首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been suggested that (abdominally) obese individuals are hypersensitive to growth hormone (GH) action. Because GH affects glucose metabolism, this may impact glucose homeostasis in abdominal obesity. Therefore, we studied the effect of GH on glucose metabolism in abdominally obese (OB) and normal-weight (NW) premenopausal women. A 1-h intravenous infusion of GH or placebo was randomly administered to six NW [body mass index (BMI) 21.1 +/- 1.9 kg/m(2)] and six OB (BMI 35.5 +/- 1.5 kg/m(2)) women in a crossover design. Insulin, glucagon, and GH secretion were suppressed by concomitant infusion of somatostatin. Glucose kinetics were measured using a 10-h infusion of [6,6-(2)H(2)]glucose. In both groups, similar physiological GH peaks were reached by infusion of GH. GH strongly stimulated endogenous glucose production (EGP) in both groups. The percent increase was significantly greater in OB than in NW women (29.8 +/- 11.3 vs. 13.3 +/- 7.4%, P = 0.014). Accordingly, GH responsiveness, defined as the maximum response of EGP per unit GH, was increased in OB vs. NW subjects (6.0 +/- 2.1 vs. 2.2 +/- 1.5 micromol.min(-1).mU(-1).l(-1), P = 0.006). These results suggest that the liver is hyperresponsive to GH action in abdominally obese women. The role of the somatotropic ensemble in the control of glucose homeostasis in abdominal obesity is discussed.  相似文献   

2.
The in vivo actions of growth hormone (GH) on insulin activity and glucose homeostasis were examined in the GH-deficient Little mouse. The insulin-like action of GH was revealed during glucose tolerance tests on the animals after acute treatment with the hormone and the insulin-antagonistic action was demonstrated in both glucose tolerance tests and insulin tolerance tests on the mice after chronic GH infusion. The primary mechanism of the GH actions is to influence the responses of the target tissues to circulating insulin in vivo. The pancreatic function seems to be of little importance in the alteration of glucose metabolism after acute exposure to GH as no significant change of the levels of plasma insulin was detected. It is concluded that the GH-deficient Little mouse is an ideal laboratory model for the elucidation of the molecular mechanism of the interaction between insulin and GH in the regulation of carbohydrate metabolism.  相似文献   

3.
The secretion of growth hormone (GH) increases acutely during exercise, but whether this is associated with the concomitant alterations in substrate metabolism has not previously been studied. We examined the effects of acute GH administration on palmitate, glucose, and protein metabolism before, during, and after 45 min of moderate-intensity aerobic exercise in eight GH-deficient men (mean age = 40.8 +/- 2.9 yr) on two occasions, with (+GH; 0.4 IU GH) and without GH administered (-GH). A group of healthy controls (n = 8, mean age = 40.4 +/- 4.2 yr) were studied without GH. The GH replacement during exercise on the +GH study mimicked the endogenous GH profile seen in healthy controls. No significant difference in resting free fatty acid (FFA) flux was found between study days, but during exercise a greater FFA flux was found when GH was administered (211 +/- 26 vs. 168 +/- 28 micromol/min, P < 0.05) and remained elevated throughout recovery (P < 0.05). With GH administered, the exercise FFA flux was not significantly different from that observed in control subjects (188 +/- 14 micromol/min), but the recovery flux was greater on the +GH day than in the controls (169 +/- 17 vs. 119 +/- 11 micromol/min, respectively, P < 0.01). A significant time effect (P < 0.01) for glucose rate of appearance from rest to exercise and recovery occurred in the GH-deficient adults and the controls, whereas there were no differences in glucose rate of disappearance. No significant effect across time was found for protein muscle balance. In conclusion, 1) acute exposure to GH during exercise stimulates the FFA release and turnover in GH-deficient adults, 2) GH does not significantly impact glucose or protein metabolism during exercise, and 3) the exercise-induced secretion of GH plays a significant role in the regulation of fatty acid metabolism.  相似文献   

