首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The culture filtrates of the rhizosphere fungi of broad bean (Vicia faba L.) and cotton (Gossypium barbadense L.) were analysed for the presence of plant growth substances of auxin and gibberellins nature. Bioassay test and chromatographic analysis indicated that these fungi, each synthesized different auxins in their culture medium. These auxins were indole compounds. Similarly the rhizosphere fungi produced in their culture medium some gibberellins and gibberellin-like substances.  相似文献   

2.
Counterimmunoelectrophoresis (CIE) has been compared in a diagnostic laboratory with agar gel double diffusion (DD) as a routine procedure for detection of antibodies to pathogenic and allergenic fungi and actinomycetes. It was shown to be of particular value in detecting antibodies to Aspergillus fumigatus. Thus 72 of 106 sera in which precipitins were detected were positive by CIE alone. Some sera were positive only by CIE to antigens prepared from Histoplasma capsulatum, Allescheria boydii, Candida albicans and C. parapsilosis.  相似文献   

3.
Investigations were made on the effect of species of fungi isolated from therhizosphere of broad bean (Vicia faba Linn.) variety Giza I, and cotton (Gossypium barbadense Linn.) variety Giza 47, on plant growth. Broad bean rhizosphere fungi differently affected plant growth.Fusarium moniliforme, Penicillium martensii, Rhizopus stolonifer, andCladosporium sphaerospermum stimulated both root and shoot growth.Aspergillus niger andAlternaria tenuis have an inhibitory effect on plant growth. On the other hand, the rhizosphere fungi of cotton namely,Penicillium cyclopium, Aspergillus terreus, Cephalosporium sp.,Aspergillus niger, Cladosporium sphaerospermum, andFusarium oxysporum stimulated plant growth.  相似文献   

4.
The dominating rhizosphere fungi of broad bean (Vicia faba Linn.) variety “Giza 1”, and cotton (Gossypium barbadense Linn.) variety “Giza 47”, were grown in liquid medium. After 10 days, filtrates were obtained and sterilized by filtration through sintered-glass filter. Plants were grown in sterile sand which was supplemented with nutrient solution. Every plant was irrigated with fungal filtrate, unconsumed medium, and water. The filtrates of the rhizosphere fungi of both broad bean and cotton stimulated plant growth.  相似文献   

