首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strain SF3, a gram-negative, anaerobic, motile, short curved rod that grows by coupling the reductive dechlorination of 2-chlorophenol (2-CP) to the oxidation of acetate, was isolated from San Francisco Bay sediment. Strain SF3 grew at concentrations of NaCl ranging from 0.16 to 2.5%, but concentrations of KCl above 0. 32% inhibited growth. The isolate used acetate, fumarate, lactate, propionate, pyruvate, alanine, and ethanol as electron donors for growth coupled to reductive dechlorination. Among the halogenated aromatic compounds tested, only the ortho position of chlorophenols was reductively dechlorinated, and additional chlorines at other positions blocked ortho dechlorination. Sulfate, sulfite, thiosulfate, and nitrate were also used as electron acceptors for growth. The optimal temperature for growth was 30 degrees C, and no growth or dechlorination activity was observed at 37 degrees C. Growth by reductive dechlorination was revealed by a growth yield of about 1 g of protein per mol of 2-CP dechlorinated, and about 2.7 g of protein per mole of 2,6-dichlorophenol dechlorinated. The physiological features and 16S ribosomal DNA sequence suggest that the organism is a novel species of the genus Desulfovibrio and which we have designated Desulfovibrio dechloracetivorans. The unusual physiological feature of this strain is that it uses acetate as an electron donor and carbon source for growth with 2-CP but not with sulfate.  相似文献   

2.
Strain SF3, a gram-negative, anaerobic, motile, short curved rod that grows by coupling the reductive dechlorination of 2-chlorophenol (2-CP) to the oxidation of acetate, was isolated from San Francisco Bay sediment. Strain SF3 grew at concentrations of NaCl ranging from 0.16 to 2.5%, but concentrations of KCl above 0.32% inhibited growth. The isolate used acetate, fumarate, lactate, propionate, pyruvate, alanine, and ethanol as electron donors for growth coupled to reductive dechlorination. Among the halogenated aromatic compounds tested, only the ortho position of chlorophenols was reductively dechlorinated, and additional chlorines at other positions blocked ortho dechlorination. Sulfate, sulfite, thiosulfate, and nitrate were also used as electron acceptors for growth. The optimal temperature for growth was 30°C, and no growth or dechlorination activity was observed at 37°C. Growth by reductive dechlorination was revealed by a growth yield of about 1 g of protein per mol of 2-CP dechlorinated, and about 2.7 g of protein per mole of 2,6-dichlorophenol dechlorinated. The physiological features and 16S ribosomal DNA sequence suggest that the organism is a novel species of the genus Desulfovibrio and which we have designated Desulfovibrio dechloracetivorans. The unusual physiological feature of this strain is that it uses acetate as an electron donor and carbon source for growth with 2-CP but not with sulfate.  相似文献   

3.
A strictly anaerobic bacterium, strain PCE1, was isolated from a tetrachloroethene-dechlorinating enrichment culture. Cells of the bacterium were motile curved rods, with approximately four lateral flagella. They possessed a gram-positive type of cell wall and contained cytochrome c. Optimum growth occurred at pH 7.2–7.8 and 34–38° C. The organism grew with l-lactate, pyruvate, butyrate, formate, succinate, or ethanol as electron donors, using either tetrachloroethene, 2-chlorophenol, 2,4,6-trichlorophenol, 3-chloro-4-hydroxy-phenylacetate, sulfite, thiosulfate, or fumarate as electron acceptors. Strain PCE1 also grew fermentatively with pyruvate as the sole substrate. l-Lactate and pyruvate were oxidized to acetate. Tetrachloroethene was reductively dechlorinated to trichloroethene and small amounts (< 5%) of cis-1,2-dichloroethene and trans-1,2-dichloroethene. Chlorinated phenolic compounds were dechlorinated specifically at the ortho-position. On the basis of 16S rRNA sequence analysis, the organism was identified as a species within the genus Desulfitobacterium, which until now only contained the chlorophenol-dechlorinating bacterium, Desulfitobacterium dehalogenans. Received: 31 August 1995 / Accepted: 14 November 1995  相似文献   

4.
Summary A consortium of anaerobic microorganisms was grown on acetate, ethanol, glucose or methanol and dechlorinated 50 umol 2,4,6-trichlorophenol, through 2,4-dichlorophenol, to 4-chlorophenol. The highest rate of dechlorination of 2,4,6-trichlorophenol was observed when ethanol was used as a growth substrate.  相似文献   

