首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EnvZ, a dimeric transmembrane histidine kinase, belongs to the family of His-Asp phosphorelay signal transduction systems. The cytoplasmic kinase domain of EnvZ can be dissected into two independently functioning domains, A and B, whose NMR solution structures have been individually determined. Here, we examined the topological arrangement of these two domains in the EnvZ dimer, a structure that is key to understanding the mechanism underlying the autophosphorylation activity of the kinase. A series of cysteine substitution mutants were constructed to test the feasibility of chemical crosslinking between the two domains. These crosslinking data demonstrate that helix I of domain A of one subunit in the EnvZc dimer is in close proximity to domain B of the other subunit in the same dimer, while helix II of domain A of one subunit interacts with domain B of the same subunit in the EnvZc dimer. This is the first demonstration of the topological arrangement between the central dimerization domain containing the active center His residues (domain A) and the ATP-binding catalysis assisting domain (domain B) in a class I histidine kinase.  相似文献   

2.
The binding of EGF induces dimerization of its receptor, leading to the stimulation of its intracellular tyrosine kinase activity. Kinase activation occurs within the context of an asymmetric dimer in which one kinase domain serves as the activator for the other kinase domain but is not itself activated. How ligand binding is related to the formation and dynamics of this asymmetric dimer is not known. The binding of EGF to its receptor is negatively cooperative--that is, EGF binds with lower affinity to the second site on the dimer than to the first site on the dimer. In this study, we analyzed the binding of (125)I-EGF to a series of EGF receptor mutants in the intracellular juxtamembrane domain and demonstrate that the most membrane-proximal portion of this region plays a significant role in the genesis of negative cooperativity in the EGF receptor. The data are consistent with a model in which the binding of EGF to the first site on the dimer induces the formation of one asymmetric kinase dimer. The binding of EGF to the second site is required to disrupt the initial asymmetric dimer and allow the formation of the reciprocal asymmetric dimer. Thus, some of the energy of binding to the second site is used to reorient the first asymmetric dimer, leading to a lower binding affinity and the observed negative cooperativity.  相似文献   

3.
Zhang X  Gureasko J  Shen K  Cole PA  Kuriyan J 《Cell》2006,125(6):1137-1149
The mechanism by which the epidermal growth factor receptor (EGFR) is activated upon dimerization has eluded definition. We find that the EGFR kinase domain can be activated by increasing its local concentration or by mutating a leucine (L834R) in the activation loop, the phosphorylation of which is not required for activation. This suggests that the kinase domain is intrinsically autoinhibited, and an intermolecular interaction promotes its activation. Using further mutational analysis and crystallography we demonstrate that the autoinhibited conformation of the EGFR kinase domain resembles that of Src and cyclin-dependent kinases (CDKs). EGFR activation results from the formation of an asymmetric dimer in which the C-terminal lobe of one kinase domain plays a role analogous to that of cyclin in activated CDK/cyclin complexes. The CDK/cyclin-like complex formed by two kinase domains thus explains the activation of EGFR-family receptors by homo- or heterodimerization.  相似文献   

4.
The protein kinase Chk2 (checkpoint kinase 2) is a major effector of the replication checkpoint. Chk2 activation is initiated by phosphorylation of Thr68, in the serine-glutamine/threonine-glutamine cluster domain (SCD), by ATM. The phosphorylated SCD-segment binds to the FHA domain of a second Chk2 molecule, promoting dimerisation of the protein and triggering phosphorylation of the activation segment/T-loop in the kinase domain. We have now determined the structure of the kinase domain of human Chk2 in complexes with ADP and a small-molecule inhibitor debromohymenialdisine. The structure reveals a remarkable dimeric arrangement in which T-loops are exchanged between protomers, to form an active kinase conformation in trans. Biochemical data suggest that this dimer is the biologically active state promoted by ATM-phosphorylation, and also suggests a mechanism for dimerisation-driven activation of Chk2 by trans-phosphorylation.  相似文献   