5.
The arbuscular mycorrhiza (AM) brings together the roots of over 80% of land plant species and fungi of the phylum Glomeromycota and greatly benefits plants through improved uptake of mineral nutrients. AM fungi can take up both nitrate and ammonium from the soil and transfer nitrogen (N) to host roots in nutritionally substantial quantities. The current model of N handling in the AM symbiosis includes the synthesis of arginine in the extraradical mycelium and the transfer of arginine to the intraradical mycelium, where it is broken down to release N for transfer to the host plant. To understand the mechanisms and regulation of N transfer from the fungus to the plant, 11 fungal genes putatively involved in the pathway were identified from Glomus intraradices, and for six of them the full-length coding sequence was functionally characterized by yeast complementation. Two glutamine synthetase isoforms were found to have different substrate affinities and expression patterns, suggesting different roles in N assimilation. The spatial and temporal expression of plant and fungal N metabolism genes were followed after nitrate was added to the extraradical mycelium under N-limited growth conditions using hairy root cultures. In parallel experiments with 15N, the levels and labeling of free amino acids were measured to follow transport and metabolism. The gene expression pattern and profiling of metabolites involved in the N pathway support the idea that the rapid uptake, translocation, and transfer of N by the fungus successively trigger metabolic gene expression responses in the extraradical mycelium, intraradical mycelium, and host plant.The arbuscular mycorrhizal (AM) symbiosis brings together the roots of the majority of land plant species and fungi of the phylum Glomeromycota to great mutual advantage (Smith and Read, 2008). AM fungi improve the acquisition of phosphate, nitrogen (N), sulfur, and trace elements such as copper and zinc (Clark and Zeto, 2000; Allen and Shachar-Hill, 2008) and increase the biotic and abiotic stress resistance of their host (Smith et al., 2010). In return, the host transfers up to 20% of its photosynthetically fixed carbon to the AM fungus (Jakobsen and Rosendahl, 1990), which depends on its host plant for its carbon supply (Bago et al., 2000).N is the nutrient whose availability most commonly limits plant growth in natural ecosystems. AM fungi can take up NO3NH4+ and can also increase access to organic N sources from the soil (Ames et al., 1983; Johansen et al., 1993; Bago et al., 1996; Hodge et al., 2001). The translocation by the fungus can represent a significant route for N uptake by the plant (Johansen and Jensen, 1996). For example, Toussaint et al. (2004) showed that in an in vitro mycorrhiza at least 21% of the total N uptake in the roots came from the fungal extraradical mycelium (ERM); for other mycorrhizal systems, even larger proportions have been described (more than 30% and 50%; Govindarajulu et al., 2005; Jin et al., 2005). Tanaka and Yano (2005) reported that 75% of the N in leaves of mycorrhizal maize (Zea mays) was taken up by the ERM of Glomus aggregatum.A mechanism of N transfer from the fungus to the plant has been proposed (Bago et al., 2001) that involves the operation of a novel metabolic route in which N was translocated from the ERM to the intraradical mycelium (IRM) as Arg but transferred to the plant without carbon as inorganic N. This mechanism has been supported by labeling experiments (Johansen et al., 1996; Govindarajulu et al., 2005; Jin et al., 2005), enzyme activity analysis (Cruz et al., 2007), and limited gene expression data (Govindarajulu et al., 2005; Gomez et al., 2009; Guether et al., 2009). Nevertheless, our molecular knowledge of the metabolic and transport pathways involved and how they are regulated is still rudimentary. A better understanding of the mechanism and regulation of N uptake assimilation, translocation, and transfer to the host is important for potential applications of AM fungi as biofertilizers, bioprotectors, and bioregulators in sustainable agriculture and restoration as well as for understanding the role of AM fungi in natural ecosystems (Bruns et al., 2008).In this study, we postulate that the uptake, translocation, and transfer of N by the fungus triggers the metabolic gene expression responses successively in the ERM, IRM, and host plant, which will result in the synthesis and accumulation of Arg in the ERM, the turnover of Arg to release ammonium in the IRM, and the assimilation of ammonium by the host plant via the glutamine synthetase (GS)/glutamate synthase (GOGAT) pathway inside the root (Fig. 1). To test these predictions, 11 genes involved in the N primary assimilation and metabolism were cloned and verified from Glomus intraradices; six enzymes with full-length coding sequences (CDSs) were functionally characterized by yeast knockout mutant complementation. Two GS proteins were found to have different substrate affinities and expression patterns, suggesting that they have different roles in N assimilation. The time courses of gene expression and N movement in fungal and host tissues were analyzed following nitrate supply to the ERM of a mycorrhiza grown under N-limited conditions. The results substantially increase our knowledge of the identity and regulation of most of the metabolic and transport genes involved in N movement through the AM symbiosis.Open in a separate windowFigure 1.Working model of N transport and metabolism in the symbiosis between plant roots and arbuscular mycorrhizal fungi. N moves (black arrows) from the soil into the fungal ERM, through a series of metabolic conversion reactions into Arg, which is transported into the IRM within the root (host) and there is broken down; N is transferred to and assimilated by the host as ammonia. Red circles refer to the sites of action of the genes identified and analyzed in this study. Blue arrows indicate mechanisms hypothesized to regulate gene expression by N metabolites involved in the pathway.  相似文献   

6.
T. Kamaya 《Mycopathologia》1969,37(4):320-330
Young colonies of Sabouraud's glucose agar room temperature culture ofCandida species from human isolation were suspended in distilled water. The suspension was mixed with a solution of lysozyme and incubated in a 37° C water bath. Within 3–5 hours, various species ofCandida cells showed flocculation to varying degrees which occurred at varying periods of onset. Among sevenCandida species,Candida albicans andCandida stellatoidea showed the strongest flocculation, earliest onset and most solution clarity than did any other species.Candida stellatoidea was indistinguishable fromCandida albicans in its degree of flocculation, and in the clarity of solution.Candida species may be arranged in the following order according to their decreasing positivity in flocculation:
  1. Candida albicans
  2. Candida stellatoidea
  3. Candida tropicalis
  4. Candida krusei
  5. Candida pseudotropicalis
  6. Candida parapsilosis
  7. Candida guilliermondii
  8. Saccharomyces species may be placed afterCandida guilliermondii.
It seems possible to separate theCandida species into 3 groups by the rate of flocculation, and clarity of solution. Group I.Candida albicans andCandida stellatoidea. Group II.Candida tropicalis, C. krusei andCandida pseudotropicalis. Group III.Candida parapsilosis andCandida guilliermondii. Saccharomyces specimens (S. cerevisiae and others) were placed after group III.  相似文献   

