time of exposure to salts and became quite sensitive due primarily to increasing toxic concentrations of Na+ in the leaves.  相似文献   

17.
Salt Tolerance of Cotton: Some New Advances   总被引:5,自引:0,他引:5  
Referee: Dr. Lin Wu, Department of Environmental Horticulture, University of California, Davis, Davis, CA 95616 Cotton is a dual-purpose crop, widely used for fiber and oil purposes throughout the world. It is placed in the moderately salt-tolerant group of plant species with a salinity threshold level 7.7?dS m?1, its growth and seed yield being severely reduced at high salinity levels and different salts affect the cotton growth to a variable extent. However, inter- and intraspecific variation for cotton salt tolerance in cotton is considerable and thus can be exploited through specific selection and breeding for enhancing salt tolerance of the crop. There are contrasting reports regarding the crop response to salinity at different plant growth stages, but in most of them it is evident that the crop maintains its degree of salt tolerance consistently throughout its entire developmental phases. In the latter case an effective selection for salt tolerance is possible to be made at any growth stage of the crop. The pattern of uptake and accumulation of toxic ions (Na+ and/or Cl?) in tissues of plants subjected to saline conditions appears to be due mostly to the mechanism of partial ion exclusion (exclusion of Na+ and/or Cl?) in cotton. Maintenance of high tissue K/Na and Ca/Na ratios is suggested to be an important selection criterion for salt tolerance in cotton. While judging the appropriate mechanism of ion transport across the membranes in view of existing literature, it was evident that the PM-ATPase responds to increasing supply of Na+ in the growth medium, but the activity of the transport proteins on the plasma membrane alone were insufficient to regulate intracellular Na+ levels. Vacuolar-ATPase is also not responsive to increased external Na+. The inability of V-ATPase to respond to Na+ gave indication of the lack of effective driving force for compartmentalization of Na+ in cotton. However, in view of some latest studies concenrning the role of some antioxidants in salt tolerance of cotton it was suggested that high levels of antioxidants and an active ascorbate-glutathione cycle are associated with salt tolerance in cotton. Genetic studies with cotton in relation to salinity tolerance exhibited that most of growth, yield, and fiber characteristics are genetically based and most being QTL controlled and variable. The high additive component of variation can be exploited for breeding to produce further improvement in the salt tolerance of cotton.  相似文献   

18.
Three differently adapted populations of sewan grass (Lasiurus scindicus Henr.) were evaluated for structural and functional adaptations to high salinity. The habitats were Derawar Fort (DF, least saline, ECe 15.21), Bailahwala Dahar (BD, moderately saline, ECe 27.56 dS m?1) and Ladam Sir (LS, highly saline, ECe 39.18 dS m?1) from within the Cholistan Desert. The adaptive components of salt tolerance in sewan grass were assessed by determining various morpho–anatomical and physiological attributes. The degree of salt tolerance of all three ecotypes of L. scindicus from the saline habitats was compared in a controlled hydroponic system to evaluate the adaptive components that are expected to be genetically fixed during a long evolutionary process. Salinity tolerance in the most tolerant LS population relied on increased root length and total leaf area, restricted uptake of toxic Cl?, increased uptake of Ca2+, high excretion of Na+, accumulation of organic osmolytes, high water use efficiency, increased root, thicker leaf and cortical region, intensive sclerification, large metaxylem vessels, and dense pubescence on abaxial leaf surface. The BD population (from moderately saline soil) relied on high Ca2+ uptake, Na+ excretion, epidermal thickness, large cortical cells, thick endodermis and large vascular tissue. The DF population (from less saline soil) showed a significant decrease in all morphological characteristics; however, it accumulated organic osmolytes for its survival under high salinities. Structural modifications in all three populations were crucial for checking undue water loss under physiological stress that is caused by high amounts of soluble salts in the soil.  相似文献   

19.
Effect of paclobutrazol (PBZ) treatment on salinity tolerance of wheat (Triticum aestivum) was investigated on a salt-tolerant (Karchia-65) and salt-sensitive (Ghods) cultivars. Salinity significantly reduced the investigated growth parameters such as plant height, length and area of sixth leaf, root length, fresh and dry weight of shoot, roots and sixth leaf, water content (WC) of plant and seeds weight in the both cultivars. The negative effect of salinity in Ghods cultivar was more than Karchia cultivar. However, PBZ treatment reduced the growth in both cultivars, the differences in plant growth among various levels of NaCl decreased in PBZ-treated plants. Salt stress resulted in high accumulation of Na+ in the sixth leaf and roots in both cultivars, particularly in Ghods cultivar. Against Karchia cultivar, salt stress decreased the storage of K+, P and N in sixth leaf and roots in Ghods cultivar. In the both cultivars, PBZ treatment enhanced the K+, P and N contents in sixth leaf and roots by increasing salinity. Although PBZ treatment decreased the growth of plants, it improved the weight of seeds against stress damage. PBZ treatment reduced the accumulation of harmful Na+ ion in plant tissues while increased the K+, P and N contents. These observations suggest that PBZ treatment may increase tolerance by diminishing ionic imbalance caused by salt stress.  相似文献   

20.

Main conclusion

Salt sensitivity in chickpea is determined by Na+ toxicity, whereas relatively high leaf tissue concentrations of Cl? were tolerated, and the osmotic component of 60-mM NaCl was not detrimental.Chickpea (Cicer arietinum L.) is sensitive to salinity. This study dissected the responses of chickpea to osmotic and ionic components (Na+ and/or Cl?) of salt stress. Two genotypes with contrasting salt tolerances were exposed to osmotic treatments (?0.16 and ?0.29 MPa), Na+-salts, Cl?-salts, or NaCl at 0, 30, or 60 mM for 42 days and growth, tissue ion concentrations and leaf gas-exchange were assessed. The osmotic treatments and Cl?-salts did not affect growth, whereas Na+-salts and NaCl treatments equally impaired growth in either genotype. Shoot Na+ and Cl? concentrations had markedly increased, whereas shoot K+ had declined in the NaCl treatments, but both genotypes had similar shoot concentrations of each of these individual ions after 14 and 28 days of treatments. Genesis836 achieved higher net photosynthetic rate (64–84 % of control) compared with Rupali (35–56 % of control) at equivalent leaf Na+ concentrations. We conclude that (1) salt sensitivity in chickpea is determined by Na+ toxicity, and (2) the two contrasting genotypes appear to differ in ‘tissue tolerance’ of high Na+. This study provides a basis for focus on Na+ tolerance traits for future varietal improvement programs for salinity tolerance in chickpea.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号