首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOLMOL is a molecular graphics program for display, analysis, and manipulation of three-dimensional structures of biological macromolecules, with special emphasis on nuclear magnetic resonance (NMR) solution structures of proteins and nucleic acids. MOLMOL has a graphical user interface with menus, dialog boxes, and on-line help. The display possibilities include conventional presentation, as well as novel schematic drawings, with the option of combining different presentations in one view of a molecule. Covalent molecular structures can be modified by addition or removal of individual atoms and bonds, and three-dimensional structures can be manipulated by interactive rotation about individual bonds. Special efforts were made to allow for appropriate display and analysis of the sets of typically 20–40 conformers that are conventionally used to represent the result of an NMR structure determination, using functions for superimposing sets of conformers, calculation of root mean square distance (RMSD) values, identification of hydrogen bonds, checking and displaying violations of NMR constraints, and identification and listing of short distances between pairs of hydrogen atoms.  相似文献   

2.
Most biologically relevant environments involve highly concentrated macromolecular solutions and most biological processes involve macromolecules that diffuse and interact with other macromolecules. Macromolecular crowding is a general phenomenon that strongly affects the transport properties of macromolecules (rotational and translational diffusion) as well as the position of their equilibria. NMR methods can provide information on molecular interactions, as well as on translational and rotational diffusion. In fact, rotational diffusion, through its determinant role in NMR relaxation, places a practical limit on the systems that can be studied by NMR. While in dilute solutions of non-aggregating macromolecules this limit is set by macromolecular size, in crowded solutions excluded volume effects can have a strong effect on the observed diffusion rates. Hydrodynamic theory offers some insight into the magnitude of crowding effects on NMR observable parameters.  相似文献   

3.
2002年诺贝尔化学奖授予了质谱和核磁共振领域的三位科学家以表彰他们对生物大分子鉴定及结构分析方法做出的贡献.其中两位科学家J.B.Fenn和K.Tanaka分别发展了生物大分子质谱分析的软解吸电离方法;另一科学家K.Wüthrich则将核磁共振技术成功地应用于生物大分子如蛋白质的溶液三维结构测定.他们的研究成果已使质谱和核磁共振技术成为生物大分子强有力的研究手段,极大地促进了生物大分子的研究进程,必将对整个生命科学研究产生深远的影响.  相似文献   

4.
NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP).  相似文献   

5.
Recent studies making use of channel-blocking peptides as molecular calipers have revealed the architecture of the pore-forming region of Shaker-type potassium channels. Here we show that the low-resolution, experimentally derived geometric information can be incorporated as restraints within the context of an annealed molecular dynamics simulation to predict an atomic structure for the channel pore which, by virtue of restraints, conforms to the experimental evidence. The simulation is reminiscent of the computational method employed by nuclear magnetic resonance (NMR) spectroscopists to resolve solution structures of biological macromolecules, but in lieu of restraints conventionally derived from NMR spectra, novel restraints are developed that include side-chain orientation of amino acid residues and assumed symmetry of protein subunits. The method presented here offers the possibility of expanding cooperation between simulation and experiment in developing structural models, especially for systems such as ion channels whose three-dimensional structures may not be amenable to determination by direct methods at the present time.  相似文献   

6.
Solution NMR of large molecules and assemblies   总被引:1,自引:0,他引:1  
Solution NMR spectroscopy represents a powerful tool for examining the structure and function of biological macromolecules. The advent of multidimensional (2D-4D) NMR, together with the widespread use of uniform isotopic labeling of proteins and RNA with the NMR-active isotopes, 15N and 13C, opened the door to detailed analyses of macromolecular structure, dynamics, and interactions of smaller macromolecules (< approximately 25 kDa). Over the past 10 years, advances in NMR and isotope labeling methods have expanded the range of NMR-tractable targets by at least an order of magnitude. Here we briefly describe the methodological advances that allow NMR spectroscopy of large macromolecules and their complexes and provide a perspective on the wide range of applications of NMR to biochemical problems.  相似文献   

7.
Starting only a few years ago, many solid-state NMR spectroscopy laboratories have become engaged in solving the complete structures of biological macromolecules using high-resolution methods based on magic angle spinning. These efforts typically involve structurally homogeneous samples, and utilize recently developed pulse sequences for the sequential correlation of resonances, the detection of tertiary contacts and the characterization of torsion angles. Thereby, systems have been studied that evaded other, more established, structure determination methods.  相似文献   