7.
The later steps of carotenoid biosynthesis involve the formation of cyclic carotenoids. The reaction is catalyzed by lycopene β-cyclase (LCY-B), which converts lycopene into β-carotene, and by capsanthin-capsorubin synthase (CCS), which is mainly dedicated to the synthesis of κ-cyclic carotenoids (capsanthin and capsorubin) but also has LCY-B activity. Although the peptide sequences of plant LCY-Bs and CCS contain a putative dinucleotide-binding motif, it is believed that these two carotenoid cyclases proceed via protic activation and stabilization of resulting carbocation intermediates. Using pepper (Capsicum annuum) CCS as a prototypic carotenoid cyclase, we show that the monomeric protein contains one noncovalently bound flavin adenine dinucleotide (FAD) that is essential for enzyme activity only in the presence of NADPH, which functions as the FAD reductant. The reaction proceeds without transfer of hydrogen from the dinucleotide cofactors to β-carotene or capsanthin. Using site-directed mutagenesis, amino acids potentially involved in the protic activation were identified. Substitutions of alanine, lysine, and arginine for glutamate-295 in the conserved 293-FLEET-297 motif of pepper CCS or LCY-B abolish the formation of β-carotene and κ-cyclic carotenoids. We also found that mutations of the equivalent glutamate-196 located in the 194-LIEDT-198 domain of structurally divergent bacterial LCY-B abolish the formation of β-carotene. The data herein reveal plant carotenoid cyclases to be novel enzymes that combine characteristics of non-metal-assisted terpene cyclases with those attributes typically found in flavoenzymes that catalyze reactions, with no net redox, such as type 2 isopentenyl diphosphate isomerase. Thus, FAD in its reduced form could be implicated in the stabilization of the carbocation intermediate.Later steps of carotenoid biosynthesis involve the formation of diverse cyclic carotenoids. For example, β-carotene, the vitamin A precursor, is synthesized de novo by photosynthetic organisms, limited nonphototrophic bacteria and fungi, and also by aphids (Moran and Jarvik, 2010) according to a multistep pathway that ends with the cyclization of lycopene by lycopene β-cyclase (LCY-B). Similarly, in pepper (Capsicum annuum) chromoplasts, antheraxanthin and violaxanthin are converted into the κ-cyclic carotenoids capsanthin and capsorubin, respectively, by capsanthin-capsorubin synthase (CCS). In both cases, the proposed mechanism involves a concerted protic attack and stabilization of a transient carbocation without any net redox change (Camara, 1980; Bouvier et al., 1994; Britton, 1998). Several cDNAs for LCY-B have been cloned from bacteria (Misawa et al., 1990; Cunningham et al., 1994; Armstrong, 1997; Cunningham and Gantt, 2001), fungi (Verdoes et al., 1999; Velayos et al., 2000; Arrach et al., 2001), and plants (Hugueney et al., 1995; Ronen et al., 2000) using functional complementation. Information available from primary structures suggest that the cyclization of lycopene is catalyzed by holomeric proteins in photosynthetic organisms (Cunningham et al., 1994; Maresca et al., 2007), by holomeric (Misawa et al., 1990) or heteromeric (Krubasik and Sandmann, 2000; Viveiros et al., 2000) proteins in nonphotosynthetic bacteria, and by holomeric, bifunctional proteins in fungi that combine the activities of phytoene synthase and lycopene cyclase (Verdoes et al., 1999; Velayos et al., 2000; Arrach et al., 2001). This structural diversity of LCY-Bs coupled to a lack of significant amino acid sequence identity between the lycopene cyclases from bacteria, fungi, and plants hinder our understanding of the catalytic mechanism of LCY-Bs and CCS. In addition, the N terminus of plant LCY-B and CCS contains an amino sequence motif characteristic of a polypeptide predicted to adopt a Rossmann fold (Rossmann et al., 1974) and suggests the binding of an as yet unknown dinucleotide prosthetic ligand. It has been shown using recombinant bacterial enzyme that the cyclization of lycopene into β-carotene strictly requires NADPH but proceeds without any net redox change (Schnurr et al., 1996; Hornero-Mendez and Britton, 2002). Under the same conditions, FAD alone could not sustain bacterial LCY-B activity (Schnurr et al., 1996). Much less is known about the dinucleotide requirements of plant carotenoid cyclases, which are highly conserved within plants but are extremely divergent in nonplant organisms. Previously, a crucial acidic domain for lycopene cyclase activity was identified using an affinity-labeling strategy followed by site-directed mutagenesis (Bouvier et al., 1997) in the absence of any crystal structures. This so-called 293-FLEET-297 motif of LCY-B and CCS contained two tandem Glu-295-Glu-296 residues that were essential for LCY-B- and κ-cyclase activities (Bouvier et al., 1997). However, it still remains unclear how the protic mechanism is compatible with the requirement of dinucleotide cofactors.To further explore the mechanism of plant carotenoid cyclases, we first choose pepper CCS as a prototypic enzyme because it displays a strong identity (52%) to pepper LCY-B, and we have shown previously that CCS could also catalyze the cyclization of lycopene into β-carotene (up to 25% of activity compared with LCY-B; Hugueney et al., 1995). Herein, we have shown that monomeric CCS purified to homogeneity from plant chromoplasts or recombinant CCS purified from Escherichia coli-transformed cells are typical flavoproteins containing one noncovalently bound FAD. We also observed that CCS-bound FAD is required for enzyme activity in the presence of NADPH, which functions as a reductant of FAD. During this process, no hydrogen is transferred to β-carotene or κ-cyclic carotenoids. In addition to this cofactor requirement, we also show from extensive site-directed mutagenesis using pepper CCS and LCY-B and Erwinia herbicola LCY-B (Mialoundama, 2009) that Glu-295 of pepper CCS and LCY-B plays a key role in the formation of β-carotene and κ-cyclic carotenoids, and we demonstrate that a similar role is played in structurally divergent bacterial LCY-Bs by Glu-196. These characteristics suggest that plant CCS and LCY-Bs are mechanistically similar to non-metal-assisted terpene cyclases, such as squalene:hopene cyclase and oxidosqualene cyclase, and additionally represent a new subfamily of flavoproteins like isopentenyl diphosphate isomerase type II, which catalyze carotenoid cyclization without any net redox modification of the substrate.  相似文献   

