首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M Amitsur  I Morad    G Kaufmann 《The EMBO journal》1989,8(8):2411-2415
During phage T4 infection of Escherichia coli strains containing the prr locus the host tRNALys undergoes cleavage-ligation in reactions catalyzed by anticodon nuclease, polynucleotide kinase and RNA ligase. Known genetic determinants of anticodon nuclease are prr, which restricts T4 mutants lacking polynucleotide kinase or RNA ligase, and stp, the T4 suppressor of prr encoded restriction. The present communication describes an in vitro anticodon nuclease assay in which the specific cleavage of tRNALys is driven by an extract from E. coli prrr (restrictive) cells infected by phage T4. The in vitro anticodon nuclease reaction requires factor(s) encoded by prr, is stimulated by a synthetic Stp polypeptide and appears to require additional T4 induced factor(s) distinct from Stp.  相似文献   

2.
Anticodon loop cleavages of two host tRNA species occur in bacteriophage T4-infected Escherichia coli CTr5X, a host strain restricting phage mutants deficient in polynucleotide kinase (pnk) or RNA ligase (rli). The cleavage products accumulate with the mutants but are further processed in wt infection through polynucleotide kinase and RNA ligase reactions. Inactivating mutations in stp suppress pnk- or rli- mutations in E. coli CTr5X and, as shown here, also abolish the anticodon nuclease, implicating the stp product with this activity. We show also that there exist other suppressing mutations of a pnk- (pseT2) mutation that appear not to affect the anticodon nuclease and are not in stp. It has been shown that a single locus in E. coli CTr5X, termed prr, determines the restriction of pnk- or rli- mutants. A transductant carrying prr featured upon infection the anticodon nuclease reaction products, suggesting that prr determines the specific manifestation of this activity. However, prr does not encode the tRNA species that are vulnerable to the anticodon nuclease.  相似文献   

3.
M Amitsur  R Levitz    G Kaufmann 《The EMBO journal》1987,6(8):2499-2503
Host tRNAs cleaved near the anticodon occur specifically in T4-infected Escherichia coli prr strains which restrict polynucleotide kinase (pnk) or RNA ligase (rli) phage mutants. The cleavage products are transient with wt but accumulate in pnk- or rli- infections, implicating the affected enzymes in repair of the damaged tRNAs. Their roles in the pathway were elucidated by comparing the mutant infection intermediates with intact tRNA counterparts before or late in wt infection. Thus, the T4-induced anticodon nuclease cleaves lysine tRNA 5' to the wobble position, yielding 2':3'-P greater than and 5'-OH termini. Polynucleotide kinase converts them into a 3'-OH and 5' P pair joined in turn by RNA ligase. Presumably, lysine tRNA depletion, in the absence of polynucleotide kinase and RNA ligase mediated repair, underlies prr restriction. However, the nuclease, kinase and ligase may benefit T4 directly, by adapting levels or decoding specificities of host tRNAs to T4 codon usage.  相似文献   

4.
The optional Escherichia coli prr locus restricts phage T4 mutants lacking polynucleotide kinase or RNA ligase. Underlying this restriction is the specific manifestation of the T4-induced anticodon nuclease, an enzyme which triggers the cleavage-ligation of the host tRNALys. We report here the molecular cloning, nucleotide sequence and mutational analysis of prr-associated DNA. The results indicate that prr encodes a latent form of anticodon nuclease consisting of a core enzyme and cognate masking agents. They suggest that the T4-encoded factors of anticodon nuclease counteract the prr-encoded masking agents, thus activating the latent enzyme. The encoding of a tRNA cleavage-ligation pathway by two separate genetic systems which cohabitate E. coli may provide a clue to the evolution of RNA splicing mechanisms mediated by proteins.  相似文献   

