首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Constitutive heterochromatin represents a substantial portion of the eukaryote genome, and it is mainly composed of tandemly repeated DNA sequences, such as satellite DNAs, which are also enriched by other dispersed repeated elements, including transposons. Studies on the organization, structure, composition and in situ localization of satellite DNAs have led to consistent advances in the understanding of the genome evolution of species, with a particular focus on heterochromatic domains, the diversification of heteromorphic sex chromosomes and the origin and maintenance of B chromosomes. Satellite DNAs can be chromosome specific or species specific, or they can characterize different species from a genus, family or even representatives of a given order. In some cases, the presence of these repeated elements in members of a single clade has enabled inferences of a phylogenetic nature. Genomic DNA restriction, using specific enzymes, is the most frequently used method for isolating satellite DNAs. Recent methods such as C0t1 DNA and chromosome microdissection, however, have proven to be efficient alternatives for the study of this class of DNA. Neotropical ichthyofauna is extremely rich and diverse enabling multiple approaches with regard to the differentiation and evolution of the genome. Genome components of some species and genera have been isolated, mapped and correlated with possible functions and structures of the chromosomes. The 5SHindIII‐DNA satellite DNA, which is specific to Hoplias malabaricus of the Erythrinidae family, has an exclusively centromeric location. The As51 satellite DNA, which is closely correlated with the genome diversification of some species from the genus Astyanax, has also been used to infer relationships between species. In the Prochilodontidae family, two repetitive DNA sequences were mapped on the chromosomes, and the SATH 1 satellite DNA is associated with the origin of heterochromatic B chromosomes in Prochilodus lineatus. Among species of the genus Characidium and the Parodontidae family, amplifications of satellite DNAs have demonstrated that these sequences are related to the differentiation of heteromorphic sex chromosomes. The possible elimination of satellite DNA units could explain the genome compaction that occurs among some species of Neotropical Tetraodontiformes. These topics are discussed in the present review, showing the importance of satellite DNA analysis in the differentiation and karyotype evolution of Actinopterygii.  相似文献   

2.
Several lines of evidence suggest that, within a lineage, particular genomic regions are subject to instability that can lead to specific types of chromosome rearrangements important in species incompatibility. Within family Macropodidae (kangaroos, wallabies, bettongs, and potoroos), which exhibit recent and extensive karyotypic evolution, rearrangements involve chiefly the centromere. We propose that centromeres are the primary target for destabilization in cases of genomic instability, such as interspecific hybridization, and participate in the formation of novel chromosome rearrangements. Here we use standard cytological staining, cross-species chromosome painting, DNA probe analyses, and scanning electron microscopy to examine four interspecific macropodid hybrids (Macropus rufogriseus x Macropus agilis). The parental complements share the same centric fusions relative to the presumed macropodid ancestral karyotype, but can be differentiated on the basis of heterochromatic content, M. rufogriseus having larger centromeres with large C-banding positive regions. All hybrids exhibited the same pattern of chromosomal instability and remodeling specifically within the centromeres derived from the maternal (M. rufogriseus) complement. This instability included amplification of a satellite repeat and a transposable element, changes in chromatin structure, and de novo whole-arm rearrangements. We discuss possible reasons and mechanisms for the centromeric instability and remodeling observed in all four macropodid hybrids.  相似文献   

3.
Repetitive DNA variation and pivotal-differential evolution of wild wheats.   总被引:1,自引:0,他引:1  
Several polyploid species in the genus Triticum contain a U genome derived from the diploid T. umbellulatum. In these species, the U genome is considered to be unmodified from the diploid based on chromosome pairing analysis, and it is referred to as pivotal. The additional genome(s) are considered to be modified, and they are thus referred to as differential genomes. The M genome derived from the diploid T. comosum is found in many U genome polyploids. In this study, we cloned three repetitive DNA sequences found primarily in the U genome and two repetitive DNA sequences found primarily in the M genome. We used these to monitor variation for these sequences in a large set of species containing U and M genomes. Investigation of sympatric and allopatric accessions of polyploid species did not show repetitive DNA similarities among sympatric species. This result does not support the idea that the polyploid species are continually exchanging genetic information through introgression. However, it is also possible that repetitive DNA is not a suitable means of addressing the question of introgression. The U genomes of both diploid and polyploid U genome species were similar regarding hybridization patterns observed with U genome probes. Much more variation was found both among diploid T. comosum accessions and polyploids containing M genomes. The observed variation supports the cytogenetic evidence that the M genome is more variable than the U genome. It also raises the possibility that the differential nature of the M genome may be due to variation within the diploid T. comosum, as well as among polyploid M genome species and accessions.  相似文献   