8.
9.
Callus tissue cultures were established from stems of tobacco plants (N. glauca Grah.) both healthy and mycoplasma (potato witches' broom disease) infected on a modified nutrient medium (with a lower content of mineral salts) according toMurashige andSkoog (1962) in the presence of 2,4-D (1 mg l?1) as a growth regulator. No differences were observed in the growth and development of both tissues. Organogenesis appeared on a nutrient medium (Petr? et al. 1972) supplemented with kinetin (0.64 mg or 2.56 mg l?1) and IAA (2 or 4 mg l?1). Callus derived from mycoplasma diseased plants started to form numerous buds after three months whereas organogenesis in callus from healthy controls appeared only after six months. We suppose that the reason of this difference is the fact that an expressively higher content of 2,4-D was found in the calli from healthy plants in comparison with the corresponding tissue from mycoplasma diseased ones. Reconstituted plants were isolated, rooted and transferred in the soil. The infectivity of these plants was assayed by grafting their stem tips on tomato plants which indicate very reliably and sensitively this mycoplasma disease. 31 reconstituted plants were obtained in the whole from calli isolated from mycoplasma infected plants and all of them were healthy. It was established that mycoplasma failed in the presence of 2,4-Din vitro. Stem pieces from diseased plants in which mycoplasma presence was proved, lose their infectivity after 4 weeks of cultivation on nutrient medium with this growth regulator. On the contrary 2,4-D which spreads and acts especially through phloem (Smith et al. 1947) does not kill mycoplasmain vivo even in doses evoking strong symptoms of 2,4-D effect on experimental plants.  相似文献   

