首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells growing on surfaces in biofilms exhibit properties distinct from those of planktonic cells, such as increased resistance to biocides and antimicrobial agents. In spite of increased interest in biofilms, very little is known about alterations in cell physiology that occur upon attachment of cells to a surface. In this study we have investigated the changes induced in the protein synthesis by contact of Streptococcus mutans with a surface. Log-phase planktonic cells of S. mutans were allowed to adhere to a glass slide for 2 h in the presence of a (14)C-amino acid mixture. Nonadhered cells were washed away, and the adhered cells were removed by sonication. The proteins were extracted from the nonadhered planktonic and the adhered biofilm cells and separated by two-dimensional gel electrophoresis followed by autoradiography and image analysis. Image analysis revealed that the relative rate of synthesis of 25 proteins was enhanced and that of 8 proteins was diminished > or =1.3-fold in the biofilm cells. Proteins of interest were identified by mass spectrometry and computer-assisted protein sequence analysis. Of the 33 proteins associated with the adhesion response, all but 10 were identified by mass spectrometry and peptide mass fingerprinting. The most prominent change in adhered cells was the increase in relative synthesis of enzymes involved in carbohydrate catabolism indicating that a redirection in protein synthesis towards energy generation is an early response to contact with and adhesion to a surface.  相似文献   

2.
Streptococcus mutans, a major etiological agent of human dental caries, lives primarily on the tooth surface in biofilms. Limited information is available concerning the extracellular DNA (eDNA) as a scaffolding matrix in S. mutans biofilms. This study demonstrates that S. mutans produces eDNA by multiple avenues, including lysis-independent membrane vesicles. Unlike eDNAs from cell lysis that were abundant and mainly concentrated around broken cells or cell debris with floating open ends, eDNAs produced via the lysis-independent pathway appeared scattered but in a structured network under scanning electron microscopy. Compared to eDNA production of planktonic cultures, eDNA production in 5- and 24-h biofilms was increased by >3- and >1.6-fold, respectively. The addition of DNase I to growth medium significantly reduced biofilm formation. In an in vitro adherence assay, added chromosomal DNA alone had a limited effect on S. mutans adherence to saliva-coated hydroxylapatite beads, but in conjunction with glucans synthesized using purified glucosyltransferase B, the adherence was significantly enhanced. Deletion of sortase A, the transpeptidase that covalently couples multiple surface-associated proteins to the cell wall peptidoglycan, significantly reduced eDNA in both planktonic and biofilm cultures. Sortase A deficiency did not have a significant effect on membrane vesicle production; however, the protein profile of the mutant membrane vesicles was significantly altered, including reduction of adhesin P1 and glucan-binding proteins B and C. Relative to the wild type, deficiency of protein secretion and membrane protein insertion machinery components, including Ffh, YidC1, and YidC2, also caused significant reductions in eDNA.  相似文献   

3.
Streptococcus mutans, a member of the dental plaque community, has been shown to be involved in the carious process. Cells of S. mutans induce an acid tolerance response (ATR) when exposed to sublethal pH values that enhances their survival at a lower pH. Mature biofilm cells are more resistant to acid stress than planktonic cells. We were interested in studying the acid tolerance and ATR-inducing ability of newly adhered biofilm cells of S. mutans. All experiments were carried out using flow-cell systems, with acid tolerance tested by exposing 3-h biofilm cells to pH 3.0 for 2 h and counting the number of survivors by plating on blood agar. Acid adaptability experiments were conducted by exposing biofilm cells to pH 5.5 for 3 h and then lowering the pH to 3.5 for 30 min. The viability of the cells was assessed by staining the cells with LIVE/DEAD BacLight viability stain. Three-hour biofilm cells of three different strains of S. mutans were between 820- and 70,000-fold more acid tolerant than corresponding planktonic cells. These strains also induced an ATR that enhanced the viability at pH 3.5. The presence of fluoride (0.5 M) inhibited the induction of an ATR, with 77% fewer viable cells at pH 3.5 as a consequence. Our data suggest that adhesion to a surface is an important step in the development of acid tolerance in biofilm cells and that different strains of S. mutans possess different degrees of acid tolerance and ability to induce an ATR.  相似文献   

4.
Enterococcus faecalis is a ubiquitous bacterium of the gut that is observed in persistent periradicular infections. Its pathogenicity is associated with biofilm formation and the ability to survive under nutrient-poor (starvation) conditions. However, characteristics of chemical composition of biofilm cells developed by starved E. faecalis cells remain poorly understood. In this study, E. faecalis cells in exponential, stationary, and starvation phases were prepared and separately cultured to form biofilms. Confocal laser scanning microscopy was performed to verify biofilm formation. Raman microscopy was used to investigate the chemical composition of cells within the biofilms. Compared to cells in exponential or stationary phase, starved cells developed biofilms with fewer culturable cells (P?E. faecalis.  相似文献   