5.
Phage T4-induced anticodon nuclease triggers cleavage-ligation of the host tRNA(Lys). The enzyme is encoded in latent form by the optional Escherichia coli locus prr and is activated by the product of the phage stp gene. Anticodon nuclease latency is attributed to the masking of the core function prrC by flanking elements homologous with type I restriction-modification genes (prrA-hsdM and prrD-hsdR). Activation of anticodon nuclease in extracts of uninfected prr+ cells required synthetic Stp, ATP and GTP and appeared to depend on endogenous DNA. Stp could be substituted by a small, heat-stable E. coli factor, hinting that anticodon nuclease may be mobilized in cellular situations other than T4 infection. Hsd antibodies recognized the anticodon nuclease holoenzyme but not the prrC-encoded core. Taken together, these data indicate that Hsd proteins partake in the latent ACNase complex where they mask the core factor PrrC. Presumably, this masking interaction is disrupted by Stp in conjunction with Hsd ligands. The Hsd-PrrC interaction may signify coupling and mutual enhancement of two prokaryotic restriction systems operating at the DNA and tRNA levels.  相似文献   

6.
The RNA ligase and polynucleotide kinase of bacteriophage T4 are nonessential enzymes in most laboratory Escherichia coli strains. However, T4 mutants which do not induce the enzymes are severely restricted in E. coli CTr5X, a strain derived from a clinical E. coli isolate. We have mapped the restricting locus in E. coli CTr5X and have transduced it into other E. coli strains. The restrictive locus seems to be a gene, or genes, unique to CTr5X or to be an altered form of a nonessential gene, since deleting the locus seems to cause loss of the phenotypes. In addition to restricting RNA ligase- and polynucleotide kinase-deficient T4, the locus also restricts bacteriophages lambda and T4 with cytosine DNA. When lambda or T4 with cytosine DNA infect strains with the prr locus, the phage DNA is injected, but phage genes are not expressed and the host cells survive. These phenotypes are unlike anything yet described for a phage-host interaction.  相似文献   

7.
T4 mutants lacking polynucleotide kinase (pnk-) or RNA ligase (rli-) do not grow on E. coli CTr5x. During the abortive infections there accumulate host tRNA fragments that match into two species severed 3' to the anticodon. The CTr5x-specific fragments appear only transiently with wt phage, implicating the affected enzymes in phosphoryl group rearrangement and religation [David et al. (1982) Virol. 123, 480]. In a search for the vulnerable host tRNAs and putative religation products, tRNA ensembles from uninfected E. coli CTr5x or cells infected with various phage strains were fractionated and compared. A tRNA species absent from rli- infected cells but present in uninfected cells or late in wt infection was thus detected. RNase T1 finger prints of this species, isolated before or after wt infection, were compared with that of an in vitro ligated pair of CTr5x-specific fragments. The results indicated that this tRNA is cleaved upon infection and later on restored to it's original or to a very similar form, by polynucleotide kinase and RNA ligase reactions. It is suggested that depletion of such vulnerable host tRNA species underlies the restriction of pnk- or rli- phage on E. coli CTr5x.  相似文献   

8.
9.
Aminoacylation of anticodon loop substituted yeast tyrosine transfer RNA   总被引:7,自引:0,他引:7  
L Bare  O C Uhlenbeck 《Biochemistry》1985,24(9):2354-2360
A procedure for replacing residues 33-35 in the anticodon loop of yeast tRNATyr with any desired oligonucleotide has been developed. The three residues were removed by partial ribonuclease A digestion. An oligonucleotide was inserted into the gap in four steps by using RNA ligase, polynucleotide kinase, and pseT 1 polynucleotide kinase. The rate of aminoacylation of anticodon loop substituted tRNATyr by yeast tyrosyl-tRNA synthetase was found to depend upon the sequence of the oligonucleotide inserted. This suggests that the nucleotides in the anticodon loop of yeast tRNATyr are required for optimal aminoacylation. In addition, tRNATyr modified to have a phenylalanine anticodon was shown to be misacylated by yeast phenylalanyl-tRNA synthetase at a rate at least 10 times faster than unmodified tRNATyr. Thus, the anticodon is used by phenylalanyl-tRNA synthetase to distinguish between tRNAs.  相似文献   

