首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parachlamydia acanthamoebae is an obligate intracellular bacterium that naturally infects free-living amoebae. It is a potential agent of pneumonia that resists destruction by human macrophages. However, the strategy used by this Chlamydia-like organism in order to resist to macrophage destruction is unknown. We analysed the intracellular trafficking of P. acanthamoebae within monocyte-derived macrophages. Infected cells were immunolabelled for the bacteria and for various intracellular compartments by using specific antibodies. We analysed the bacteria colocalization with the different subcellular compartments by using epifluorescence and confocal microscopy. Bacterial replication took place 4-6 h post infection within acidic vacuoles. At that time, P. acanthamoebae colocalized with Lamp-1, a membrane marker of late endosomal and lysosomal compartments. A transient accumulation of EEA1 15 min post infection, and of rab7 and the mannose 6-phosphate receptor 30 min post infection confirmed that P. acanthamoebae traffic through the endocytic pathway. The acquisition of Lamp-1 was not different after infection with living and heat-inactivated bacteria. However, 24.5% and 79.5% of living and heat-inactivated P. acanthamoebae, respectively, colocalized with the vacuolar proton ATPase. Moreover, P. acanthamoebae did not colocalized with cathepsin D, a lysosomal hydrolase, suggesting that P. acanthamoebae interferes with maturation of its vacuole. Thus, P. acanthamoebae survives to destruction by human macrophages probably by controlling the vacuole biogenesis.  相似文献   

2.
3.
Growing evidence suggests that the bacterium Waddlia chondrophila, a novel member of the Chlamydiales order, is an agent of miscarriage in humans and abortion in ruminants. We thus investigated the permissivity of three epithelial cell lines, primate Vero kidney cells, human A549 pneumocytes and human Ishikawa endometrial cells to this strict intracellular bacteria. Bacterial growth kinetics in these cell lines was assessed by quantitative PCR and immunofluorescence and our results demonstrated that W. chondrophila enters and efficiently multiplies in these epithelial cell lines. Additionally, confocal and electron microscopy indicated that the bacteria co-localize with host cell mitochondria. Within Vero and A549 cells, intracellular growth of W. chondrophila was associated with a significant decrease in host cell viability while no such cytophatic effect was detected in Ishikawa cells. Bacterial cell growth in this endometrial cell line stopped 48 h after infection. This stop in the replication of W. chondrophila coincided with the appearance of large aberrant bodies, a form of the bacteria also observed in Chlamydiaceae and associated with persistence. This persistent state of W. chondrophila may explain recurrent episodes of miscarriage in vivo, since the bacteria might reactivate within endometrial cells following hormonal changes that occur during pregnancy.  相似文献   

4.
The proto-oncogene c-myc is a key player in cell-cycle regulation and is deregulated in a broad range of human cancers and cell proliferation disorders. Here we reported that overexpression of c-myc in human embryonic lung fibroblasts (HEL) that have low endogenous c-myc enriched S phase cells with increased expression of cyclin D3, E, A, Cdk2, and Cdk4, and decreased expression of p21 and p27. To the opposite, using RNAi to downregulate c-myc expression in A549 cells that have high endogenous c-myc enriched G1 phase cells with decreased expression of cyclin D3, E, A, Cdk2, Cdk4, and increased expression of p21 and p27. We found that cyclin A expression was the most susceptive to changes in c-myc levels and essential in c-myc-modulated cell cycle pathway via co-transfection, however, cyclin D1 showed no change between treated and control groups in either HEL or A549 cells. Our results indicated that upregulation of c-myc expression promotes cell cycling in HEL cells, whereas downregulation of c-myc expression causes G1 phase arrest in A549 cells, and the c-myc-mediated cell-cycle regulation pathway was dependent on cyclin A and involved cyclin D3, E, Cdk2, Cdk4, p21, and p27, but not cyclin D1.  相似文献   