5.
In cytosolic Src-type tyrosine kinases the Src-type homology 3 (SH3) domain binds to an internal proline-rich motif and the presence or the absence of this interaction modulates the kinase enzymatic activity. The Src-type kinase Lck plays an important role during T-cell activation and development, since it phosphorylates the T-cell antigen receptor in an early step of the activation pathway. We have determined the crystal structure of the SH3 domain from Lck kinase at a near-atomic resolution of 1.0 A. Unexpectedly, the Lck-SH3 domain forms a symmetrical homodimer in the crystal and the dimer comprises two identical zinc-binding sites in the interface. The atomic interactions formed across the dimer interface resemble strikingly those observed between SH3 domains and their canonical proline-rich ligands, since almost identical residues participate in both contacts. Ultracentrifugation experiments confirm that in the presence of zinc ions, the Lck-SH3 domain also forms dimers in solution. The Zn(2+) dissociation constant from the Lck-SH3 dimer is estimated to be lower than 100 nM. Moreover, upon addition of a proline-rich peptide with a sequence corresponding to the recognition segment of the herpesviral regulatory protein Tip, competition between zinc-induced homodimerization and binding of the peptide can be detected by both fluorescence spectroscopy and analytical ultracentrifugation. These results suggest that in vivo, too, competition between Lck-SH3 homodimerization and binding of regulatory proline-rich sequence motifs possibly represents a novel mechanism by which kinase activity is modulated. Because the residues that form the zinc-binding site are highly conserved among Lck orthologues but not in other Src-type kinases, the mechanism might be peculiar to Lck and to its role in the initial steps of T-cell activation.  相似文献   

6.
CAKbeta (cell adhesion kinase beta)/PYK2 (proline-rich tyrosine kinase 2) is the second protein-tyrosine kinase of the FAK (focal adhesion kinase) subfamily. It is different from FAK in that it is activated following an increase in cytoplasmic free Ca2+. In the present study we have investigated how Ca2+ activates CAKbeta/PYK2. Calmodulin-agarose bound CAKbeta/PYK2, but not FAK, in the presence of CaCl2. An alpha-helix (F2-alpha2) present in the FERM (band four-point-one, ezrin, radixin, moesin homology) F2 subdomain of CAKbeta/PYK2 was the binding site of Ca2+/calmodulin; a mutant of this region, L176A/Q177A (LQ/AA) CAKbeta/PYK2, bound to Ca2+/calmodulin much less than the wild-type. CAKbeta/PYK2 is known to be prominently tyrosine phosphorylated when overexpressed from cDNA. The enhanced tyrosine phosphorylation was inhibited by W7, an inhibitor of calmodulin, and by a cell-permeable Ca2+ chelator and was almost defective in the LQ/AA-mutant CAKbeta/PYK2. CAKbeta/PYK2 formed a homodimer on binding of Ca2+/calmodulin, which might then induce a conformational change of the kinase, resulting in transphosphorylation within the dimer. The dimer was formed at a free-Ca2+ concentration of 8-12 muM and was stable at 500 nM Ca2+, but dissociated to a monomer in a Ca2+-free buffer. The dimer formation of CAKbeta/PYK2 FERM domain was partially defective in the LQ/AA-mutant FERM domain and was blocked by W7 and by a synthetic peptide with amino acids 168-188 of CAKbeta/PYK2, but not by a peptide with its LQ/AA-mutant sequence. It is known that the F2-alpha2 helix is found immediately adjacent to a hydrophobic pocket in the FERM F2 lobe, which locks, in the autoinhibited FAK, the C-lobe of the kinase domain. Our results indicate that Ca2+/calmodulin binding to the FERM F2-alpha2 helix of CAKbeta/PYK2 releases its kinase domain from autoinhibition by forming a dimer.  相似文献   

7.
Tyrosine kinase activity of the epidermal growth factor (EGF) receptor can be regulated by its state of association. Studies done with the purified receptor solubilized in Triton X-100 indicate that dimer formation results in negative regulation of kinase, whereas successive binding of EGF and ATP shift the association equilibrium toward the catalytically active monomeric form. The promotion of the monomeric state by ATP can be mimicked by various nonphosphorylating analogs indicating that nucleotide binding rather than autophosphorylation is responsible for stabilizing the monomeric receptor form. Truncated receptor forms, lacking either the external EGF-binding domain or the internal kinase (ATP-binding) domain, are unable to form stable dimers. These results suggest that both intra- and extracellular domains of the receptor act to stabilize the kinase-regulatory dimer.  相似文献   