5.
Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the presence of other organisms. Our data provide insights about how S. mutans optimizes its metabolism and adapts/survives within the mixed-species community in response to a dynamically changing environment. This reflects the intricate physiological processes linked to expression of virulence by this bacterium within complex biofilms.  相似文献   

6.
Non-glucan attached proteins of the cell surface and extracellular matrix of Candida albicans biofilms formed on two catheter surfaces and denture acrylic were examined. The SDS-PAGE protein profiles of these proteins compared with that obtained from planktonic yeast cells and germ tubes were generally similar. This observation suggested that this class of biofilm surface proteins is not composed of a unique set of extracellular proteins or that one or a few proteins dominate the non-glucan attached proteins of biofilm. However, differences were observed in the proteins obtained from biofilm formed on one catheter surface and two proteins, Grp2p and ORF19.822p, identified by mass spectrometry following two-dimensional separation. These proteins have previously been associated with drug resistance and their presence or abundance appeared to be influenced by the surface on which the biofilm was formed.  相似文献   

7.
Acidogenicity and aciduricity are the main virulence factors of the cavity-causing bacterium Streptococcus mutans. Monitoring at the individual cell level the temporal and spatial distribution of acid produced by this important oral pathogen is central for our understanding of these key virulence factors especially when S. mutans resides in multi-species microbial communities. In this study, we explored the application of pH-sensitive green fluorescent proteins (pHluorins) to investigate these important features. Ecliptic pHluorin was functionally displayed on the cell surface of S. mutans as a fusion protein with SpaP. The resulting strain (O87) was used to monitor temporal and spatial pH changes in the microenvironment of S. mutans cells under both planktonic and biofilm conditions. Using strain O87, we revealed a rapid pH drop in the microenviroment of S. mutans microcolonies prior to the decrease in the macro-environment pH following sucrose fermentation. Meanwhile, a non-uniform pH distribution was observed within S. mutans biofilms, reflecting differences in microbial metabolic activity. Furthermore, strain O87 was successfully used to monitor the S. mutans acid production profiles within dual- and multispecies oral biofilms. Based on these findings, the ecliptic pHluorin allows us to investigate in vivo and in situ acid production and distribution by the cariogenic species S. mutans.  相似文献   

8.
Staphylococcus aureus biofilms pose a serious clinical threat as reservoirs for persistent infections. Despite this clinical significance, the composition and mechanism of formation of S. aureus biofilms are unknown. To address these problems, we used solid-state NMR to examine S. aureus (SA113), a strong biofilm-forming strain. We labeled whole cells and cell walls of planktonic cells, young biofilms formed for 12–24 h after stationary phase, and more mature biofilms formed for up to 60 h after stationary phase. All samples were labeled either by (i) [15N]glycine and l-[1-13C]threonine, or in separate experiments, by (ii) l-[2-13C,15N]leucine. We then measured 13C-15N direct bonds by C{N} rotational-echo double resonance (REDOR). The increase in peptidoglycan stems that have bridges connected to a surface protein was determined directly by a cell-wall double difference (biofilm REDOR difference minus planktonic REDOR difference). This procedure eliminates errors arising from differences in 15N isotopic enrichments and from the routing of 13C label from threonine degradation to glycine. For both planktonic cells and the mature biofilm, 20% of pentaglycyl bridges are not cross-linked and are potential surface-protein attachment sites. None of these sites has a surface protein attached in the planktonic cells, but one-fourth have a surface protein attached in the mature biofilm. Moreover, the leucine-label shows that the concentration of β-strands in leucine-rich regions doubles in the mature biofilm. Thus, a primary event in establishing a S. aureus biofilm is extensive decoration of the cell surface with surface proteins that are linked covalently to the cell wall and promote cell-cell adhesion.  相似文献   

9.
Streptococcus mutans, the primary etiological agent of human dental caries, is an obligate biofilm-forming bacterium. The goals of this study were to identify the gene(s) required for biofilm formation by this organism and to elucidate the role(s) that some of the known global regulators of gene expression play in controlling biofilm formation. In S. mutans UA159, the brpA gene (for biofilm regulatory protein) was found to encode a novel protein of 406 amino acid residues. A strain carrying an insertionally inactivated copy of brpA formed longer chains than did the parental strain, aggregated in liquid culture, and was unable to form biofilms as shown by an in vitro biofilm assay. A putative homologue of the enzyme responsible for synthesis of autoinducer II (AI-2) of the bacterial quorum-sensing system was also identified in S. mutans UA159, but insertional inactivation of the gene (luxSSm) did not alter colony or cell morphology or diminish the capacity of S. mutans to form biofilms. We also examined the role of the homologue of the Bacillus subtilis catabolite control protein CcpA in S. mutans in biofilm formation, and the results showed that loss of CcpA resulted in about a 60% decrease in the ability to form biofilms on an abiotic surface. From these data, we conclude that CcpA and BrpA may regulate genes that are required for stable biofilm formation by S. mutans.  相似文献   