5.
Previous studies have shown that Pneumocystis binds to pneumocytes, but the proteins responsible for binding have not been well defined. Mucins are the major glycoproteins present in mucus, which serves as the first line of defence during airway infection. MUC1 is the best characterised membrane‐tethered mucin and is expressed on the surface of most airway epithelial cells. Although by electron microscopy Pneumocystis primarily binds to type I pneumocytes, it can also bind to type II pneumocytes. We hypothesized that Pneumocystis organisms can bind to MUC1 expressed by type II pneumocytes. Overexpression of MUC1 in human embryonic kidney HEK293 cells increased Pneumocystis binding, while knockdown of MUC1 expression by siRNA in A549 cells, a human adenocarcinoma‐derived alveolar type II epithelial cell line, decreased Pneumocystis binding. Immunofluorescence labelling indicated that MUC1 and Pneumocystis were co‐localised in infected mouse lung tissue. Incubation of A549 cells with Pneumocystis led to phosphorylation of ERK1/2 that increased with knockdown of MUC1 expression by siRNA. Pneumocystis caused increased IL‐6 and IL‐8 secretion by A549 cells, and knockdown of MUC1 further increased their secretion in A549 cells. Taken together, these results suggest that binding of Pneumocystis to MUC1 expressed by airway epithelial cells may facilitate establishment of productive infection.  相似文献   

6.
Coxiella burnetii, the causative agent of Q fever, is a zoonotic disease with potentially life-threatening complications in humans. Inhalation of low doses of Coxiella bacteria can result in infection of the host alveolar macrophage (AM). However, it is not known whether a subset of AMs within the heterogeneous population of macrophages in the infected lung is particularly susceptible to infection. We have found that lower doses of both phase I and phase II Nine Mile C. burnetii multiply and are less readily cleared from the lungs of mice compared to higher infectious doses. We have additionally identified AM resident within the lung prior to and shortly following infection, opposed to newly recruited monocytes entering the lung during infection, as being most susceptible to infection. These resident cells remain infected up to twelve days after the onset of infection, serving as a permissive niche for the maintenance of bacterial infection. A subset of infected resident AMs undergo a distinguishing phenotypic change during the progression of infection exhibiting an increase in surface integrin CD11b expression and continued expression of the surface integrin CD11c. The low rate of phase I and II Nine Mile C. burnetii growth in murine lungs may be a direct result of the limited size of the susceptible resident AM cell population.  相似文献   

7.
8.
Oncolytic adenoviruses have emerged as a promising approach for the treatment of tumors resistant to other treatment modalities. However, preclinical safety studies are hampered by the lack of a permissive nonhuman host. Screening of a panel of primary cell cultures from seven different animal species revealed that porcine cells support productive replication of human adenovirus type 5 (Ad5) nearly as efficiently as human A549 cells, while release of infectious virus by cells from other animal species tested was diminished by several orders of magnitude. Restriction of productive Ad5 replication in rodent and rabbit cells seems to act primarily at a postentry step. Replication efficiency of adenoviral vectors harboring different E1 deletions or mutations in porcine cells was similar to that in A549 cells. Side-by-side comparison of the viral load kinetics in blood of swine and mice injected with Ad5 or a replication-deficient adenoviral vector failed to provide clear evidence for virus replication in mice. In contrast, evidence suggests that adenovirus replication occurs in swine, since adenoviral late gene expression produced a 13.5-fold increase in viral load in an individual swine from day 3 to day 7 and 100-fold increase in viral DNA levels in the Ad5-infected swine compared to the animal receiving a replication-deficient adenovirus. Lung histology of Ad5-infected swine revealed a severe interstitial pneumonia. Although the results in swine are based on a small number of animals and need to be confirmed, our data strongly suggest that infection of swine with human adenovirus or oncolytic adenoviral vectors is a more appropriate animal model to study adenoviral pathogenicity or pharmacodynamic and toxicity profiles of adenoviral vectors than infection of mice.  相似文献   