10.
The aims of this study were to evaluate the epidemiology of nosocomial candidemia in a tertiary hospital in South Brazil and the in vitro antifungal susceptibility of isolates. Blood strains from 108 patients were identified by PCR-based method. Some 30.5 % of candidemia were caused by Candida tropicalis, 28.7 % were due to Candida albicans, 24.1 % with Candida parapsilosis sensu stricto, 8.3 % with Candida glabrata sensu lato, 1.8 % involved Candida krusei and 6.6 % with other species. Candidemia was more common in intensive care unit settings (66 %). In vitro susceptibility to antifungal drugs was determined by a microdilution method; and new species-specific clinical breakpoints for fluconazole and voriconazole were applied. Overall susceptibility rates were 100 % for itraconazole, 91 % for fluconazole, 98 % for voriconazole and 99 % for amphotericin B. Fluconazole resistance was mostly among C. parapsilosis sensu stricto isolates (26.9 %). Most of the findings reported here agreed with epidemiological features common to other tertiary hospitals in Brazil; but also revealed some peculiarities, such as a high frequency of C. tropicalis associated with candidemia. Besides, high rate of fluconazole resistance among C. parapsilosis stricto sensu isolates was obtained when applying the new species-specific clinical breakpoints.  相似文献   

11.
Two new Hyphomycetes collected from Jaipur, Rajasthan, India are described.Panchanania jaipurensis gen. et sp.n., collected on dead and dying twigs ofGrewia salvifolia has characteristic solitary stalked blastospores, each with a dark-coloured head and paler stalk, on sympodulae borne on synnemata.Phragmospathula phoenicis gen. et sp.n., collected on dead leaf rachis ofPhoenix sp. has characteristic solitary spathulate phragmospores (blastospores) which are dark-coloured in the middle and paler at the ends and are produced on short conidiophores capable of proliferation from within. On the basis of the mode of development of the spores, both fungi are placed in the Torulaceae Corda emend. Subram.  相似文献   

12.
Variation in activity of the main histidine catabolic enzymes (histidase, urocanase, and aminotransferase) has been surveyed using inbred strains of mice (C57BL, DBA, Peru, SM, and SWR). Some variation was found in the activity of all enzymes, but only in the case of cytosolic histidine aminotransferase was it greater than twofold (SM 3.3-fold greater than C57BL). The divergent strains for the activity of this enzyme were crossed and the F 1 's were backcrossed; the segregation analysis indicated a single locus with additively acting alleles (designated Hat-1: a allele SM, b allele C57BL). Cytosolic histidine aminotransferase differed in heat stability between SM and C57BL, indicating that Hat-1 is a structural locus. The conflict in the biochemical literature (Morris et al., 1973; Noguchi et al., 1976a, b) over the number and subcellular distribution of the histidine aminotransferase isozymes is partly resolved by the acquisition of a variant at the Hat-1 locus. Hat-1 affects the cytosolic form but not the mitochondrial form of the enzyme. Purification and analysis of the isozymes of histidine aminotransferase from livers of C57BL and SM mice will further clarify the situation.  相似文献   