4.
The TaiI family sequences are classified as tandem repetitive DNA sequences present in the genome of tribe Triticeae, and are localized in the centromeric regions of common wheat, but in the subtelomeric heterochromatic regions of Leymus racemosus and related species. In this study, we investigated the chromosomal distribution of TaiI family sequences in other Triticeae species. The results demonstrated a centromeric localization in genera Triticum and Aegilops and subtelomeric localization in other genera, thus showing a genus-dependent localization of TaiI family sequences in one or the other region. The copy numbers of TaiI family sequences in species in the same genus varied greatly, whether in the centromeric or subtelomeric regions (depending on genus). We also examined the evolution of TaiI family sequences during polyploidization of hexaploid common wheat. A comparison of chromosomal locations of the major TaiI family signals in common wheat and in its ancestral species suggested that the centromeric TaiI family sequences in common wheat were inherited from its ancestors with little modification, whereas a mixed origin for the B genome of common wheat was indicated.  相似文献   

5.
In recent work we have isolated and characterized a highly repetitive DNA (MMV satellite IA) from Muntiacus muntjak vaginalis, the species with the most reduced karyotype in the Cervidae family. We have now analysed the genomes of nine related species for the presence of MMV satellite IA components, and have determined their organization and chromosomal distribution. Repetitive satellite IA type DNA is present in all species of the Cervidae, and also in the bovine, but not in a species of the Tragulidae suggesting that these sequences were generated after the phylogenetic separation of Bovidae and Tragulidae. Studies on the organization of the satellite IA DNA in the various species revealed three main repeat lengths: 1400, 1000 and 807 bp. The relative proportion of satellite IA sequences present in any one of the three registers is strikingly different within the various species and can be correlated with the phylogeny of the Cervidae. The chromosomal locations of the satellite IA sequences were determined in seven species by in situ hybridization. It turned out that the chromosomal rearrangements leading to the reduction in the number of chromosomes during karyotype evolution have led to the elimination of satellite I DNA at most locations. In all tandem fusions, the satellite IA sequences located at the centromeres of the ancestral acrocentric chromosomes are lost. In contrast, during the centric fusion that generates the M. m. vaginalis X chromosome satellite IA sequences are amplified. Sequence motifs, which are known to be involved in recombinational events are present in the satellite IA and might have contributed to the unique karyotype variation in the Cervidae.  相似文献   

6.
Rumex papillaris Boiss, & Reut., an Iberian endemic, belongs to the section Acetosa of the genus Rumex whose main representative is R. acetosa L., a species intensively studied in relation to sex-chromosome evolution. Here, we characterize cytogenetically the chromosomal complement of R. papillaris in an effort to enhance future comparative genomic approaches and to better our understanding of sex chromosome structure in plants. Rumex papillaris, as is common in this group, is a dioecious species characterized by the presence of a multiple sex chromosome system (with females 2n = 12 + XX and males 2n = 12 + XY1Y2). Except for the X chromosome both Y chromosomes are the longest in the karyotype and appear heterochromatic due to the accumulation of at least two satellite DNA families, RAE180 and RAYSI. Each chromosome of pair VI has an additional major heterochromatin block at the distal region of the short arm. These supernumerary heterochromatic blocks are occupied by RAE730 satellite DNA family. The Y-related RAE180 family is also present in an additional minor autosomal locus. Our comparative study of the chromosomal organization of the different satellite-DNA sequences in XX/XY and XX/XY1Y2 Rumex species demonstrates that of active mechanisms of heterochromatin amplification occurred and were accompanied by chromosomal rearrangements giving rise to the multiple XX/XY1Y2 chromosome systems observed in Rumex. Additionally, Y1 and Y2 chromosomes have undergone further rearrangements leading to differential patterns of Y-heterochromatin distribution between Rumex species with multiple sex chromosome systems.  相似文献   