9.
RSV (respiratory syncytial virus)-induced pneumonia and bronchiolitis may be associated with hyperresponsive conditions, including asthma. Eosinophilic proteins such as MBP (major basic protein) may also be associated with the pathophysiology of asthma. To elucidate the roles of RSV infection and MBP in the pathogenesis of pneumonia with hyperresponsiveness, we investigated the effects of RSV infection and MBP on A549 (alveolar epithelial) cells. CPE (cytopathic effects) in A549 cells were observed by microscopy. Apoptosis and cell death was evaluated by flow cytometric analysis and modified MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. We also measured 15 types of cytokines and chemokines in A549 cell supernatants. Although RSV alone did not affect the CPE of A549, high concentrations of MBP resulted in cell death within 24 h. Combinations of RSV and MBP synergistically induced cell death. In A549 cells infected with RSV alone, the release of GM-CSF (granulocyte-macrophage colony-stimulating factor) was significantly enhanced compared with control cells (no infection). In the cells treated with MBP alone, the production of IL (interleukin)-2, 4, 5, 7, 10, 12, 13, 17, IFN (interferon)-γ, GM-CSF, G-CSF (granulocyte colony-stimulating factor) and MIP (macrophage inflammatory protein)-1β was significantly increased compared with control cells. Notably, the levels of GM-CSF and IL-17 in RSV/MBP-treated cells were significantly higher than those treated with MBP alone. These results suggest that MBP synergistically enhanced the release of various cytokines/chemokines and the cell death of RSV-infected A549 cells, indicating that MBP may be closely associated with the pathophysiology of allergic reactions in bronchiolitis/pneumonia due to RSV.  相似文献   

10.
We developed an in vitro tissue-culture model to analyze the process involved in mycobacterial spread through lung epithelial cell monolayers. A549 cells were infected with low numbers of viable Mycobacterium tuberculosis bacilli expressing the gfp gene. Subsequent addition of a soft agarose overlay prevented the dispersal of the bacilli from the initial points of attachment. By fluorescence microscopy the bacteria were observed to infect and grow within the primary target cells; this was followed by lysis of the infected cells and subsequent infection of adjacent cells. This process repeated itself until an area of clearing (plaque formation) was observed. The addition of amikacin after initial infection did not prevent intracellular growth; however, subsequent plaque formation was not observed. Plaque formation was also observed after infection with Mycobacterium bovis BCG bacilli, but the plaques were smaller than those formed after infection with M. tuberculosis. These observations reinforce the possibility that cell-to-cell spreading of M. tuberculosis bacilli, particularly early in the course of infection within lung macrophages, pneumocytes, and other cells, may be an important component in the infectious process.  相似文献   

11.
A growing body of literature suggests that a variety of cell products (e.g., cytokines, C components, etc.) likely play an important role during inflammation and host defense by locally regulating the diverse functions of recruited (i.e., immunologic cells) as well as tissue cells. Previously, a number of investigations have demonstrated the ability of immunologic cells to produce C components in vitro, and further studies have identified a variety of cytokines that can regulate C component production by these cells. Recently, we have demonstrated the ability of lung tissue cells, including epithelial cells and fibroblasts, to synthesize and secrete numerous C components and complement regulatory proteins in vitro. Additionally, we have demonstrated that C component production can be modulated by a variety of factors including endotoxin and serum. In our studies we investigated the effects of specific cytokines, i.e., IL and IFN, on the production of the third (C3) and fifth (C5) C components by the continuous cell line of human type II pneumocytes (A549). Specifically, using sensitive ELISA we demonstrated that A549 pneumocytes exposed to IL-1 alpha, IL-1 beta, or IL-2 induced a dose-dependent, more than twofold, increase in C3 production and a 50% decrease in C5 production when compared to control (untreated) A549 cells. Interestingly, IFN-alpha significantly decreased both C3 and C5 production, i.e., 38 and 71%, respectively, in a dose-dependent manner. IFN-gamma had no effect on C3 production, but significantly decreased C5 production by A549 pneumocytes by 84%. These data not only demonstrate that cytokines have the capability to modulate C3 and C5 production by human type II pneumocytes in vitro, but that C3 and C5 production by these cells can be regulated independently by different cytokines. In vivo, cytokine modulation of C component production by local tissue cells likely plays an important role in the regulation of inflammation and host defense within the lung.  相似文献   