5.
A small spirillum, designated 5175, was isolated from an anaerobic enrichment culture for Desulfuromonas in which the major medium constituents were acetate and elemental sulfur. The organisms grew only under anaerobic or microaerophilic conditions. Elemental sulfur was formed anaerobically in a malate-sulfide medium, and cell densities of 10(8) cells/ml were obtained. Hydrogen and formate were actively oxidized as substrates for growth under anaerobic conditions; S0, S032-, or S2O32-, but not SO42-, served as electron acceptors and were stoichiometrically reduced to sulfide. Malate or fumarate likewise served as electron acceptors and were reduced to succinate. Nutritional requirements were simple, no vitamins or amino acids being required. For growth in inorganic media when carbon dioxide was the only carbon source, the addition of acetate was required as a source of cell carbon. The organism is gram negative. Cells had a diameter of 0.5 mum and a wavelength of 5.0 mum. Cell suspensions exhibited an absorption spectrum indicative of a cytochrome with peaks in the reduced form at 552, 523, and 416 nm. Well growing syntrophic cultures with Chlorobium were established with formate as the substrate.  相似文献   

6.
The fermentation of fumarate and L-malate by Clostridium formicoaceticum was investigated. Growing and nongrowing cells degraded fumarate by dismutation to succinate, acetate, and CO2; on the other hand, only small amounts of succinate were detected when the organism was grown on L-malate. This dicarboxylic acid was mainly converted to acetate and CO2. The fermentation balances were modified if bicarbonate or formate were present in the medium. When C. formicoaceticum was grown in the presence of both dicarboxylic acids, fumarate was consumed before L-malate. The latter was mainly converted to acetate, whereas fumarate was fermented to acetate and succinate. Molar growth yields were determined to be 6 g of dry weight per mol of fumarate and 8 g of dry weight per mol of L-malate fermented.  相似文献   

7.
Strain TT4B has been isolated from anaerobic sediments known to be contaminated with a variety of organic solvents. It is a gram-negative, rod-shaped bacterium and grew anaerobically with acetate as the electron donor and tetrachloroethylene as the electron acceptor in a mineral medium. cis-Dichloroethylene was the halogenated product. This strain did not grow fermentatively and used only acetate or pyruvate as electron donors. Tetrachloroethylene and trichloroethylene were used as electron acceptors, as were ferric nitriloacetate and fumarate. Nitrogen and sulfur oxyanions were not able to substitute as the electron acceptor for this organism. Modest growth occurred in a two-phase system with 1 ml of hexadecane containing 50 to 200 mM tetrachloroethylene (aqueous concentrations, 25 to 100 microM) and 10 ml of anaerobic mineral solution with Na2S as the reducing agent. Growth was completely inhibited at tetrachloroethylene levels above 100 microM.  相似文献   

8.
Regulation of hydrogenase activity in enterobacteria.   总被引:4,自引:4,他引:0       下载免费PDF全文
Proteus vulgaris, Escherichia coli, and Citrobacter freundii cells were devoid of hydrogenase activity when grown on complex medium or minimal medium plus glucose in the presence of saturating levels of dissolved oxygen. Anaerobically grown cells had appreciable hydrogenase activity. Cells grown anaerobically in the presence of CO (an inhibitor of hydrogenase) or nitrate (an electron acceptor) lacked hydrogenase activity. To make hydrogenase essential for anaerobic growth, cells were grown on fumarate, a nonfermentable carbon source. P. vulgaris and C. freundii evolved H2 gas under these conditions, and the hydrogenase-specific activity was 8 to 10 times greater than that in cells grown on glucose. Cell growth was inhibited by CO, and the cells grew but lacked hydrogenase activity when grown in the presence of nitrate. E. coli grew on fumarate plus H2, and the specific activity was five times greater than that in cells grown on glucose. Thus, hydrogenase activity is inducible and is expressed maximally when the enzyme is essential for cellular growth. Under conditions of growth where the enzyme would not be catalytically active, cells contain little active hydrogenase. Under anaerobic conditions where the enzyme is not essential for growth, the level of hydrogenase activity is intermediate.  相似文献   