10.
11.
Chemical disinfection of oral biofilms often leaves biofilm structures intact. This study aimed to examine whether the residual structure promotes secondary bacterial adhesion. Streptococcus mutans biofilms generated on resin-composite disks in a rotating disc reactor were disinfected completely with 70% isopropyl alcohol, and were again cultured in the same reactor after resupplying with the same bacterial solution. Specimens were subjected to fluorescence confocal laser scanning microscopy, viable cell counts and PCR-Invader assay in order to observe and quantify secondarily adhered cells. Fluorescence microscopic analysis, particularly after longitudinal cryosectioning, demonstrated stratified patterns of viable cells on the disinfected biofilm structure. Viable cell counts of test specimens were significantly higher than those of controls, and increased according to the amount of residual structure and culture period. Linear regression analysis exhibited a high correlation between viable and total cell counts. It was concluded that disinfected biofilm structures favored secondary bacterial adhesion.  相似文献   

12.
13.
Probiotics have decreased the counts of salivary mutans streptococci (MS) in clinical studies. The aim of this study was to compare the effects of Lactobacillus reuteri PTA 5289 and L. paracasei DSMZ16671 on the adhesion of a reference strain and a clinical isolate of Streptococcus mutans and on the counts of MS in a biofilm. The adhesion of S. mutans Ingbritt and the clinical isolate S. mutans 2366 to a smooth glass surface and saliva-coated hydroxyapatite (SHA) were studied in the presence of and without the lactobacilli. A three-species biofilm formed on saliva-coated hydroxyapatite discs was used in the biofilm experiments. The lactobacilli did not affect adhesion to the glass surface but interfered with binding to SHA. No effects of the lactobacilli were detected on the MS levels in the three-species biofilms. The results of the SHA binding experiments best reflected the results of the existing clinical studies.  相似文献   

14.
An estimated 65% of infective diseases are associated with the presence of bacterial biofilms. Biofilm-issued planktonic cells promote blood-borne, secondary sites of infection by the inoculation of the infected sites with bacteria from the intravascular space. To investigate the potential role of early detachment events in initiating secondary infections, we studied the phenotypic attributes of Staphylococcus aureus planktonic cells eroding from biofilms with respect to expression of the collagen adhesin, CNA. The collagen-binding abilities of S. aureus have been correlated to the development of osteomyelitis and septic arthritis. In this study, we focused on the impact of CNA expression on S. aureus adhesion to immobilized collagen in vitro under physiologically relevant shear forces. In contrast to the growth phase-dependent adhesion properties characteristic of S. aureus cells grown in suspension, eroding planktonic cells expressed invariant and lower effective adhesion rates regardless of the age of the biofilm from which they originated. These results correlated directly with the surface expression level of CNA. However, subsequent analysis revealed no qualitative differences between biofilms initiated with suspension cells and secondary biofilms initiated with biofilm-shed planktonic cells. Taken together, our findings suggest that, despite their low levels of CNA expression, S. aureus planktonic cells shed from biofilms retain the capacity for metastatic spread and the initiation of secondary infection. These findings demonstrate the need for a better understanding of the phenotypic properties of eroding planktonic cells, which could lead to new therapeutic strategies to target secondary infections.  相似文献   

15.
16.
Escherichia coli 0157:H7 biofilms were studied by a new method of cultivation in order to identify some of the proteins involved in the biofilm phenotype. A proteomic analysis of sessile or planktonic bacteria of the same age was carried out by two-dimensional electrophoresis, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) and database searching. Comparison of two-dimensional gels showed clear differences between protein patterns of sessile and planktonic cells. Fourteen proteins increased in biofilms, whereas three decreased. From these 17 proteins, 10 were identified by MALDI-TOF-MS and could be classified into four categories according to their function: (1) general metabolism proteins (malate dehydrogenase, thiamine-phosphate pyrophosphorylase), (2) sugar and amino acid transporters (D-ribose-binding periplasmic protein, D-galactose-binding protein, YBEJ), (3) regulator proteins (DNA starvation protein and H-NS) and (4) three proteins with unknown function. The results of this study showed that E. coli O157:H7 modified the expression of several proteins involved in biofilm growth mode.  相似文献   