7.
Most mammalian chromosomes have satellite DNA sequences located at or near the centromeres, organized in arrays of variable size and higher order structure. The implications of these specific repetitive DNA sequences and their organization for centromere function are still quite cloudy. In contrast to most mammalian species, the domestic cat seems to have the major satellite DNA family (FA-SAT) localized primarily at the telomeres and secondarily at the centromeres of the chromosomes. In the present work, we analyzed chromosome preparations from a fibrosarcoma, in comparison with nontumor cells (epithelial tissue) from the same individual, by in situ hybridization of the FA-SAT cat satellite DNA family. This repetitive sequence was found to be amplified in the cat tumor chromosomes analyzed. The amplification of these satellite DNA sequences in the cat chromosomes with variable number and appearance (marker chromosomes) is discussed and might be related to mitotic instability, which could explain the exhibition of complex patterns of chromosome aberrations detected in the fibrosarcoma analyzed.  相似文献   

8.
Constitutive heterochromatin makes up a substantial portion of the genome of eukaryotes and is composed mainly of satellite DNA repeating sequences in tandem. Some satellite DNAs may have been derived from transposable elements. These repetitive sequences represent a highly dynamic component of rapid evolution in genomes. Among the genus Astyanax , the As51 satellite DNA is found in species that have large distal heterochromatic blocks, which may be considered as derived from a transposable DNA element. In the present study, As51 satellite DNA was mapped through in situ fluorescent hybridization in the chromosomes of five species of the genus. The possible roles of this type of saltatory DNA type in the genome of the species are discussed, along with its use for the phylogenetic grouping of the genus Astyanax , together with other shared chromosomal characters. However, the number of As51 clusters is presented as a homoplastic characteristic, thereby indicating evident genomic diversification of species with this type of DNA.  相似文献   

9.
A single female of Locusta migratoria was found to be heterozygous for a supernumerary heterochromatic segment distally located on the M6 autosome close to its nucleolus organiser region (NOR). Reactions to several chromosome banding techniques revealed its heterochromatic nature and its composition of GC-rich DNA sequences and likewise the NORs in this species. This suggests an origin for the extra segment by amplification of GC-rich DNA sequences contained in the distal NOR of the M6 chromosome, which is reinforced by the observation that the NOR of segmented M6 chromosomes produced the larger nucleolus in embryo prophase cells, such as would be expected from the presence of rRNA genes in the extra segment. No accumulation mechanism was detected in this female after analyzing the 213 embryo offspring produced, but an increase in the number of nucleoli per interphase nucleus was noted in heterozygous embryos in respect to standard homozygous ones.  相似文献   

10.
We molecularly cloned new families of site-specific repetitive DNA sequences from BglII- and EcoRI-digested genomic DNA of the Syrian hamster (Mesocricetus auratus, Cricetrinae, Rodentia) and characterized them by chromosome in situ hybridization and filter hybridization. They were classified into six different types of repetitive DNA sequence families according to chromosomal distribution and genome organization. The hybridization patterns of the sequences were consistent with the distribution of C-positive bands and/or Hoechst-stained heterochromatin. The centromeric major satellite DNA and sex chromosome-specific and telomeric region-specific repetitive sequences were conserved in the same genus (Mesocricetus) but divergent in different genera. The chromosome-2-specific sequence was conserved in two genera, Mesocricetus and Cricetulus, and a low copy number of repetitive sequences on the heterochromatic chromosome arms were conserved in the subfamily Cricetinae but not in the subfamily Calomyscinae. By contrast, the other type of repetitive sequences on the heterochromatic chromosome arms, which had sequence similarities to a LINE sequence of rodents, was conserved through the three subfamilies, Cricetinae, Calomyscinae and Murinae. The nucleotide divergence of the repetitive sequences of heterochromatin was well correlated with the phylogenetic relationships of the Cricetinae species, and each sequence has been independently amplified and diverged in the same genome.  相似文献   