8.
During the past several years, there have been significant advances in NMR solution structure determination of macromolecules. The ability to easily measure residual dipolar couplings, to directly detect NHellipsisN hydrogen bonding interactions and to study much larger macromolecules by the application of heteronuclear experiments that select narrow lines in 2D and 3D spectra of isotopically labeled molecules promises to dramatically improve solution structure determination of nucleic acids.  相似文献   

9.
NMR spectroscopy is a powerful tool for studying the structure, function and dynamics of biological macromolecules. However, non-spectroscopists often find NMR theory daunting and data interpretation nontrivial. As the first of two back-to-back reviews on NMR spectroscopy aimed at non-spectroscopists, the present review first provides an introduction to the basics of macromolecular NMR spectroscopy, including a discussion of typical sample requirements and what information can be obtained from simple NMR experiments. We then review the use of NMR spectroscopy for determining the 3D structures of macromolecules and examine how to judge the quality of NMR-derived structures.  相似文献   

10.
The review is devoted to tritium planigraphy and its applications in solving a broad scope of problems in modern molecular and physicochemical biology. The method is based on nonselective substitution of tritium for hydrogen in the hydrocarbon parts of target molecules. It furnishes information on the steric accessibility of the components of a system under study (macromolecule within a complex amino acid residues, and even separate atomic groupings in a macromolecule) that characterizes the structure of the entire object. The technique is applicable to specimens in different phase states and has no limitations in respect of the target molecular mass. Tritium planigraphy is especially important in the cases when the biological macromolecules cannot be examined by the conventional methods (X-ray analysis and NMR spectroscopy). The review summarizes the studies of protein accessible surface and spatial arrangement, and outlines the approaches to modeling the protein 3D structure and probing into the spatial organization of theEscherichia coli ribosome and virus particles.  相似文献   

11.
A goal of structural biology is to understand how macromolecules carry out their biological roles by identifying their metastable states, mechanisms of action, pathways leading to conformational changes, and the thermodynamic and kinetic relationships between those states. Integrative modeling brings structural insights into systems where traditional structure determination approaches cannot help. We focus on the synergies and challenges of integrative modeling combining experimental data with molecular dynamics simulations.  相似文献   

12.
Structural studies of proteins are critical for understanding biological processes at the molecular level. Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for obtaining structural and dynamic information on proteins and protein-ligand complexes. In the present review, methodologies for NMR structure determination of proteins and macromolecular complexes are described. In addition, a number of recent advances that reduce the molecular weight limitations previously imposed on NMR studies of biomolecules are discussed, highlighting applications of these technologies to protein systems studied in our laboratories.  相似文献   

13.
RELAX-JT2 is an extension of RELAX, a program for the simulation of 1H 2D NOESY spectra and (15)N or (13)C edited 3D NOESY-HSQC spectra of biological macromolecules. In addition to the already existing NOE-simulation it allows the proper simulation of line shapes by the integrated calculation of T(2) times and multiplet structures caused by J-couplings. Additionally the effects of relaxation mediated by chemical shift anisotropy are taken into account. The new routines have been implemented in the program AUREMOL, which aims at the automated NMR structure determination of proteins in solution. For a manual or automatic assignment of experimental spectra that is based on the comparison with the corresponding simulated spectra, the additional line shape information now available is a valuable aid. The new features have been successfully tested with the histidine-containing phosphocarrier protein HPr from Staphylococcus carnosus.  相似文献   

14.
Brunger AT 《Nature protocols》2007,2(11):2728-2733
Version 1.2 of the software system, termed Crystallography and NMR system (CNS), for crystallographic and NMR structure determination has been released. Since its first release, the goals of CNS have been (i) to create a flexible computational framework for exploration of new approaches to structure determination, (ii) to provide tools for structure solution of difficult or large structures, (iii) to develop models for analyzing structural and dynamical properties of macromolecules and (iv) to integrate all sources of information into all stages of the structure determination process. Version 1.2 includes an improved model for the treatment of disordered solvent for crystallographic refinement that employs a combined grid search and least-squares optimization of the bulk solvent model parameters. The method is more robust than previous implementations, especially at lower resolution, generally resulting in lower R values. Other advances include the ability to apply thermal factor sharpening to electron density maps. Consistent with the modular design of CNS, these additions and changes were implemented in the high-level computing language of CNS.  相似文献   