12.
There is increasing need to verify the identities of cell subpopulations enriched by laser flow cytometry and fluorescence-activated cell sorting (FACS). When cell subpopulations isolated from whole organs or tissues have similar characteristics (e.g., size, granularity, staining), light, phase contrast or fluorescence microscopy may not provide sufficient resolution to identify isolated cells accurately and many flow cytometric parameters (e.g., viability, fluorescence) require the cells to be live at the point of analysis where the cell transects the laser beam. In some studies, cells identified by fluorescence microscopy as a highly enriched subpopulation were found by electron microscopy to contain significant populations of other cell types. A technique, fixation-in-flow (FIF), has been developed to increase ability to correlate morphological and laser analyses of cell subpopulations. Sheath fluid is replaced by fixative, permitting fixation to be initiated immediately after laser beam analysis of live cells. This new procedure yields improved cytoarchitectural preservation of recovered cell subpopulation(s) for evaluation by transmission or scanning electron microscopy. This report presents results from applying the methodology to identify more accurately cell subpopulations of the distal lung, specifically type II pneumocytes, Clara cells and pulmonary macrophages. A modification of this procedure was employed to isolate fibroblast subpopulations from murine lung fibroblasts grown in vitro and the procedure is being used to determine the responses of cultured fibroblasts to other permutations (e.g., X-irradiation, cytokines).  相似文献   

13.
Sixt BS  Hiess B  König L  Horn M 《PloS one》2012,7(1):e29565
The fundamental role of programmed cell death in host defense is highlighted by the multitude of anti-apoptotic strategies evolved by various microbes, including the well-known obligate intracellular bacterial pathogens Chlamydia trachomatis and Chlamydia (Chlamydophila) pneumoniae. As inhibition of apoptosis is assumed to be essential for a successful infection of humans by these chlamydiae, we analyzed the anti-apoptotic capacity of close relatives that occur as symbionts of amoebae and might represent emerging pathogens. While Simkania negevensis was able to efficiently replicate within insect cells, which served as model for metazoan-derived host cells, the Parachlamydiaceae (Parachlamydia acanthamoebae and Protochlamydia amoebophila) displayed limited intracellular growth, yet these bacteria induced typical features of apoptotic cell death, including formation of apoptotic bodies, nuclear condensation, internucleosomal DNA fragmentation, and effector caspase activity. Induction of apoptosis was dependent on bacterial activity, but not bacterial de novo protein synthesis, and was detectable already at very early stages of infection. Experimental inhibition of host cell death greatly enhanced parachlamydial replication, suggesting that lack of potent anti-apoptotic activities in Parachlamydiaceae may represent an important factor compromising their ability to successfully infect non-protozoan hosts. These findings highlight the importance of the evolution of anti-apoptotic traits for the success of chlamydiae as pathogens of humans and animals.  相似文献   

14.
There is increasing need to verify the identities of cell subpopulations enriched by laser flow cytometry and fluorescence-activated cell sorting (FACS). When cell subpopulations isolated from whole organs or tissues have similar characteristics (e.g., size, granularity, staining), light, phase contrast or fluorescence microscopy may not provide sufficient resolution to identify isolated cells accurately and many flow cytometric parameters (e.g., viability, fluorescence) require the cells to be live at the point of analysis where the cell transects the laser beam. In some studies, cells identified by fluorescence microscopy as a highly enriched subpopulation were found by electron microscopy to contain significant populations of other cell types. A technique, fixation-in-flow (FIF), has been developed to increase ability to correlate morphological and laser analyses of cell subpopulations. Sheath fluid is replaced by fixative, permitting fixation to be initiated immediately after laser beam analysis of live cells. This new procedure yields improved cytoarchitectural preservation of recovered cell subpopulation(s) for evaluation by transmission or scanning electron microscopy. This report presents results from applying the methodology to identify more accurately cell subpopulations of the distal lung, specifically type II pneumocytes, Clara cells and pulmonary macrophages. A modification of this procedure was employed to isolate fibroblast subpopulations from murine lung fibroblasts grown in vitro and the procedure is being used to determine the responses of cultured fibroblasts to other permutations (e.g., X-irradiation, cytokines).  相似文献   