8.
The open reading frame rv1364c of Mycobacterium tuberculosis, which regulates the stress-dependent σ factor, σ(F), has been analyzed structurally and functionally. Rv1364c contains domains with sequence similarity to the RsbP/RsbW/RsbV regulatory system of the stress-response σ factor of Bacillus subtilis. Rv1364c contains, sequentially, a PAS domain (which shows sequence similarity to the PAS domain of the B. subtilis RsbP protein), an active phosphatase domain, a kinase (anti-σ(F) like) domain and?a C-terminal anti-σ(F) antagonist like domain. The crystal structures of two PAS domain constructs (at 2.3 and 1.6??) and a phosphatase/kinase dual domain construct (at 2.6??) are described. The PAS domain is shown to bind palmitic acid but to have 100 times greater affinity for palmitoleic acid. The full-length protein can exist in solution as both monomer and dimer. We speculate that a switch between monomer and dimer, possibly resulting from fatty acid binding,?affects the accessibility of the serine of the C-terminal, anti-σ(F) antagonist domain for dephosphorylation by the phosphatase domain thus indirectly altering the availability of σ(F).  相似文献   

9.
Dystrophia myotonica protein kinase (DMPK) is a serine/threonine kinase composed of a kinase domain and a coiled‐coil domain involved in the multimerization. The crystal structure of the kinase domain of DMPK bound to the inhibitor bisindolylmaleimide VIII (BIM‐8) revealed a dimeric enzyme associated by a conserved dimerization domain. The affinity of dimerisation suggested that the kinase domain alone is insufficient for dimerisation in vivo and that the coiled‐coil domains are required for stable dimer formation. The kinase domain is in an active conformation, with a fully‐ordered and correctly positioned αC helix, and catalytic residues in a conformation competent for catalysis. The conserved hydrophobic motif at the C‐terminal extension of the kinase domain is bound to the N‐terminal lobe of the kinase domain, despite being unphosphorylated. Differences in the arrangement of the C‐terminal extension compared to the closely related Rho‐associated kinases include an altered PXXP motif, a different conformation and binding arrangement for the turn motif, and a different location for the conserved NFD motif. The BIM‐8 inhibitor occupies the ATP site and has similar binding mode as observed in PDK1.  相似文献   

10.
Bacterial response regulators (RRs) can regulate the expression of genes that confer antibiotic resistance; they contain a receiver and an effector domain and their ability to bind DNA is based on the dimerization state. This is triggered by phosphorylation of the receiver domain by a kinase. However, even in the absence of phosphorylation RRs can exist in equilibrium between monomers and dimers with phosphorylation shifting the equilibrium toward the dimer form. We have determined the crystal structure of the unphosphorylated dimeric BaeR from Escherichia coli. The dimer interface is formed by a domain swap at the receiver domain. In comparison with the unphosphorylated dimeric PhoP from Mycobacterium tuberculosis, BaeR displays an asymmetry of the effector domains.  相似文献   

11.
Her4 is a transmembrane receptor tyrosine kinase belonging to the ErbB-EGFR family. It plays a vital role in the cardiovascular and nervous systems, and mutations in Her4 have been found in melanoma and lung cancer. The kinase domain of Her4 forms a dimer complex, called the asymmetric dimer, which results in kinase activation. Although a crystal structure of the Her4 asymmetric dimer is known, the dimer affinity and the effect of the subsequent phosphorylation steps on kinase domain conformation are unknown. We report here the use of carboxyl-group footprinting MS on a recombinant expressed, Her4 kinase-domain construct to address these questions. Carboxyl-group footprinting uses a water-soluble carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, in the presence of glycine ethyl ester, to modify accessible carboxyl groups on glutamate and aspartate residues. Comparisons of Her4 kinase-domain monomers versus dimers and of unphosphorylated versus phosphorylated dimers were made to map the dimerization interface and to determine phosphorylation induced-conformational changes. We detected 37 glutamate and aspartate residues that were modified, and we quantified their extents of modification by liquid chromatography MS. Five residues showed changes in carboxyl-group modification. Three of these residues are at the predicted dimer interface, as shown by the crystal structure, and the remaining two residues are on loops that likely have altered conformation in the kinase dimer. Incubating the Her4 kinase dimers with ATP resulted in dramatic increase in Tyr-850 phosphorylation, located on the activation loop, and this resulted in a conformational change in this loop, as evidenced by reduction in carboxyl-group modification. The kinase monomer-dimer equilibrium was measured using a titration format in which the extent of carboxyl-group footprinting was mathematically modeled to give the dimer association constant (1.5-6.8 × 10(12) dm(2)/mol). This suggests that the kinase-domain makes a significant contribution to the overall dimerization affinity of the full-length Her4 protein.  相似文献   