13.
Triterpenoid saponins are bioactive metabolites that have evolved recurrently in plants, presumably for defense. Their biosynthesis is poorly understood, as is the relationship between bioactivity and structure. Barbarea vulgaris is the only crucifer known to produce saponins. Hederagenin and oleanolic acid cellobioside make some B. vulgaris plants resistant to important insect pests, while other, susceptible plants produce different saponins. Resistance could be caused by glucosylation of the sapogenins. We identified four family 1 glycosyltransferases (UGTs) that catalyze 3-O-glucosylation of the sapogenins oleanolic acid and hederagenin. Among these, UGT73C10 and UGT73C11 show highest activity, substrate specificity and regiospecificity, and are under positive selection, while UGT73C12 and UGT73C13 show lower substrate specificity and regiospecificity and are under purifying selection. The expression of UGT73C10 and UGT73C11 in different B. vulgaris organs correlates with saponin abundance. Monoglucosylated hederagenin and oleanolic acid were produced in vitro and tested for effects on P. nemorum. 3-O-β-d-Glc hederagenin strongly deterred feeding, while 3-O-β-d-Glc oleanolic acid only had a minor effect, showing that hydroxylation of C23 is important for resistance to this herbivore. The closest homolog in Arabidopsis thaliana, UGT73C5, only showed weak activity toward sapogenins. This indicates that UGT73C10 and UGT73C11 have neofunctionalized to specifically glucosylate sapogenins at the C3 position and demonstrates that C3 monoglucosylation activates resistance. As the UGTs from both the resistant and susceptible types of B. vulgaris glucosylate sapogenins and are not located in the known quantitative trait loci for resistance, the difference between the susceptible and resistant plant types is determined at an earlier stage in saponin biosynthesis.Triterpenoid saponins are a heterogeneous group of bioactive metabolites found in many species of the plant kingdom. The general conception is that saponins are involved in plant defense against antagonists such as fungi (Papadopoulou et al., 1999), mollusks (Nihei et al., 2005), and insects (Dowd et al., 2011). Saponins consist of a triterpenoid aglycone (sapogenin) linked to usually one or more sugar moieties. This combination of a hydrophobic sapogenin and hydrophilic sugars makes saponins amphiphilic and enables them to integrate into biological membrane systems. There, they form complexes with membrane sterols and reorganize the lipid bilayer, which may result in membrane damage (Augustin et al., 2011).However, our knowledge of the biosynthesis of saponins, and the genes and enzymes involved, is limited. The current conception is that the precursor 2,3-oxidosqualene is cyclized to a limited number of core structures, which are subsequently decorated with functional groups, and finally activated by adding glycosyl groups (Augustin et al., 2011). These key steps are considered to be catalyzed by three multigene families: (1) oxidosqualene cyclases (OSCs) forming the core structures, (2) cytochromes P450 adding the majority of functional groups, and (3) family 1 glycosyltransferases (UGTs) adding sugars. This allows for a vast structural complexity, some of which probably evolved by sequential gene duplication followed by functional diversification (Osbourn, 2010). A major challenge is thus to understand the processes of saponin biosynthesis, which structural variants of saponins play a role in defense against biotic antagonists, and how saponin biosynthesis evolved in different plant taxa. This knowledge is also of interest for biotechnological production and the use of saponins as protection agents against agricultural pests as well as for pharmacological and industrial uses as bactericides (De Leo et al., 2006), anticancerogens (Musende et al., 2009), and adjuvants (Sun et al., 2009).Barbarea vulgaris (winter cress) is a wild crucifer from the Cardamineae tribe of the Brassicaceae family. It is the only species in this economically important family known to produce saponins. B. vulgaris has further diverged into two separate evolutionary lineages (types; Hauser et al., 2012; Toneatto et al., 2012) that produce different saponins, glucosinolates, and flavonoids (Agerbirk et al., 2003b; Dalby-Brown et al., 2011; Kuzina et al., 2011). Saponins of the one plant type make plants resistant to the yellow-striped flea beetle (Phyllotreta nemorum), diamondback moth (Plutella xylostella), and other important crucifer specialist herbivores (Renwick, 2002); therefore, it has been suggested to utilize such plants as a trap crop to diminish insect damage (Badenes-Perez et al., 2005). The other plant type is not resistant to these herbivores. B. vulgaris, therefore, is ideal as a model species to study saponin biosynthesis, insect resistance, and its evolution, as we can contrast genes, enzymes, and their products between closely related but divergent plant types.Insect resistance of the one plant type, called G because it has glabrous leaves, correlates with the content of especially hederagenin cellobioside, oleanolic acid cellobioside, 4-epi-hederagenin cellobioside, and gypsogenin cellobioside (Shinoda et al., 2002; Agerbirk et al., 2003a; Kuzina et al., 2009; Fig. 1). These saponins are absent in the susceptible plant type, called P because it has pubescent leaves, which contains saponins of unknown structures and function (Kuzina et al., 2011). The sapogenins (aglycones) of the resistance-causing saponins hederagenin and oleanolic acid cellobioside do not deter feeding by P. nemorum, which highlights the importance of glycosylation of saponins for resistance (Nielsen et al., 2010). Therefore, the presence or absence of sapogenin glycosyltransferases could be a determining factor for the difference in resistance between the insect resistant G-type and the susceptible P-type of B. vulgaris.Open in a separate windowFigure 1.Chemical structures of the four known G-type B. vulgaris saponins that correlate with resistance to P. nemorum and other herbivores. The cellobioside and sapogenin parts of the saponin are underlined, and relevant carbon positions are numbered.Some P. nemorum genotypes are resistant to the saponin defense of B. vulgaris (Nielsen, 1997b, 1999). Resistance is coded by dominant R genes (Nielsen et al., 2010; Nielsen 2012): larvae and adults of resistant genotypes (RR or Rr) are able to feed on G-type foliage and utilize B. vulgaris as host plant (de Jong et al., 2009), whereas larvae of the susceptible genotype (rr) die and adult beetles stop feeding on G-type foliage. Larvae and adults of all known P. nemorum genotypes can feed on P-type B. vulgaris (Fig. 2).Open in a separate windowFigure 2.Feeding behavior of adult P. nemorum that are either susceptible (ST) or resistant (AK) toward the saponin-based defense of G-type B. vulgaris; the P-type produces different saponins and is not resistant against P. nemorum. Potential feeding is shown by green arrows, and termination of feeding briefly after initiation is indicated by a red dashed arrow. Larvae of the ST line die if fed on G-type plants.In this study, we asked which enzymes are involved in glucosylation of sapogenins in B. vulgaris, whether saponins with a single C3 glucosyl group are biologically active, and whether the difference between the insect resistant and susceptible types of B. vulgaris is caused by different glucosyltransferases.We report the identification of two UDP-glycosyltransferases, UGT73C10 and UGT73C11, which have high catalytic activity and substrate specificity and regiospecificity for catalyzing 3-O-glucosylation of the sapogenins oleanolic acid and hederagenin. The products, 3-O-β-d-glucopyranosyl hederagenin and 3-O-β-d-glucopyranosyl oleanolic acid, are predicted precursors of hederagenin and oleanolic acid cellobioside, respectively. The expression patterns of UGT73C10 and UGT73C11 in different organs of B. vulgaris correlate with saponin abundance, and monoglucosylated sapogenins, especially 3-O-β-d-glucopyranosyl hederagenin, deter feeding by P. nemorum. Our results thus show that glucosylation with even a single glucosyl group activates the resistance function of these sapogenins. However, since the UGTs are present and active in both the insect-resistant and -susceptible types of B. vulgaris, we cannot explain the difference in resistance by different glucosylation abilities. Instead, the difference between the susceptible and resistant types must be determined at an earlier stage in saponin biosynthesis.  相似文献   