9.
Strain TBP-1, an anaerobic bacterium capable of reductively dehalogenating 2,4,6-tribromophenol to phenol, was isolated from estuarine sediments of the Arthur Kill in the New York/New Jersey harbor. It is a gram-negative, motile, vibrio-shaped, obligate anaerobe which grows on lactate, pyruvate, hydrogen, and fumarate when provided sulfate as an electron acceptor. The organism accumulates acetate when grown on lactate and sulfate, contains desulfoviridin, and will not grow in the absence of NaCl. It will not utilize acetate, succinate, propionate, or butyrate for growth via sulfate reduction. When supplied with lactate as an electron donor, strain TBP-1 will utilize sulfate, sulfite, sulfur, and thiosulfate for growth but not nitrate, fumarate, or acrylate. This organism debrominates 2-, 4-, 2,4-, 2,6-, and 2,4,6-bromophenol but not 3- or 2,3-bromophenol or monobrominated benzoates. It will not dehalogenate monochlorinated, fluorinated, or iodinated phenols or chlorinated benzoates. Together with its physiological characteristics, its 16S rRNA gene sequence places it in the genus Desulfovibrio. The average growth yield of strain TBP-1 grown on a defined medium supplemented with lactate and 2,4,6-bromophenol is 3.71 mg of protein/mmol of phenol produced, and the yield was 1.42 mg of protein/mmol of phenol produced when 4-bromophenol was the electron acceptor. Average growth yields (milligrams of protein per millimole of electrons utilized) for Desulfovibrio sp. strain TBP-1 grown with 2,4,6-bromophenol, 4-bromophenol, or sulfate are 0.62, 0.71, and 1.07, respectively. Growth did not occur when either lactate or 2,4,6-bromophenol was omitted from the growth medium. These results indicate that Desulfovibrio sp. strain TBP-1 is capable of growth via halorespiration.  相似文献   

10.
From estuarine mud a rod-shaped, motile, gram-negative, anaerobic bacterium was isolated (strain asp 66). Asp 66 fermented several substrates including glucose, fructose, malate, fumarate, citrate and aspartate. Fermentation products were acetate, propionate and presumably CO2. Hydrogen was never formed nor utilized. Succinate conversion to propionate was catalyzed by cell suspensions but did not support growth. Asp 66 did not require vitamins and grew well in mineral media with a fermentable substrate. The pH range for growth was from 6.5 to 8.5. Temperature optimum was 27 to 30°C. The strain was able to fix N2 as evidenced by its growth with N2 as sole nitrogen source and its ability to reduce acetylene to ethylene. Cell-free extracts of cultures grown under air without shaking contained cytochrome(s) with absorption peaks at 523 nm and at 553 nm. The G+C content of the DNA was 60.8+-1 mol%. The taxonomic position of strain asp 66 is discussed.  相似文献   

11.
Chlorophenol degradation coupled to sulfate reduction   总被引:2,自引:0,他引:2  
We studied chlorophenol degradation under sulfate-reducing conditions with an estuarine sediment inoculum. These cultures degraded 0.1 mM 2-, 3-, and 4-chlorophenol and 2,4-dichlorophenol within 120 to 220 days, but after refeeding with chlorophenols degradation took place in 40 days or less. Further refeeding greatly enhanced the rate of degradation. Sulfate consumption by the cultures corresponded to the stoichiometric values expected for complete oxidation of the chlorophenol to CO2. Formation of sulfide from sulfate was confirmed with a radiotracer technique. No methane was formed, verifying that sulfate reduction was the electron sink. Addition of molybdate, a specific inhibitor of sulfate reduction, inhibited chlorophenol degradation completely. These results indicate that the chlorophenols were mineralized under sulfidogenic conditions and that substrate oxidation was coupled to sulfate reduction. In acclimated cultures the three monochlorophenol isomers and 2,4-dichlorophenol were degraded at rates of 8 to 37 mumol liter-1 day-1. The relative rates of degradation were 4-chlorophenol greater than 3-chlorophenol greater than 2-chlorophenol, 2,4-dichlorophenol. Sulfidogenic cultures initiated with biomass from an anaerobic bioreactor used in treatment of pulp-bleaching effluents dechlorinated 2,4-dichlorophenol to 4-chlorophenol, which persisted, whereas 2,6-dichlorophenol was sequentially dechlorinated first to 2-chlorophenol and then to phenol.  相似文献   