15.
We describe an efficient algorithm for protein backbone structure determination from solution Nuclear Magnetic Resonance (NMR) data. A key feature of our algorithm is that it finds the conformation and orientation of secondary structure elements as well as the global fold in polynomial time. This is the first polynomial-time algorithm for de novo high-resolution biomacromolecular structure determination using experimentally recorded data from either NMR spectroscopy or X-ray crystallography. Previous algorithmic formulations of this problem focused on using local distance restraints from NMR (e.g., nuclear Overhauser effect [NOE] restraints) to determine protein structure. This approach has been shown to be NP-hard, essentially due to the local nature of the constraints. In practice, approaches such as molecular dynamics and simulated annealing, which lack both combinatorial precision and guarantees on running time and solution quality, are used routinely for structure determination. We show that residual dipolar coupling (RDC) data, which gives global restraints on the orientation of internuclear bond vectors, can be used in conjunction with very sparse NOE data to obtain a polynomial-time algorithm for structure determination. Furthermore, an implementation of our algorithm has been applied to six different real biological NMR data sets recorded for three proteins. Our algorithm is combinatorially precise, polynomialtime, and uses much less NMR data to produce results that are as good or better than previous approaches in terms of accuracy of the computed structure as well as running time.  相似文献   

16.
Flexible macromolecules pose special difficulties for structure determination by crystallography or NMR. Progress can be made by electron microscopy, but electron cryo-microscopy of unstained, hydrated specimens is limited to larger macromolecules because of the inherently low signal-to-noise ratio. For three-dimensional structure determination, the single particles must be invariant in structure. Here, we describe how we have used negative staining and single-particle image processing techniques to explore the structure and flexibility of single molecules of two motor proteins: myosin and dynein. Critical for the success of negative staining is a hydrophilic, thin carbon film, because it produces a low noise background around each molecule, and stabilises the molecule against damage by the stain. The strategy adopted for single-particle image processing exploits the flexibility available within the SPIDER software suite. We illustrate the benefits of successive rounds of image alignment and classification, and the use of whole molecule averages and movies to analyse and display both structure and flexibility within the dynein motor.  相似文献   

17.
18.
NMR spectroscopy was recognized as a method of protein structure determination in solution. However, determination of the conformation of small peptides, which undergo fast molecular motions, remains a challenge. This is mainly caused by the impossibility to collect the required quantity of the distance and dihedral angle restraints from NMR spectra. At the same time, short charged peptides play an important role in a number of biological processes, in particular in pathogenesis of neurodegenerative diseases including Alzheimer’s disease. Therefore, development of a method for structure simulation of small peptides in aqueous environment using the most realistic force fields seems to be of current importance. Such algorithm has been developed using the Amber-03 force field and Gromacs program after modification of its code. Calculation algorithm has been verified on a model peptide with a known solution structure and a metal-binding fragment of rat β-amyloid, whose structure has been determined by alternative methods. The developed algorithm substantially increases structure quality, in particular Ramachandran plot statistics, and decreases RMSD of atomic coordinates inside the calculated family. The described protocol can be used for determination of conformation of short peptides, and also for optimization of structure of larger proteins containing poorly structured fragments.  相似文献   

19.
More than 40% of the RNA structures have been determined using nuclear magnetic resonance (NMR) technique. NMR mainly provides local structural information of protons and works most effectively on relatively small biomacromolecules. Hence structural characterization of large RNAs can be difficult for NMR alone. Electron microscopy (EM) provides global shape information of macromolecules at nanometer resolution, which should be complementary to NMR for RNA structure determination. Here we developed a new energy term in Xplor-NIH against the density map obtained by EM. We conjointly used NMR and map restraints for the structure refinement of three RNA systems — U2/U6 small-nuclear RNA, genome-packing motif (ΨCD)2 from Moloney murine leukemia virus, and ribosome-binding element from turnip crinkle virus. In all three systems, we showed that the incorporation of a map restraint, either experimental or generated from known PDB structure, greatly improves structural precision and accuracy. Importantly, our method does not rely on an initial model assembled from RNA duplexes, and allows full torsional freedom for each nucleotide in the torsion angle simulated annealing refinement. As increasing number of macromolecules can be characterized by both NMR and EM, the marriage between the two techniques would enable better characterization of RNA three-dimensional structures.  相似文献   

20.
Three-dimensional structure determination of macromolecules and macromolecular complexes is an integral part of understanding biological functions. For large protein and macromolecular complexes structure determination is often performed using electron cryomicroscopy where projection images of individual macromolecular complexes are combined to produce a three-dimensional reconstruction. Single particle methods have been devised to perform this structure determination for macromolecular complexes with little or no underlying symmetry. These computational methods generally involve an iterative process of aligning unique views of the macromolecular images followed by determination of the angular components that define those views. In this review, this structure determination process is described with the aim of clarifying a seemingly complex structural method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号