14.
15.
16.
Endophytes are a large and diverse group of fungi that colonize healthy plant tissues without causing any symptoms. The majority of studies have focused on angiosperm and conifer hosts and few have examined the endophytes of lycophytes. In the present study, we characterized culturable endophytic fungi in two closely related Lycopodium species (L. annotinum and L. clavatum) from pine, beech, oak and spruce forests across Poland. More than 400 strains were isolated but only 18 Ascomycete species were identified. Members of the Dothideomycetes dominated the fungal endophyte communities in Lycopodium. The most abundant taxa cultured were Phoma brasiliensis (from L. clavatum) and Paraconiothyrium lycopodinum (from L. annotinum). Five taxa were isolated exclusively from L. annotinum, but only two of them (Paraconiothyrium lycopodinum and Mycosphaerella sp.) were relatively abundant. Two taxa were only found in L. clavatum, namely: Stagonospora pseudovitensis and an unidentified Dothideomycete. The taxon assigned as Ascomycota 2 (SH219457.06FU) was isolated only from strobili of both host species. Direct PCR and cloning from L. annotinum shoots revealed a substantially greater endophyte richness compared with the results from culturing.  相似文献   

17.
18.
19.
The occurrence ofCandida albicans in fresh gull (Larus spp.) feces was compared in temperate and subtropical locations. Of 239 fresh samples, 133 were obtained in southeastern Connecticut and 106 from different sites on the southeastern and central western coasts of Florida. Overall, 60% of all feces containedC. albicans. Of the Connecticut samples, 78% were positive, whereas 38% of the Florida samples revealed the presence of the yeast. Only 1 of 24 samples of fresh brown pelican feces containedC. albicans. Differences inC. albicans occurrence in birds in various locations was ascribed to variations in habitat and feeding behavior. Samples of water from a municipal reservoir in Connecticut were routinely positive, with an average cell density of 20/liter. Two fresh gull samples obtained on the reservoir bank containedC. albicans at an average cell concentration of 5, 200/g. The frequency ofC. albicans in gull droppings was higher than reported by others, and the yeast is common in temperate waters. These findings have important public health implications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号