4.
The effect on glucose homeostasis of a transient elevation of plasma growth hormone (GH) and cortisol was studied over 6 h in 14 male patients with insulin-dependent diabetes mellitus (IDDM) by using an i.v. somatostatin (100 micrograms/h) - insulin (0.4 mU/kg/min) glucose (3 mg/kg/min) - infusion test (SIGIT). GH (20 mU/kg) was given as a 60 min i.v. infusion during the initial SIGIT period raising the plasma GH level to about 40 micrograms/l, and returning to low basal within 3 h. ACTH (0.1 mg) was given as an i.v. bolus injection at the start of the SIGIT, resulting in plasma cortisol peak values of about 900 nmol/l within 2-3 h. GH raised blood glucose after a lag of 4 h while ACTH alone had no effect. However, ACTH added to GH enhanced the diabetogenic effect of GH. It is concluded that an episodic increase in circulating GH-cortisol, resembling the responses of these hormones to an insulin-induced hypoglycemia, exerts a diabetogenic effect in IDDM-patients not deprived of insulin. While GH is essential in this respect the diabetogenic effect of cortisol is evident only in conjunction with GH.  相似文献   

5.
Glucose oxidation and incorporation into lipid were measured in epididymal adipose tissues and isolated adipose cells of normal and hypophysectomized rats in an effort to determine whether the acute hypoglycemic effect of a systemic growth hormone (GH) injection was related to alterations in the glucose metabolism of adipose tissue. The rats were fed rat chow or a high sucrose diet and received 100 mug GH intraperitoneally 30 minutes or three and one-half hours before sacrifice. Hypophysectomized rats showed a lower plasma glucose as compared with normal rats on both diets. Thirty minutes after a GH injection there was a further decrease of the plasma glucose which, however, was not present in those rats receiving GH three and one-half hours before sacrifice. Adipose tissues from hypophysectomized rats fed the high sucrose diet showed a blunted insulin sensitivity as compared with normal rats on a similar diet. The insulin sensitivity of these tissues was further decreased 30 minutes after a GH injection. Basal glucose metabolism of isolated adipocytes from hypophysectomized rats, as compared with normal rats, was depressed if they were fed rat chow, was at normal levels if they were fed the high sucrose diet and was increased if they were fed the sucrose diet and received triiodothyronine and cortisone supplements. No manipulations of diet or hormonal treatments made the isolated adipocyte from hypophysectomized rats sensitive to insulin either 30 minutes or three and one-half hours after a GH injection. Since basal glucose utilization is not enhanced by GH injection and both the blunted insulin sensitivity of adipose tissue and the absent insulin sensitivity of adipopocytes would be expected to produce hyperglycemia rather than hypoglycemia, it is concluded that immediate systemic effects of a GH injection on carbohydrate metabolism are not related to changes in glucose metabolism of the peripheral adipose tissues.  相似文献   