11.
Satellite DNA profiles have been characterized in the congeneric species Palorus ratzeburgii, Palorus subdepressus, Palorus genalis, and Palorus ficicola (Coleoptera, Insecta), each of which contains a single, A + T-rich satellite DNA comprising a considerable portion of the genome (20%-40%). These satellites exhibit insignificant mutual sequence similarity. Using PCR assay, it has been shown that all four sequences are present in each of the tested Palorus species: one of them is amplified into a high copy number or a major satellite, while the three others are in the form of low-copy-number repeats estimated to make up approximately 0.05% of the genome. Each of the four satellites is interspecifically high conserved concerning the sequence, monomer length, and tandem repeat organization. Major, as well as low- copy-number, satellites are colocalized in the regions of pericentromeric heterochromatin on all chromosomes of the complement. The low-copy-number satellites are dispersed between the large arrays of the major satellite over the whole heterochromatic block. Our results explain satellite DNA evolution, confirming the hypothesis that related species share a "library" of conserved satellite sequences, some of which could be amplified into a major satellite. Due to the evolutionary dynamics of satellite DNAs, the content of the "library" is variable; the elimination of some sequences parallels the creation of the new ones. Quantitative changes in satellite DNAs, induced by occasional amplification of satellite repeat from the "library", could possibly occur in the course of the speciation process, thus forming a species-specific profile of satellite DNAs.   相似文献   

12.
A (G + C)-rich satellite DNA component (p = 1.716 g/ml) has been fractionated from the total DNA of the Iranian subspecies of the Asiatic wild ass, Equus hemionus onager, by successive dactinomycin-CsCl and netropsin sulfate-CsCl isopycnic gradients. Complementary 3H-RNA (cRNA) transcribed from the satellite DNA hybridized predominantly to the centromeric and telomeric constitutive heterochromatic regions of onager chromosomes. These studies have suggested that satellite DNA's with similar sequences are present in the centromeric, as well as telomeric, heterochromatic regions of some onager chromosomes. The centromeric region of the fusion metacentric t(23;24) of the onager is deficient in sequences homologous to the onager 1.716 g/ml satellite DNA, indicating a loss of satellite DNA during fusion or an amplification of the satellite DNA in the centromeric regions of the acrocentric chromosomes 23 and 24 subsequent to fission. Sequences complementary to onager 1.716 g/ml satellite DNA show extensive hybridization to the constitutive heterochromatin of the feral donkey (E. asinus) karyotype, consistent with a view of conservation and amplification of similar or identical sequences in the two species.  相似文献   

13.
He-T DNA is a complex set of repeated DNA sequences with sharply defined locations in the polytene chromosomes of Drosophila melanogaster. He-T sequences are found only in the chromocenter and in the terminal (telomere) band on each chromosome arm. Both of these regions appear to be heterochromatic and He-T sequences are never detected in the euchromatic arms of the chromosomes (Young et al. 1983). In the study reported here, in situ hybridization to metaphase chromosomes was used to study the association of He-T DNA with heterochromatic regions that are under-replicated in polytene chromosomes. Although the metaphase Y chromosome appears to be uniformly heterochromatic, He-T DNA hybridization is concentrated in the pericentric region of both normal and deleted Y chromosomes. He-T DNA hybridization is also concentrated in the pericentric regions of the autosomes. Much lower levels of He-T sequences were found in pericentric regions of normal X chromosomes; however compound X chromosomes, constructed by exchanges involving Y chromosomes, had large amounts of He-T DNA, presumably residual Y sequences. The apparent co-localization of He-T sequences with satellite DNAs in pericentric heterochromatin of metaphase chromosomes contrasts with the segregation of satellite DNA to alpha heterochromatin while He-T sequences hybridize to beta heterochromatin in polytene nuclei. This comparison suggests that satellite sequences do not exist as a single block within each chromosome but have interspersed regions of other sequences, including He-T DNA. If this is so, we assume that the satellite DNA blocks must associate during polytenization, leaving the interspersed sequences looped out to form beta heterochromatin. DNA from D. melanogaster has many restriction fragments with homology to He-T sequences. Some of these fragments are found only on the Y. Two of the repeated He-T family restriction fragments are found entirely on the short arm of the Y, predominantly in the pericentric region. Under conditions of moderate stringency, a subset of He-T DNA sequences cross-hybridizes with DNA from D. simulans and D. miranda. In each species, a large fraction of the cross-hybridizing sequences is on the Y chromosome.  相似文献   