10.
Intermediates of chromosomal DNA replication in Escherichia coli   总被引:2,自引:0,他引:2  
The product of bacteriophage T4 gene 63 has two activities, one which catalyzes the attachment of tail fibers to base plates during morphogenesis (TFA) and one which catalyzes the joining of single-stranded polynucleotides (RNA ligase). The only phenotype attributed to mutations in gene 63 is a defect in attachment of tail fibers leading to fiberless T4 particles. However, it is suspected that TFA and RNA ligase are unrelated activities of the same protein since they have very different requirements in vitro.We have isolated new mutants which have lost the RNA ligase but have retained the TFA activity of the product of gene 63. These mutants exhibit defects in T4 DNA replication and late gene expression in some strains of Escherichia coli. This work allows us to draw three conclusions: (1) the TFA and RNA ligase activities are unrelated functions of the gene 63 product making this the prototype for a protein which has more than one unrelated function; (2) the RNA ligase is probably involved in DNA metabolism rather than RNA processing as has been proposed: (3) the RNA ligase and polynucleotide 5′ kinase 3′ phosphatase of T4 perform intimately related functions.  相似文献   

11.
Breakage of tRNA(Lys(UUU)) by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies a host antiviral response to phage T4 infection that is ultimately thwarted by a virus-encoded RNA repair system. PrrC homologs are prevalent in other bacteria, but their activities and substrates are not defined. We find that induced expression of EcoPrrC is toxic in Saccharomyces cerevisiae and E. coli, whereas the Neisseria meningitidis PrrC (NmePrrC) is not. PrrCs consist of an N-terminal NTPase module and a C-terminal nuclease module. Domain swaps identified the EcoPrrC nuclease domain as decisive for toxicity when linked to either the Eco or Nme NTPase. Indeed, a single arginine-to-tryptophan change in the NmePrrC nuclease domain (R316W) educed a gain-of-function and rendered NmePrrC toxic to yeast, with genetic evidence for tRNA(Lys(UUU)) being the relevant target. The reciprocal Trp-to-Arg change in EcoPrrC (W335R) abolished its toxicity. Further mutagenesis of the EcoPrrC nuclease domain highlighted an ensemble of 15 essential residues and distinguished between hypomorphic alleles and potential nuclease-nulls. We report that the RNA repair phase of the bacterial virus-host dynamic is also portable to yeast, where coexpression of the T4 enzymes Pnkp and Rnl1 ameliorated the toxicity of NmePrrC-R316W. Plant tRNA ligase AtRNL also countered NmePrrC-R316W toxicity, in a manner that depended on AtRNL's 5'-kinase and ligase functions.  相似文献   

12.
Related domains containing the purine NTP-binding sequence pattern have been revealed in two enzymes involved in tRNA processing, yeast tRNA ligase and phage T4 polynucleotide kinase, and in one of the major proteins of mammalian nerve myelin sheath, 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNPase). It is suggested that, similarly to the tRNA processing enzymes, CNPase possesses polynucleotide kinase activity, in addition to the phosphohydrolase one. It is speculated that CNPase may be an authentic mammalian polynucleotide kinase recruited as a structural component of the myelin sheath, analogously to the eye lens crystallins. Significant sequence similarity was revealed also between the N-terminal regions of yeast tRNA ligase and phage T4 RNA ligase. A tentative scheme of the domainal organizations for the three complex enzymes is proposed. According to this model, tRNA ligase contains at least three functional domains, in the order: N-ligase-kinase-phosphohydrolase-C, whereas polynucleotide kinase and CNPase encompass only the two C-terminal domains in the same order.  相似文献   

13.
14.
The tRNALys-specific anticodon nuclease exists in latent form in Escherichia coli strains containing the optional prr locus. The latency is a result of a masking interaction between the anticodon nuclease core-polypeptide PrrC and the Type IC DNA restriction-modification enzyme EcoprrI. Activation of the latent enzyme by phage T4-infection elicits cleavage of tRNALys 5' to the wobble base, yielding 5'-OH and 2', 3'-cyclic phosphate termini. The N-proximal half of PrrC has been implicated with (A/G) TPase and EcoprrI interfacing activities. Therefore, residues involved in recognition and cleavage of tRNALys were searched for at the C-half. Random mutagenesis of the low-G+C portion encoding PrrC residues 200-313 was performed, followed by selection for loss of anticodon nuclease-dependent lethality and production of full-sized PrrC-like protein. This process yielded a cluster of missense mutations mapping to a region highly conserved between PrrC and two putative Neisseria meningitidis MC58 homologues. This cluster included two adjacent members that relaxed the inherent enzyme's cleavage specificity. We also describe another mode of relaxed specificity, due to mere overexpression of PrrC. This mode was shared by wild-type PrrC and the other mutant alleles. The additional substrates recognised under the promiscuous conditions had, in general, anticodons resembling that of tRNALys. Taken together, the data suggest that the anticodon of tRNALys harbours anticodon nuclease identity elements and implicates a conserved region in PrrC in their recognition.  相似文献   