6.
Prolonged growth hormone (GH) excess is known to be associated with insulin resistance, but the underlying mechanisms remain unknown. The aim of this study was to assess the impact of GH on insulin-stimulated glucose metabolism and insulin signaling in human skeletal muscle. In a cross-over design, eight healthy male subjects (age 26.0 +/- 0.8 yr and body mass index 24.1 +/- 0.5 kg/m2) were infused for 360 min with either GH (Norditropin, 45 ng.kg(-1).min(-1)) or saline. During the final 180 min of the infusion, a hyperinsulinemic euglycemic clamp was performed (insulin infusion rate: 1.2 mU.kg(-1).min(-1)). Muscle biopsies from vastus lateralis were taken before GH/saline administration and after 60 min of hyperinsulinemia. GLUT4 content and insulin signaling, as assessed by insulin receptor substrate (IRS)-1-associated phosphatidylinositol 3-kinase and Akt activity were determined. GH levels increased to a mean (+/-SE) level of 20.0 +/- 2.3 vs. 0.5 +/- 0.2 microg/l after saline infusion (P < 0.01). During GH infusion, the glucose infusion rate during hyperinsulinemia was reduced by 38% (P < 0.01). In both conditions, free fatty acids were markedly suppressed during hyperinsulinemia. Despite skeletal muscle insulin resistance, insulin still induced a similar approximately 3-fold rise in IRS-1-associated PI 3-kinase activity (269 +/- 105 and 311 +/- 71% compared with baseline, GH vs. saline). GH infusion did not change Akt protein expression, and insulin caused an approximately 13-fold increase in Akt activity (1,309 +/- 327 and 1,287 +/- 173%) after both GH and saline infusion. No difference in total GLUT4 content was noted (114.7 +/- 7.4 and 107.6 +/- 16.7 arbitrary units, GH vs. saline, compared with baseline). In conclusion, insulin resistance in skeletal muscle induced by short-term GH administration is not associated with detectable changes in the upstream insulin-signaling cascade or reduction in total GLUT4. Yet unknown mechanisms in insulin signaling downstream of Akt may be responsible.  相似文献   

7.
Two experiments were conducted to determine the effect of free fatty acids (FFA) and glucose treatment on growth hormone (GH) and luteinizing hormone secretion in the pig. In Experiment (Exp) 1, 15 prepuberal gilts received an intravenous infusion of FFA (n = 5; 3 ml of 10% Liposyn II/kg), glucose (n = 5; 1 g/kg), or saline (n = 5; 3 ml of 0.9%/kg). Jugular blood samples were collected every 15 min for 2 hr before and 3 hr after intravenous infusion of saline, FFA, and glucose. Synthetic [Ala15]-h growth hormone-releasing factor-(1-29)NH2 (1 microgram/kg) and gonadotropin-releasing hormone (0.2 micrograms/kg) were administered 30 min after infusion (Time 0 = infusion). In Exp 2, eight prepuberal gilts received either FFA (n = 4) or saline (n = 4) as described in Exp 1, except that treatments were given every hour ove a 10-hr period. Blood samples were collected every 15 min from 1 hr before to 10 hr after the start of FFA or saline infusion. In Exp 1, the peak GH response to growth hormone-releasing factor was delayed by 45 min (P less than 0.01) by glucose treatment and suppressed (P less than 0.01) by FFA treatment. The luteinizing hormone response to gonadotroph-releasing hormone was suppressed (P less than 0.03) by glucose and enhanced (P less than 0.03) by FFA. In Exp 2, the number of GH pulses was increased (P less than 0.05) by FFA infusion and GH concentrations were positively correlated (r = 0.58, P less than 0.0003) with FFA concentrations, while luteinizing hormone pulse amplitude was greater (P less than 0.01) in FFA gilts than in saline gilts. These results indicate that FFA are more effective modulators of GH secretion than acute hyperglycemia, while metabolic status can alter pituitary responsiveness to gonadotropin-releasing hormone.  相似文献   

8.
The purpose of this study was to characterize the mechanisms by which glucose regulates IGF-I gene expression in rat C6 glioma cells and in rat GH3 pituitary adenoma cells. Glucose starvation for periods of 12 to 48 h decreased IGF-I mRNA levels. In contrast, there was no stimulation of IGF-I mRNA by medium glucose between 1 and 25 mM over a 24-h period. Studies with hexoses and glycolytic metabolites suggested that glucose metabolism was required to maintain IGF-I mRNA. Glucose starvation lowered IGF-I mRNA half-life in both C6 and GH3 cells. Protein synthesis inhibition lowered IGF-I mRNA by about 20% in glucose-fed C6 and GH3 cells, while potently increasing IGF-I mRNA in glucose-starved C6 cells and not altering IGF-I mRNA in glucose-starved GH3 cells. Our results suggest that in these tumor cells, IGF-I mRNA stability is reduced by glucose starvation, secondary to a deficiency in intracellular glucose metabolism. Ongoing protein synthesis is not required for this mRNA de-stabilizing effect in GH3 cells. Rather, in glucose-starved C6 cells, decreased IGF-I mRNA stability may result from the action of a labile protein.  相似文献   