14.
Three families of tandemly repetitive DNA from Crepis capillaris were cloned and characterized. Data obtained from in situ hybridization indicate that these families are located mainly in the heterochromatic C-bands. The pCcH32 family hybridizes at the paracentromeric C-band of the NOR (nucleolus-organized region) chromosome and along most of the long arm of the same chromosome. The pCcD29 family is located in all the remaining C-bands of the karyotype, while the third family, pCcE9, is restricted to the more proximal C-bands. Nucleotide sequence comparisons between one cloned repeating unit from each DNA family showed some significant regions of homology between the families. We discuss the sequence relationships between the three DNA families and the significance of our data in relation to models of heterochromatin evolution, emphasizing the concepts of equilocality and the differentiation of the NOR-bearing chromosome. We also examine the possible role that chromosome disposition, in either mitotic or meiotic nuclei, plays in the distribution and homogenization of heterochromatic DNA sequences.  相似文献   

15.
We previously reported the cloning and detailed analysis of the integrated hepatitis B virus sequences in a human hepatoma cell line. We report here the integration of at least one of hepatitis B virus at human satellite DNA sequences. The majority of the cellular sequences identified by this satellite DNA were organized as a multimeric composition of a 0.6-kilobase EcoRI fragment. This clone hybridized in situ almost exclusively to the centromeric heterochromatin of chromosomes 1 and 16 and to a lower extent to chromosome 2 and to the heterochromatic region of the Y chromosome. The immediate flanking host sequence appeared as a hierarchy of repeating units which were almost identical to a previously reported human satellite III DNA sequence.  相似文献   

16.
The karyotype of the spiny eel (Mastacembelus aculeatus) has highly evolved heteromorphic sex chromosomes. X and Y chromosomes differ from each other in the distribution of heterochromatin blocks. To characterize the repetitive sequences in these heterochromatic regions, we microdissected the X chromosome, constructed an X chromosome library, amplified the genomic DNA using PCR and isolated a repetitive sequence DNA family by screening the library. All family members were clusters of two simple repetitive monomers, MaSRS1 and MaSRS2. We detected a conserved 5S rDNA gene sequence within monomer MaSRS2; thus, tandem-arranged MaSRS1s and MaSRS2s may co-compose 5S rDNA multigenes and NTSs in M. aculeatus. FISH analysis revealed that MaSRS1 and MaSRS2were the main components of the heterochromatic regions of the X and Y chromosomes. This finding contributes additional data about differentiation of heteromorphic sex chromosomes in lower vertebrates.  相似文献   

17.
In tumor cells in vivo and in vitro the amplification of large DNA sequences is a spontaneous and frequently occurring genetic event. We have used human cells to study independent events leading to a low level of amplification of a single copy of an integrated plasmid. Fluorescence in situ hybridization, chromosome banding, and chromosome painting revealed that the new amplified DNA sequences can become located on chromosomes that are totally unrelated to the chromosome that harbors the original DNA sequences, indicating that the transposition of amplified DNA sequences is interchromosomal. In cells containing amplified DNA sequences the integrated single-copy plasmid remained at its original location. The unit of amplification contained a DNA fragment of at least a 800 kb and the same fragment was also present in the parental single-copy cell clone. The data suggest that a doubling of the DNA region at the original location precedes or is coupled to gene amplification.  相似文献   