12.
RamC is required for the formation of spore-forming cells called aerial hyphae by the bacterium Streptomyces coelicolor. This protein is membrane associated and has an amino-terminal protein kinase-like domain, but little is known about its mechanism of action. In this study we found that the presence of multiple copies of a defective allele of ramC inhibits morphogenesis in S. coelicolor, consistent with either titration of a target or formation of inactive RamC multimers. We identified a domain in RamC that is C terminal to the putative kinase domain and forms a dimer with a K(d) of approximately 0.1 micro M. These data suggest that RamC acts as a dimer in vivo.  相似文献   

13.
Programmed cell death 10 (PDCD10) is a novel adaptor protein involved in human cerebral cavernous malformation, a common vascular lesion mostly occurring in the central nervous system. By interacting with different signal proteins, PDCD10 could regulate various physiological processes in the cell. The crystal structure of human PDCD10 complexed with inositol-(1,3,4,5)-tetrakisphosphate has been determined at 2.3 Å resolution. The structure reveals an integrated dimer via a unique assembly that has never been observed before. Each PDCD10 monomer contains two independent domains: an N-terminal domain with a new fold involved in the tight dimer assembly and a C-terminal four-helix bundle domain that closely resembles the focal adhesion targeting domain of focal adhesion kinase. An eight-residue flexible linker connects the two domains, potentially conferring mobility onto the C-terminal domain, resulting in the conformational variability of PDCD10. A variable basic cleft on the top of the dimer interface binds to phosphatidylinositide and regulates the intracellular localization of PDCD10. Two potential sites, respectively located on the two domains, are critical for recruiting different binding partners, such as germinal center kinase III proteins and the focal adhesion protein paxillin.  相似文献   

14.
OSR1 (oxidative stress-responsive-1) and SPAK (Ste20/Sps1-related proline/alanine-rich kinase) belong to the GCK-VI subfamily of Ste20 group kinases. OSR1 and SPAK are key regulators of NKCCs (Na+/K+/2Cl cotransporters) and activated by WNK family members (with-no-lysine kinase), mutations of which are known to cause Gordon syndrome, an autosomal dominant form of inherited hypertension. The crystal structure of OSR1 kinase domain has been solved at 2.25 Å. OSR1 forms a domain-swapped dimer in an inactive conformation, in which P+1 loop and αEF helix are swapped between dimer-related monomers. Structural alignment with nonswapped Ste20 TAO2 kinase indicates that the integrity of chemical interactions in the kinase domain is well preserved in the domain-swapped interfaces. The OSR1 kinase domain has now been added to a growing list of domain-swapped protein kinases recently reported, suggesting that the domain-swapping event provides an additional layer of complexity in regulating protein kinase activity.  相似文献   

15.
Protein tyrosine phosphatase 1B (PTP1B) is a highly specific negative regulator of insulin receptor signaling in vivo. The determinants of PTP1B specificity for the insulin receptor versus other receptor tyrosine kinases are largely unknown. Here, we report a crystal structure at 2.3 A resolution of the catalytic domain of PTP1B (trapping mutant) in complex with the phosphorylated tyrosine kinase domain of the insulin receptor (IRK). The crystallographic asymmetric unit contains two PTP1B-IRK complexes that interact through an IRK dimer interface. Rather than binding to a phosphotyrosine in the IRK activation loop, PTP1B binds instead to the opposite side of the kinase domain, with the phosphorylated activation loops sequestered within the IRK dimer. The crystal structure provides evidence for a noncatalytic mode of interaction between PTP1B and IRK, which could be important for the selective recruitment of PTP1B to the insulin receptor.  相似文献   