9.
The importance of gender-specific growth hormone (GH) secretion pattern in the regulation of growth and metabolism has been demonstrated clearly in rodents. We recently showed that GH secretion in humans is also sexually dimorphic. Whether GH secretion pattern regulates the metabolic effects of GH in humans is largely unknown. To address this question, we administered the same daily intravenous dose of GH (0.5 mg. m(-2). day(-1)) for 8 days in different patterns to nine GH-deficient adults. Each subject was studied on four occasions: protocol 1 (no treatment), protocol 2 (80% daily dose at 0100 and 10% daily dose at 0900 and 1700), protocol 3 (8 equal boluses every 3 h), and protocol 4 (continuous GH infusion). The effects of GH pattern on serum IGF-I, IGF-binding protein (IGFBP)-3, osteocalcin, and urine deoxypyridinoline were measured. Hepatic CYP1A2 and CYP3A4 activities were assessed by the caffeine and erythromycin breath tests, respectively. Protocols 3 and 4 were the most effective in increasing serum IGF-I and IGFBP-3, whereas protocols administering pulsatile GH had the greatest effects on markers of bone formation and resorption. All GH treatments decreased CYP1A2 activity, and the effect was greatest for pulsatile GH. Pulsatile GH decreased, whereas continuous GH infusion increased, CYP3A4 activity. These data demonstrate that GH pulse pattern is an independent parameter of GH action in humans. Gender differences in drug metabolism and, potentially, gender differences in growth rate may be explained by sex-specific GH secretion patterns.  相似文献   

10.
The effects of synthetic linear somatostatin on basal circulating levels on several pituitary and pancreatic hormones, and of glucose and free fatty acids (FFA) were studied in 6 normal men after an overnight fast. A priming intravenous infusion of 250 mug of somatostatin in 18 sec was followed by a constant infusion of 500 mug over a period of 60 min. A decrease in plasma values of GH, prolactin, TSH, insulin and glucagon and in blood glucose was observed during somatostatin infusion, while FFA levels increased progressively. Plasma IRI and blood glucose increased rapidly when the somatostatin infusion was stopped, while FFA decreased progressively; GH, prolactin, TSH and glucagon remained low as compared to basal levels for one hour after the end of the infusion, i.e. until the end of the experiment. A slight but significant increase of LH and ACTH was observed after the end of the infusion.  相似文献   

11.
The effect of physiologic elevations of plasma hydroxybutyrate induced by the infusion of sodium D,L-beta-hydroxybutyrate (15 mumol X kg-1 X min-1) on carbohydrate metabolism was examined with the euglycemic insulin clamp technique in nine healthy volunteers. Plasma insulin concentration was acutely raised and maintained at 126 +/- 6 microU/ml and plasma glucose was held constant at the fasting level by a variable glucose infusion. Glucose uptake of 6.53 +/- 0.80 mg X kg-1 X min-1 was unchanged by hyperketonemia when compared with an intraindividual control study using saline instead of beta-OH-butyrate infusion (6.26 +/- 0.59 mg X kg-1 X min-1). In studies, in which the degree of metabolic alkalosis accompanying butyrate infusion was mimicked by the continuous administration of bicarbonate, glucose uptake was also unaffected (6.25 +/- 0.45 mg X kg-1 X min-1). Furthermore, hyperketonemia had no effect on basal glucose production or the suppression of hepatic glucose production following hyperinsulinemia. It is concluded that moderate elevations in plasma beta-hydroxy-butyrate do not alter hepatic or peripheral glucose metabolism.  相似文献   