15.
An RNA ligase that catalyzes the formation of a 2'-phosphomonoester-3',5'-phosphodiester bond in the presence of ATP and Mg2+ was purified approximately 6000-fold from raw wheat germ. A 5'-hydroxyl polynucleotide kinase activity copurified with RNA ligase through all chromatographic steps. Both activities cosedimented upon glycerol gradient centrifugation even in the presence of high salt and urea. RNA ligase and kinase activities sedimented as a single peak on glycerol gradients with a sedimentation coefficient of 6.2 S. The purified polynucleotide kinase activity required dithiothreitol and a divalent cation for activity and was inhibited by pyrophosphate and by ADP. The kinase phosphorylated a variety of 5'-hydroxyl-terminated polynucleotide chains including some that were substrates for the RNA ligase (e.g. 2',3'-cyclic phosphate-terminated poly(A)) and others that were not ligase substrates (e.g. DNA or RNA containing 3'-hydroxyl termini). RNA molecules containing either 5'-hydroxyl or 5'-phosphate and 2',3'-cyclic or 2'-phosphate termini were substrates for the purified RNA ligase activity. The rate of ligation of 5'-hydroxyl-terminated RNA chains was greater than that of 5'-phosphate-terminated molecules, suggesting that an interaction between the wheat germ kinase and ligase activities occurs during the course of ligation.  相似文献   

16.
3'-end labeling of RNA with recombinant yeast poly(A) polymerase.   总被引:1,自引:0,他引:1       下载免费PDF全文
Two commonly used methods to end-label RNA-molecules are 5'-end labeling by polynucleotide kinase and 3'-end labeling with pCp and T4 RNA ligase. We show here that RNA 3'-ends can also be labeled with the chain-terminating analogue cordycepin 5'-triphosphate (3'-deoxy-ATP) which is added by poly(A) polymerase. For a synthetic RNA it is shown that 40% of cordycepin becomes incorporated when the nucleotide is used at limiting concentrations and that with an excess of cordycepin 5'-triphosphate essentially all the RNA becomes modified at its 3'-end. The reaction is complete within minutes and the RNA product is uniform and suitable for sequence analysis. The efficiency of labeling varies with different RNA-molecules and is different from RNA ligase. Poly(A) polymerase preferentially labels longer RNA-molecules whereas short RNA-molecules are labeled more efficiently by T4 RNA ligase.  相似文献   

17.
Yeast tRNA ligase (Trl1) converts cleaved tRNA half-molecules into spliced tRNAs containing a 2'-PO4, 3'-5' phosphodiester at the splice junction. Trl1 performs three reactions: (i) the 2',3'-cyclic phosphate of the proximal fragment is hydrolyzed to a 3'-OH, 2'-PO4 by a cyclic phosphodiesterase (CPD); (ii) the 5'-OH of the distal fragment is phosphorylated by an NTP-dependent polynucleotide kinase; and (iii) the 3'-OH, 2'-PO4, and 5'-PO4 ends are sealed by an ATP-dependent RNA ligase. Trl1 consists of an N-terminal adenylyltransferase domain that resembles T4 RNA ligase 1, a central domain that resembles T4 polynucleotide kinase, and a C-terminal CPD domain that resembles the 2H phosphotransferase enzyme superfamily. Here we show that all three domains are essential in vivo, although they need not be linked in the same polypeptide. We identify five amino acids in the adenylyltransferase domain (Lys114, Glu266, Gly267, Lys284, and Lys286) that are essential for Trl1 activity and are located within motifs I (114KANG117), IV (266EGFVI270), and V (282FFKIK286) that comprise the active sites of DNA ligases, RNA capping enzymes, and T4 RNA ligases 1 and 2. Mutations K404A and T405A in the P-loop (401GXGKT405) of the central kinase-like domain had no effect on Trl1 function in vivo. The K404A and T405A mutations eliminated ATP-dependent kinase activity but preserved GTP-dependent kinase activity. A double alanine mutant in the P-loop was lethal in vivo and abolished GTP-dependent kinase activity. These results suggest that GTP is the physiological substrate and that the Trl1 kinase has a single NTP binding site of which the P-loop is a component. Two other mutations in the central domain were lethal in vivo and either abolished (D425A) or severely reduced (R511A) GTP-dependent RNA kinase activity in vitro. Mutations of the signature histidines of the CPD domain were either lethal (H777A) or conferred a ts growth phenotype (H673A).  相似文献   