18.
Summary We report cytogenetic and molecular studies on a family that carries, in the father, an unusually large chromosome 14p+ variant [WSi-var(14)(p+)] and, in one of his children, a translocation [DSi-der(14)] involving the variant chromosome. Increase in the size of WSi-var(14)(p+) was estimated to be approximately 35% that of a normal chromosome 14. Presence of extra chromosomal material in this variant chromosome was demonstrated by G-banding using trypsin and staining with Leishman, G-banding using bromodeoxyuridine (BrdU) and Giemsa, and R-banding using BrdU and Giemsa. This material was positive using C-banding with BaOH and staining with Giemsa and negative in DAPI/distamycin staining, suggesting that it contained repetitive DNA but probably not of the types found in the heterochromatic regions of chromosomes 1, 9, 15, 16, and Y. Staining of the nucleolus organiser region (NOR) with AgNO3 indicated the retention of the NOR in WSi-var(14)(p+) but not in DSi-der(14). In situ hybridisation of metaphase cells with an alpha satellite DNA probe specific for human acrocentric chromosomes demonstrated a significantly increased amount of centromeric alpha sequences in WSi-var(14)(p+). Most or all of the extra alpha sequences were retained in DSi-der(14), indicating translocation near the very distal end of the enlarged region. The extra alpha satellite DNA material may have originated through amplification of some centromeric segments. The possible role of the amplified DNA in chromosomal translocations is discussed.  相似文献   

19.
Koga A  Hirai Y  Hara T  Hirai H 《Heredity》2012,109(3):180-187
Chromosomes of the siamang Symphalangus syndactylus (a small ape) carry large-scale heterochromatic structures at their ends. These structures look similar, by chromosome C-banding, to chromosome-end heterochromatin found in chimpanzee, bonobo and gorilla (African great apes), of which a major component is tandem repeats of 32-bp-long, AT-rich units. In the present study, we identified repetitive sequences that are a major component of the siamang heterochromatin. Their repeat units are 171 bp in length, and exhibit sequence similarity to alpha satellite DNA, a major component of the centromeres in primates. Thus, the large-scale heterochromatic structures have different origins between the great apes and the small ape. The presence of alpha satellite DNA in the telomere region has previously been reported in the white-cheeked gibbon Nomascus leucogenys, another small ape species. There is, however, a difference in the size of the telomere-region alpha satellite DNA, which is far larger in the siamang. It is not known whether the sequences of these two species (of different genera) have a common origin because the phylogenetic relationship of genera within the small ape family is still not clear. Possible evolutionary scenarios are discussed.  相似文献   

20.
The constitution of the centromeric portions of the sex chromosomes of the red-necked wallaby, Macropus rufogriseus (family Macropodidae, subfamily Macropodinae), was investigated to develop an overview of the sequence composition of centromeres in a marsupial genome that harbors large amounts of centric and pericentric heterochromatin. The large, C-band-positive centromeric region of the X chromosome was microdissected and the isolated DNA was microcloned. Further sequence and cytogenetic analyses of three representative clones show that all chromosomes in this species carry a 178-bp satellite sequence containing a CENP-B DNA binding domain (CENP-B box) shown herein to selectively bind marsupial CENP-B protein. Two other repeats isolated in this study localize specifically to the sex chromosomes yet differ in copy number and intrachromosomal distribution. Immunocytohistochemistry assays with anti-CENP-E, anti-CREST, anti-CENP-B, and anti-trimethyl-H3K9 antibodies defined a restricted point localization of the outer kinetochore at the functional centromere within an enlarged pericentric and heterochromatic region. The distribution of these repeated sequences within the karyotype of this species, coupled with the apparent high copy number of these sequences, indicates a capacity for retention of large amounts of centromere-associated DNA in the genome of M. rufogriseus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号