12.
1. Simultaneous measurements of the entry rates of palmitate and glucose have been made in Merino sheep (wethers), starved for 24hr., by using constant infusions of [9,10-(3)H(2)]palmitate and [U-(14)C]glucose. 2. The infusion of glucose into the peripheral circulation of the sheep lowered the endogenous entry of both glucose and palmitate. Since palmitate is roughly metabolically representative of the free fatty acid fraction, there was no marked change in the calories available to the sheep. 3. The infusion of insulin into either the peripheral or portal circulation increased the uptake of glucose and decreased the uptake of palmitate by the tissues of the sheep. 4. The infusion of insulin into the peripheral circulation produced a depression in glucose entry after about 80min., whereas the infusion of insulin into the portal circulation produced an almost immediate depression in glucose entry. 5. The hypoglycaemia produced gave rise to an increase in free fatty acid production followed by an increase in glucose production. 6. No direct effect of insulin on the metabolism of free fatty acids has been demonstrated by the techniques used. The effect of insulin on the metabolism of free fatty acids is apparently mediated through its effect on glucose metabolism.  相似文献   

13.
Decreases in plasma IGF-I levels that occur with age have been hypothesized to contribute to the genesis of brain aging. However, support for this hypothesis would be strengthened by evidence that growth hormone (GH)/IGF-I deficiency in young animals produces a phenotype similar to that found in aged animals. As a result, we developed a unique model of adult-onset GH/IGF-I deficiency by using dwarf rats specifically deficient in GH and IGF-I. The deficiency in plasma IGF-I is similar to that observed with age (e.g., 50% decrease), and replacement of GH restores levels of IGF-I to that found in young animals with normal GH levels. The present study employs this model to investigate the effects of circulating GH and IGF-I on local cerebral glucose utilization (LCGU). Analysis of LCGU indicated that GH/IGF-I-deficient animals exhibit a 29% decrease in glucose metabolism in many brain regions, especially those involved in hippocampally dependent processes of learning and memory. Similarly, a high correlation between plasma IGF-I levels and glucose metabolism was found in these areas. The deficiency in LCGU was not associated with alterations in GLUT1, GLUT3, or hexokinase activity. A 15% decrease in ATP levels was also found in hippocampus of GH-deficient animals, providing compelling data that circulating GH and IGF-I have significant effects on the regulation of glucose utilization and energy metabolism in the brain. Furthermore, our results provide important data to support the conclusion that deficiencies in circulating GH/IGF-I contribute to the genesis of brain aging.  相似文献   

14.
To determine whether IL-6 increases lipolysis and fat oxidation in patients with type 2 diabetes and/or whether it exerts this effect independently of changes to the hormonal milieu, patients with type 2 diabetes (D) and healthy control subjects (CON) underwent recombinant human (rh)IL-6 infusion for 3 h. Rates of appearance (Ra) and disappearance (Rd) of [U-(13C)]palmitate and [6,6-(2H2)]glucose were determined. rhIL-6 infusion increased (P < 0.05) palmitate Ra and Rd in a similar fashion in both groups. Neither plasma glucose concentration nor glucose Ra/Rd was affected by rhIL-6 infusion in either group, whereas rhIL-6 infusion resulted in a reduction (P < 0.05) in circulating insulin in D. Plasma growth hormone (GH) was increased (P < 0.05) by IL-6 in CON, and cortisol increased (P < 0.05) in response to IL-6 in both groups. To determine whether IL-6 was exerting its effect directly or through activation of these hormones, we performed cell culture experiments. Fully differentiated 3T3-L1 adipocytes were treated with PBS (control) IL-6, or IL-6 plus dexamethasone and GH. IL-6 treatment alone increased (P < 0.05) lipolysis, but this effect was reduced by the addition of dexamethasone and GH such that IL-6 plus dexamethasone and GH had blunted (P < 0.05) lipolysis compared with IL-6 alone. To assess whether IL-6 increases fat oxidation, L6 myotubes were treated with PBS (Control), IL-6, or AICAR, a compound known to increase lipid oxidation. Both IL-6 and AICAR markedly increased (P < 0.05) oxidation of [(14)C]palmitate compared with Control. Acute IL-6 treatment increased fatty acid turnover in D patients as well as healthy CON subjects. Moreover, IL-6 appears to be activating lipolysis independently of elevations in GH and/or cortisol and appears to be a potent catalyst for fat oxidation in muscle cells.  相似文献   