12.
Chlorophenol degradation coupled to sulfate reduction.   总被引:11,自引:9,他引:2       下载免费PDF全文
We studied chlorophenol degradation under sulfate-reducing conditions with an estuarine sediment inoculum. These cultures degraded 0.1 mM 2-, 3-, and 4-chlorophenol and 2,4-dichlorophenol within 120 to 220 days, but after refeeding with chlorophenols degradation took place in 40 days or less. Further refeeding greatly enhanced the rate of degradation. Sulfate consumption by the cultures corresponded to the stoichiometric values expected for complete oxidation of the chlorophenol to CO2. Formation of sulfide from sulfate was confirmed with a radiotracer technique. No methane was formed, verifying that sulfate reduction was the electron sink. Addition of molybdate, a specific inhibitor of sulfate reduction, inhibited chlorophenol degradation completely. These results indicate that the chlorophenols were mineralized under sulfidogenic conditions and that substrate oxidation was coupled to sulfate reduction. In acclimated cultures the three monochlorophenol isomers and 2,4-dichlorophenol were degraded at rates of 8 to 37 mumol liter-1 day-1. The relative rates of degradation were 4-chlorophenol greater than 3-chlorophenol greater than 2-chlorophenol, 2,4-dichlorophenol. Sulfidogenic cultures initiated with biomass from an anaerobic bioreactor used in treatment of pulp-bleaching effluents dechlorinated 2,4-dichlorophenol to 4-chlorophenol, which persisted, whereas 2,6-dichlorophenol was sequentially dechlorinated first to 2-chlorophenol and then to phenol.  相似文献   

13.
A system for growing Geobacter sulfurreducens under anaerobic conditions in chemostats was developed in order to study the physiology of this organism under conditions that might more closely approximate those found in the subsurface than batch cultures. Geobacter sulfurreducens could be cultured under acetate-limiting conditions with fumarate or Fe(III)-citrate as the electron acceptor at growth rates between 0.04 and 0.09 h(-1). The molar growth yield was threefold higher with fumarate as the electron acceptor than with Fe(III), despite the lower mid-point potential of the fumarate/succinate redox couple. When growth was limited by availability of fumarate, high steady-state concentrations were detected, suggesting that fumarate is unlikely to be an important electron acceptor in sedimentary environments. The half-saturation constant, Ks, for acetate in Fe(III)-grown cultures (10 microM) suggested that the growth of Geobacter species is likely to be acetate limited in most subsurface sediments, but that when millimolar quantities of acetate are added to the subsurface in order to promote the growth of Geobacter for bioremediation applications, this should be enough to overcome any acetate limitations. When the availability of electron acceptors, rather than acetate, limited growth, G. sulfurreducens was less efficient in incorporating acetate into biomass but had higher respiration rates, a desirable physiological characteristic when adding acetate to stimulate the activity of Geobacter species during in situ uranium bioremediation. These results demonstrate that the ability to study the growth of G. sulfurreducens under steady-state conditions can provide insights into its physiological characteristics that have relevance for its activity in a diversity of sedimentary environments.  相似文献   

14.
Soybean cell suspension cultures grew on defined media with ammonium as the sole nitrogen source if Krebs cycle acids were added. Satisfactory growth was obtained with ammonium salts of citrate, malate, fumarate, or succinate, when compared with the regular medium containing nitrate and ammonium. Little or no growth occurred when ammonium salts of shikimate, tartrate, acetate, carbonate, or sulfate were used. The cells also grew well with l-glutamine as nitrogen source. The specific activities of glutamine synthetase and isocitrate dehydrogenase (nicotinamide adenine dinucleotide phosphate) were lower than in cells grown on a nitrate medium, but ammonium enhanced the activity of glutamate dehydrogenase. Cells of soybean, wheat, and flax have been cultured for an extended period on the ammonium citrate medium.  相似文献   

15.
Reductive dehalogenation of chlorophenols has been reported in undefined anaerobic cultures but never before in an anaerobic pure culture. We found that the sulfate-reducing bacterium Desulfomonile tiedjei DCB-1 reductively dehalogenates pentachlorophenol (PCP) and other chlorophenols. The maximum rate of PCP dechlorination observed was 54 mu mol of Cl- h-1 g of protein-1. 3-Chlorobenzoate appeared to serve as a required inducer for PCP dehalogenation; however, neither PCP nor 3-chlorophenol induced dehalogenation. Dehalogenation was catalyzed by living cells, and formate served as a required electron donor. D. tiedjei dehalogenated meta-chlorine substituents of chlorophenols (i.e., PCP was degraded to 2,4,6-trichlorophenol). Generally, more highly chlorinated phenol congeners were more readily dechlorinated, and 3-chlorophenol was not dehalogenated. Growing cultures dehalogenated PCP, but greater than 10 microM PCP (approximately 1.7 mmol g of protein-1) reversibly inhibited growth.  相似文献   