18.
In vitro conversion of a methionine to a glutamine-acceptor tRNA   总被引:13,自引:0,他引:13  
L H Schulman  H Pelka 《Biochemistry》1985,24(25):7309-7314
A derivative of Escherichia coli tRNAfMet containing an altered anticodon sequence, CUA, has been enzymatically synthesized in vitro. The variant tRNA was prepared by excision of the normal anticodon, CAU, in a limited digestion of intact tRNAfMet with RNase A, followed by insertion of the CUA sequence into the anticodon loop with T4 RNA ligase and polynucleotide kinase. The altered methionine tRNA showed a large enhancement in the rate of aminoacylation by glutaminyl-tRNA synthetase and a large decrease in the rate of aminoacylation by methionyl-tRNA synthetase. Measurement of kinetic parameters for the charging reaction by the cognate and noncognate enzymes revealed that the modified tRNA is a better acceptor for glutamine than for methionine. The rate of mischarging is similar to that previously reported for a tryptophan amber suppressor tRNA containing the anticodon CUA, su+7 tRNATrp, which is aminoacylated with glutamine both in vivo and in vitro [Yaniv, M., Folk, W. R., Berg, P., & Soll, L. (1974) J. Mol. Biol. 86, 245-260; Yarus, M., Knowlton, R. E., & Soll, L. (1977) in Nucleic Acid-Protein Recognition (Vogel, H., Ed.) pp 391-408, Academic Press, New York]. The present results provide additional evidence that the specificity of aminoacylation by glutaminyl-tRNA synthetase is sensitive to small changes in the nucleotide sequence of noncognate tRNAs and that uridine in the middle position of the anticodon is involved in the recognition of tRNA substrates by this enzyme.  相似文献   

19.
A tRNALys-specific anticodon nuclease is kept in a latent form in a rare Escherichia coli strain, complexed with a DNA restriction enzyme. A phage T4 inhibitor of DNA restriction activates anticodon nuclease, but other T4 proteins restore tRNALys. Detection of a homologous system in Neisseria and a different anticodon nuclease in colicin E5 suggest ubiquity and diversity of such tRNA toxins. Analysis of these systems could reveal novel RNA recognition and cleavage mechanisms.  相似文献   

20.
The oligoribonucleotide, A-A-A-C-U-U-U-Gp, constituting a segment of RNA bacteriophage Qbeta coat protein gene was efficiently synthesized at a milligram scale by a combination of enzymatic methods using bacteriophage T4 RNA ligase and the thermophilic polynucleotide phosphorylase. A-A-A-Cp was synthesized from A-A-A and pCp by the newly developed mononucleotide addition method using T4 RNA ligase in a yield of 83%, followed by dephosphorylation with bacterial alkaline phosphatase to obtain A-A-A-C. pU-U-U-Gp was synthesized from pU-U-U and GDP by the simultaneous action of polynucleotide phosphorylase and RNase T1 in a yield of 32%. finally, the two oligonucleotides (A-A-A-C and pU-U-U-Gp) were ligated with T4 RNA ligase and the octanucleotide, A-A-A-C-U-U-U-Gp, was obtained in a yield of 85%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号