15.
R.L. Reid  S.S.C. Yen 《Life sciences》1981,29(25):2641-2647
β-endorphin administration via constant infusion inhibited the release of growth hormone (GH) and augmented the release of prolactin (PRL) induced by arginine in normal female subjects. Although β-endorphin infusion also induced hyperglycemia, the increment in plasma glucose was insufficient to account for the observed suppression of arginine-initiated GH release. These studies demonstrate that β-endorphin influences, in opposed directions, the secretion of PRL and GH in women.  相似文献   

16.
To further investigate the GH secretion in juvenile diabetics, blood glucose (BG) and plasma growth hormone (GH) were determined during controlled exercise performed in basal condition and under glucose infusion, in 7 controls and 22 juvenile diabetics aged 12--35 years, 10 of them with fundal vascular lesions. In controls, glucose infusion significantly lowered the exercise induced GH rise observed under basal conditions. In diabetics, under basal conditions, diabetics with low basal BG (BG less than 100 mg/100ml) had higher GH secretion than those with high basal BG (BG greater than 140 mg/100 ml; p less than 0.05). Under glucose infusion, diabetics with normal BG peak values (not different from controls: BG = 284 +/- (SK) 45 mg/100 ml) had significantly higher plasma GH levels than controls (p less than 0.01). In contrast, in diabetics with BG peak value higher than controls (BG greater than 374 ng/100 ml), plasma GH levels were not different from control values. This study indicates that exercise induced GH secretion in diabetics is mainly related to actual BG levels. Furthermore, we found no relation between the magnitude of GH secretion and the presence of retinopathy in diabetics.  相似文献   

17.
It is known that growth hormone (GH) increases the mitotic index of duodenal crypt cells. In early life, such an effect could be of particular importance for the functional development of the intestine in terms of absorptive capacity. In this study, osmotic mini pumps were introduced into the abdominal cavity of newborn piglets. The pumps permitted a continuous infusion of either recombinant human growth hormone (rhGH) at a rate of 0.1 IU GH x kg(-1) x 24 h(-1) or of vehicle. After 7 days of treatment, a bolus of amino acids and glucose was infused into the duodenum. Following this bolus, there was a prompt rise in the plasma concentration of both amino acids and glucose, especially in blood withdrawn from the portal vein. Thus, when the differences in concentrations of both amino acids and glucose between portal and arterial blood plasma were calculated, these differences reached maximum values between 30 and 60 minutes after the bolus. In animals treated with GH, maximum values occurred at a lower level than in control animals. These reductions were in the order of 60% (P > 0.01) if calculated over the first hour of absorption. From this study, it might be concluded that GH does not improve the absorptive capacity of the small intestine in newborn piglets. Instead, GH seems to reduce the absorption dynamics of glucose and amino acids. The reason for this is obscure, but could imply a specific effect of GH on enterocyte function.  相似文献   