16.
Reductive dehalogenation of chlorophenols has been reported in undefined anaerobic cultures but never before in an anaerobic pure culture. We found that the sulfate-reducing bacterium Desulfomonile tiedjei DCB-1 reductively dehalogenates pentachlorophenol (PCP) and other chlorophenols. The maximum rate of PCP dechlorination observed was 54 mu mol of Cl- h-1 g of protein-1. 3-Chlorobenzoate appeared to serve as a required inducer for PCP dehalogenation; however, neither PCP nor 3-chlorophenol induced dehalogenation. Dehalogenation was catalyzed by living cells, and formate served as a required electron donor. D. tiedjei dehalogenated meta-chlorine substituents of chlorophenols (i.e., PCP was degraded to 2,4,6-trichlorophenol). Generally, more highly chlorinated phenol congeners were more readily dechlorinated, and 3-chlorophenol was not dehalogenated. Growing cultures dehalogenated PCP, but greater than 10 microM PCP (approximately 1.7 mmol g of protein-1) reversibly inhibited growth.  相似文献   

17.
Escherichia coli batch cultures were grown under aerobic and anaerobic conditions on glucose with the substrate addition at pH 7.0. The cultures accumulated acetate in the medium at concentrations sufficient to inhibit the growth. This inhibitory effect of acetate was mediated apparently via its action on the intracellular pH. The inhibition of E. coli growth by acetate increased when the redox proton pump was switched off in the course of transition from aerobiosis to anaerobiosis and when the regulation of K+ fluxes was disordered in the presence of valinomycin. H+-ATPase was not essentially involved in maintaining the high rate of E. coli growth in the presence of acetate under aerobic conditions. If the activity of H+-ATPase was inhibited under anaerobic conditions at pH 7.0, the growth ceased after the dissipation of ionic gradients on the membrane. When CCCP was added under aerobic conditions, the growth did not stop at once if the medium had a pH of 7.6, but ceased immediately at pHout 7.0 in the glucose-salt medium.  相似文献   

18.
Summary Pseudomonas putida CP1 grew on 2-chlorophenol when supplied as the sole source of carbon. Chlorophenol degradation was stimulated in the presence of low concentrations of glucose (0.05–1%, w/v). Substrate removal was inhibited and there was a significant fall in pH with concentrations of glucose greater than 1.0% (w/v). When the pH was controlled at pH 7.0 inhibition of substrate removal was alleviated. The rate of removal of 2-chlorophenol was greater in the presence of fructose than in the presence of glucose. P. putida CP1 formed clumps of cells when grown on 2-chlorophenol and fructose but not on glucose. When the organism was grown on a combination of 2-chlorophenol and an additional carbon source clumping was present but to a lesser degree.  相似文献   

19.
Thermodynamic data that the reductive dechlorination of 3-chlorobenzoate is exergonic have led to the hypothesis that this reaction yields biologically useful energy. This hypothesis was tested with strain DCB-1, a dehalogenating bacterium. The organism was grown under strictly anaerobic conditions in vitamin-amended mineral medium with formate plus acetate as electron donor and 3-chlorobenzoate as electron acceptor. The cell yield increased stoichiometrically to the amount of 3-chlorobenzoate dechlorinated. No growth was observed in the absence of 3-chlorobenzoate, or when 3-chlorobenzoate was replaced by benzoate. To obtain further evidence on that energy is derived from dechlorination, 3-chlorobenzoate was added to starved cells. This amendment resulted in an increase in the ATP level of the cells at 10 nmol per mg protein versus 3 nmol per mg protein in non-amended controls. These data indicate that the reductive dehalogenation of chlorinated aromatic compounds can be coupled to a novel type of chemotrophy.  相似文献   

20.
Growth and Cellulase Formation by Cellvibrio fulvus   总被引:2,自引:1,他引:1  
S ummary : The aerobic cellulolytic bacterium Cellvibrio fulvus grew on several sugars and polysaccharides, but not on highly substituted cellulose derivatives, organic acids and alcohols. Whereas no growth was obtained on long cotton fibres, it occurred on such fibres cut into small pieces, and on filter paper and chromatography powders derived from cotton. Lignin free wood pulp was rapidly degraded. The organism grew best at pH 7–8 and utilized nitrate, ammonium and some amino acids as nitrogen sources. The bacteria have cell-bound cellulase but enzyme was also found in the culture medium. Glucose repressed cellulase formation and the enzyme activity of cultures grown on cellulose was much higher than on sugars. Reducing sugar was not detected in cellulose cultures. The pH optimum for hydrolysis of carboxymethylcellulose (CMC) was 7 and the enzyme was inhibited by mercuric acetate but not by p -chloromercuribenzoate or EDTA. Fractionation of cellulase preparations from cultures grown on partially hydrolysed filter paper gave many components of different molecular weights. The activities of these components against carboxymethylcellulose and microcrystalline cellulose differed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号