15.
Interferon-gamma-induced tryptophan metabolism of human macrophages was compared to ten human neoplastic cell lines of various tissue origin and to normal dermal human fibroblasts. Tryptophan and metabolites were determined in supernatants of cultures, after incubation for 48 h, by high-performance liquid chromatography with ultraviolet and fluorescence detection. With the exception of two cell lines (Hep G 2, hepatoma and CaCo 2, colon adenocarcinoma) in all of the ten other cells and cell lines tryptophan degradation was induced by interferon-gamma. Five of these ten formed only kynurenine (SK-N-SH, neuroblastoma; T 24, J 82, bladder carcinoma; A 431, epidermoid carcinoma; normal dermal fibroblasts), three formed kynurenine and anthranilic acid (U 138 MG, glioblastoma; SK-HEP-1, hepatoma; A 549, lung carcinoma). Only one line, A 498 (kidney carcinoma) showed the same pattern of metabolites as macrophages (kynurenine, anthranilic acid and 3-hydroxyanthranilic acid). Interferon-gamma regulated only the activity of indoleamine 2,3-dioxygenase. All other enzyme activities detected were independent of interferon-gamma, as shown by the capacity of the cells to metabolize L-kynurenine or N-formyl-L-kynurenine. Increasing the extracellular L-tryptophan concentration resulted in a marked induction of tryptophan degradation by macrophages. Contrarily, a significant decrease of the tryptophan degrading activity was observed when the extracellular L-tryptophan concentration was increased 2-fold with SK-N-SH, T 24 and J 82, 4-fold with A 431 and A 549 and 10-fold with U 138 MG and SK-HEP-1. The activity was unaffected by extracellular L-tryptophan with dermal fibroblasts and A 498. Though interferon-gamma was the most potent inducer of tryptophan metabolism, interferon-alpha and/or -beta showed small but distinct action on some of the cells. In all cells which reacted to interferon-gamma by enhanced expression of class I and/or class II major histocompatibility complex antigens tryptophan degradation was also inducible. These results demonstrate that induction of indoleamine 2,3-dioxygenase is a common feature of interferon-gamma action, that the extent of this induction is influenced by extracellular L-tryptophan concentrations and that indoleamine 2,3-dioxygenase is the only enzyme in the formation of 3-hydroxyanthranilic acid from tryptophan which is regulated by interferon-gamma.  相似文献   

16.
S Keay  B Baldwin 《Journal of virology》1991,65(9):5124-5128
Human cytomegalovirus (CMV) infects cells by sequential processes involving attachment, fusion with the cell membrane, and penetration of the capsid. We used two monoclonal anti-idiotype that mimic one of the CMV envelope glycoproteins, gp86, to study its role in the early phases of CMV infection. Neither of two such antibodies inhibited virus binding to human embryonic lung (HEL) fibroblasts; however, both antibodies inhibited the fusion of CMV with HEL cells, as measured by an assay in which viral envelope is labeled with a fluorescent amphiphile (octadecyl rhodamine B chloride, or R18), resulting in increased fluorescence during fusion of virus with the cell membrane. Because these anti-idiotype antibodies were shown previously to bind to specific receptors on HEL cell membranes, these findings suggest that both gp86 and its cell membrane receptor may function in the fusion of human CMV with HEL cells.  相似文献   