18.
Cardiac muscle is characterized by insulin resistance in specific heart diseases such as coronary artery disease and congestive heart failure, but not in generalized disorders like diabetes mellitus and essential hypertension when cardiac manifestations are absent. To examine whether the insulin antagonistic effect of growth hormone (GH) acts upon the heart, we compared insulin-stimulated whole body and myocardial glucose uptake with and without GH administration during a 3.5-h euglycemic-hyperinsulinemic clamp in eight healthy males. Myocardial 2-deoxy-2-[(18)F]fluoro-D-glucose uptake was measured with positron emission tomography. The data were converted to myocardial glucose uptake by tracer kinetic analysis. GH did not change the rate-pressure product. GH decreased whole body insulin-stimulated glucose disposal by 26% (48.0 +/- 12.1 vs. control 62.8 +/- 6.1 micromol. kg(-1). min(-1), P < 0.02). Free fatty acids were suppressed to a similar extent with and without GH during the insulin clamp. Insulin-stimulated myocardial glucose uptake was similar in the presence and in the absence of GH (0.34 +/- 0.05 and 0.31 +/- 0.03 micromol. g(-1). min(-1), P = 0.18). In conclusion, GH does not impair insulin-stimulated myocardial glucose uptake despite a considerable whole body insulin antagonistic effect. Myocardial insulin resistance is not an inherent consequence of whole body insulin resistance.  相似文献   

19.
New methods for the analysis of glucose transporters were used to analyze the molecular mechanisms involved in the insulin-antagonistic effects of growth hormone (GH), which is known as a diabetogenic hormone. The ability of GH to alter the number and mRNA levels of two different glucose transporters in cultured 3T3-F442A adipocytes was investigated using specific antibodies and cDNA probes. At concentrations of GH as low as 0.5 and 5 ng/ml and at incubation times as short as 4 h, GH decreased rates of 2-deoxyglucose uptake in 3T3-F442A adipocytes. 3-O-Methyl-D-glucose uptake was inhibited to an extent similar to that of 2-deoxyglucose uptake (60-80%) after a 24-h incubation with GH (500 ng/ml), indicating that GH inhibits glucose metabolism specifically at the step of glucose transport. To determine whether reduced rates of glucose transport might result from reduced numbers of glucose transporters, whole cell lysates were prepared from GH-treated cells and subjected to immunoblotting using antibodies that identify Glut 1 (HepG2/rat brain) and Glut 4 (muscle/adipose) transporters. GH caused a time- and dose-dependent decrease in the number of Glut 1 transporters in the cell. Northern and slot-blot analyses showed a GH-induced dose-dependent decrease in levels of Glut 1 mRNA. In contrast, levels of Glut 4 transporter and mRNA were unchanged by GH. These data suggest that GH regulates Glut 1 and Glut 4 transporters differentially and that it exerts its inhibitory effect on glucose uptake at least in part by decreasing the synthesis of Glut 1 transporters. These studies provide the first evidence that GH regulates a key gene in metabolic regulation and can interfere with gene expression.  相似文献   

20.
Ghrelin is a novel peptide that acts on the growth hormone (GH) secretagogue receptor in the pituitary and hypothalamus. It may function as a third physiological regulator of GH secretion, along with GH-releasing hormone and somatostatin. In addition to the action of ghrelin on the GH axis, it appears to have a role in the determination of energy homeostasis. Although feeding suppresses ghrelin production and fasting stimulates ghrelin release, the underlying mechanisms controlling this process remain unclear. The purpose of this study was to test the hypotheses, by use of a stepped hyperinsulinemic eu- hypo- hyperglycemic glucose clamp, that either hyperinsulinemia or hypoglycemia may influence ghrelin production. Having been stable in the period before the clamp, ghrelin levels rapidly fell in response to insulin infusion during euglycemia (baseline ghrelin 207 +/- 12 vs. 169 +/- 10 fmol/ml at t = 30 min, P < 0.001). Ghrelin remained suppressed during subsequent periods of hypoglycemia (mean glucose 53 +/- 2 mg/dl) and hyperglycemia (mean glucose 163 +/- 6 mg/dl). Despite suppression of ghrelin, GH showed a significant rise during hypoglycemia (baseline 4.1 +/- 1.3 vs. 28.2 +/- 3.9 microg/l at t = 120 min, P < 0.001). Our data suggest that insulin may suppress circulating ghrelin independently of glucose, although glucose may have an additional effect. We conclude that the GH response seen during hypoglycemia is not regulated by circulating ghrelin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号