17.
In this study, a comparative metabolomics approach combining gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–mass spectrometry (LC-MS) was applied first between planktonic cells and biofilms and then between pure cultures and biofilms of Desulfovibrio vulgaris. The results revealed that the overall metabolic level of the biofilm cells was down-regulated, especially for metabolites related to the central carbon metabolism, compared to the planktonic cells and the pure culture of D. vulgaris. In addition, pathway enrichment analysis of the 58 metabolites identified by GC-MS showed that fatty acid biosynthesis in the biofilm cells was up-regulated, suggesting that fatty acids may be important for the formation, maintenance and function of D. vulgaris biofilm. This study offers a valuable perspective on the metabolic dynamics of the D. vulgaris biofilm.  相似文献   

18.
Candida albicans is a human commensal and opportunistic pathogen that participates in biofilm formation on host surfaces and on medical devices. We used DIGE analysis to assess the cytoplasmic and non‐covalently attached cell‐surface proteins in biofilm formed on polymethylmethacrylate and planktonic yeast cells and hyphae. Of the 1490 proteins spots from cytoplasmic and 580 protein spots from the surface extracts analyzed, 265 and 108 were differentially abundant respectively (> 1.5‐fold, p <0.05). Differences of both greater and lesser abundance were found between biofilms and both planktonic conditions as well as between yeast cells and hyphae. The identity of 114 cytoplasmic and 80 surface protein spots determined represented 73 and 25 unique proteins, respectively. Analyses showed that yeast cells differed most in cytoplasmic profiling while biofilms differed most in surface profiling. Several processes and functions were significantly affected by the differentially abundant cytoplasmic proteins. Particularly noted were many of the enzymes of respiratory and fermentative pentose and glucose metabolism, folate interconversions and proteins associated with oxidative and stress response functions, host response, and multi‐organism interaction. The differential abundance of cytoplasmic and surface proteins demonstrated that sessile and planktonic organisms have a unique profile.  相似文献   

19.
Streptococcus equi ssp. zooepidemicus (SEZ) is responsible for a wide variety of infections in many species, including pigs, horses and humans. Biofilm formation is essential for pathogenesis, and the ability to resist antibiotic treatment results in difficult-to-treat and persistent infections. However, the ability of SEZ to form biofilms is unclear. Furthermore, the mechanisms underlying SEZ biofilm formation and their attributes are poorly understood. In this study, scanning electron microscopy (SEM) demonstrated that SEZ strain ATCC35246 formed biofilms comprising a thick, heterogeneous layer with clumps on the coverslips when incubated for 24 h. In addition, we used a two-dimensional gel electrophoresis (2-DE) based approach to characterize differentially expressed protein in SEZ biofilms compared with their planktonic counterparts. The results revealed the existence of 24 protein spots of varying intensities, 13 of which were upregulated and 11 were downregulated in the SEZ biofilm compared with the planktonic controls. Most of proteins expressed during biofilm formation were associated with metabolism, adhesion, and stress conditions. These observations contribute to our understanding of the SEZ biofilm lifestyle, which may lead to more effective measures to control persistent SEZ infections.  相似文献   

20.
Pseudomonas aeruginosa biofilms exhibit an intrinsic resistance to antibiotics and constitute a considerable clinical threat. In cystic fibrosis, a common feature of biofilms formed by P. aeruginosa in the airway is the occurrence of mutants deficient in flagellar motility. This study investigates the impact of flagellum deletion on the structure and antibiotic tolerance of P. aeruginosa biofilms, and highlights a role for the flagellum in adaptation and cell survival during biofilm development. Mutations in the flagellar hook protein FlgE influence greatly P. aeruginosa biofilm structuring and antibiotic tolerance. Phenotypic analysis of the flgE knockout mutant compared to the wild type (WT) reveal increased fitness under planktonic conditions, reduced initial adhesion but enhanced formation of microcolony aggregates in a microfluidic environment, and decreased expression of genes involved in exopolysaccharide formation. Biofilm cells of the flgE knock-out mutant display enhanced tolerance towards multiple antibiotics, whereas its planktonic cells show similar resistance to the WT. Confocal microscopy of biofilms demonstrates that gentamicin does not affect the viability of cells located in the inner part of the flgE knock-out mutant biofilms due to reduced penetration. These findings suggest that deficiency in flagellar proteins like FlgE in biofilms and in cystic fibrosis infections represent phenotypic and evolutionary adaptations that alter the structure of P. aeruginosa biofilms conferring increased antibiotic tolerance.Subject terms: Microbiology, Diseases  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号