17.
18.
Dendritic cells (DC) are required for the immune response against Listeria monocytogenes and are permissive for infection in vivo and in vitro. However, it is unclear if DC provide a desirable intracellular niche for bacterial growth. To address this issue, we have compared the behaviour of L. monocytogenes in murine bone marrow-derived DC and macrophages (BMM). Similar to BMM, bacteria escaped to the cytosol in DC, replicated, and spread to adjacent cells. However, DC infection was less robust in terms of intracellular doubling time and total increase in bacterial numbers. Immunofluorescence analysis using a strain of L. monocytogenes that expresses green fluorescent protein upon bacterial entry into the cytosol suggested that a subpopulation of DC restricted bacteria to vacuoles, a finding that was confirmed by electron microscopy. In unstimulated DC cultures, L. monocytogenes replicated preferentially in phenotypically immature cells. Furthermore, DC that were induced to mature prior to infection were poor hosts for bacterial growth. We conclude that DC provide a suboptimal niche for L. monocytogenes growth, and this is at least in part a function of the DC maturation state. Therefore, the generation of an effective T cell response may be a net effect of both productive and non-productive infection of DC.  相似文献   

19.
The clinical picture of severe acute respiratory syndrome (SARS) is characterized by pulmonary inflammation and respiratory failure, resembling that of acute respiratory distress syndrome. However, the events that lead to the recruitment of leukocytes are poorly understood. To study the cellular response in the acute phase of SARS coronavirus (SARS-CoV)-host cell interaction, we investigated the induction of chemokines, adhesion molecules, and DC-SIGN (dendritic cell-specific ICAM-3-grabbing nonintegrin) by SARS-CoV. Immunohistochemistry revealed neutrophil, macrophage, and CD8 T-cell infiltration in the lung autopsy of a SARS patient who died during the acute phase of illness. Additionally, pneumocytes and macrophages in the patient's lung expressed P-selectin and DC-SIGN. In in vitro study, we showed that the A549 and THP-1 cell lines were susceptible to SARS-CoV. A549 cells produced CCL2/monocyte chemoattractant protein 1 (MCP-1) and CXCL8/interleukin-8 (IL-8) after interaction with SARS-CoV and expressed P-selectin and VCAM-1. Moreover, SARS-CoV induced THP-1 cells to express CCL2/MCP-1, CXCL8/IL-8, CCL3/MIP-1alpha, CXCL10/IP-10, CCL4/MIP-1beta, and CCL5/RANTES, which attracted neutrophils, monocytes, and activated T cells in a chemotaxis assay. We also demonstrated that DC-SIGN was inducible in THP-1 as well as A549 cells after SARS-CoV infection. Our in vitro experiments modeling infection in humans together with the study of a lung biopsy of a patient who died during the early phase of infection demonstrated that SARS-CoV, through a dynamic interaction with lung epithelial cells and monocytic cells, creates an environment conducive for immune cell migration and accumulation that eventually leads to lung injury.  相似文献   

20.
Epithelial–mesenchymal transition (EMT) is associated with pulmonary fibrosis, including idiopathic pulmonary fibrosis (IPF). In this study, we investigated EMT of human pulmonary epithelial-derived cells (A549). A549 cells was either cultured by itself or co-cultured with THP-1 macrophages under normoxic (21% O2) and hypoxic (2% O2) conditions. We evaluated the presence of EMT by determining the expression of EMT markers, E-cadherin, vimentin, and fibronectin. To determine the role of TGF-β1 and IL-1β in EMT of the A549 cells, we analyzed the effects of blocking their activity with TGF-β1 inhibitor or IL-1β neutralizing antibody respectively. The A549 cells presented EMT when they were co-cultured with THP-1 macrophages. The EMT of the A549 cells co-cultured with THP-1 macrophages was exacerbated under hypoxia. In addition, the EMT were prevented by the addition of TGF-β1 type I receptor kinase inhibitor. The hypoxic condition increased the mRNA levels of TGF-β1 in A549 cells and THP-1 macrophages and that of IL-1β in THP-1 macrophages when each cells were co-cultured. Anti-IL-1β neutralizing antibody attenuated TGF-β1 secretion in co-culture media under hypoxic conditions. Thus, the IL-1β from THP-1 macrophages up-regulated the TGF-β1 from A549 cells and THP-1 macrophages, and then the TGF-β1 from both cells induced and promoted the EMT of A549 cells when they were co-cultured under hypoxia. Together, these results demonstrate that the interaction between type II pneumocytes and macrophages under hypoxia is necessary for the development of pulmonary fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号