16.
KdpD/KdpE two‐component signaling system regulates expression of a high affinity potassium transporter responsible for potassium homeostasis. The C‐terminal module of KdpD consists of a GAF domain linked to a histidine kinase domain. Whereas certain GAF domains act as regulators by binding cyclic nucleotides, the role of the juxtamembrane GAF domain in KdpD is unknown. We report the high‐resolution crystal structure of KdpD GAF domain (KdpDG) consisting of five α‐helices, four β‐sheets and two large loops. KdpDG forms a symmetry‐related dimer, wherein parallelly arranged monomers contribute to a four‐helix bundle at the dimer‐interface, SAXS analysis of KdpD C‐terminal module reveals an elongated structure that is a dimer in solution. Substitution of conserved residues with various residues that disrupt the dimer interface produce a range of effects on gene expression demonstrating the importance of the interface in inactive to active transitions during signaling. Comparison of ligand binding site of the classic cyclic nucleotide‐binding GAF domains to KdpDG reveals structural differences arising from naturally occurring substitutions in primary sequence of KdpDG that modifies the canonical NKFDE sequence motif required for cyclic nucleotide binding. Together these results suggest a structural role for KdpDG in dimerization and transmission of signal to the kinase domain.  相似文献   

17.
Chk2/CHEK2/hCds1 is a modular serine-threonine kinase involved in transducing DNA damage signals. Phosphorylation by ataxia telangiectasia-mutated kinase (ATM) promotes Chk2 self-association, autophosphorylation, and activation. Here we use expressed protein ligation to generate a Chk2 N-terminal regulatory region encompassing a fork-head-associated (FHA) domain, a stoichiometrically phosphorylated Thr-68 motif and intervening linker. Hydrodynamic analysis reveals that Thr-68 phosphorylation stabilizes weak FHA-FHA interactions that occur in the unphosphorylated species to form a high affinity dimer. Although clearly a prerequisite for Chk2 activation in vivo, we show that dimerization modulates potential phosphodependent interactions with effector proteins and substrates through either the pThr-68 site, or the canonical FHA phosphobinding surface with which it is tightly associated. We further show that the dimer-occluded pThr-68 motif is released by intra-dimer autophosphorylation of the FHA domain at the highly conserved Ser-140 position, a major pThr contact in all FHA-phosphopeptide complex structures, revealing a mechanism of Chk2 dimer dissociation following kinase domain activation.  相似文献   

18.
Here we report the first crystal structure of the SH3 domain of the cellular Src tyrosine kinase (c-Src-SH3) domain on its own. In the crystal two molecules of c-Src-SH3 exchange their -RT loops generating an intertwined dimer, in which the two SH3 units, preserving the binding site configuration, are oriented to allow simultaneous binding of two ligand molecules. The dimerization of c-Src-SH3 is induced, both in the crystal and in solution, by the binding of a PEG molecule at the dimer interface, indicating that this type of conformations are energetically close to the native structure. These results have important implications respect to in vivo oligomerization and amyloid aggregation.  相似文献   

19.
The Src family kinases possess two sites of tyrosine phosphorylation that are critical to the regulation of kinase activity. Autophosphorylation on an activation loop tyrosine residue (Tyr 416 in commonly used chicken c-Src numbering) increases catalytic activity, while phosphorylation of a C-terminal tyrosine (Tyr 527 in c-Src) inhibits activity. The latter modification is achieved by the tyrosine kinase Csk (C-terminal Src Kinase), but the complete inactivation of the Src family kinases also requires the dephosphorylation of the activation loop tyrosine. The SH3 domain of Csk recruits the tyrosine phosphatase PEP, allowing for the coordinated inhibition of Src family kinase activity. We have discovered that Csk forms homodimers through interactions mediated by the SH3 domain in a manner that buries the recognition surface for SH3 ligands. The formation of this dimer would therefore block the recruitment of tyrosine phosphatases and may have important implications for the regulation of Src kinase activity.  相似文献   

20.
Although EGFR is a highly sought-after drug target, inhibitor resistance remains a challenge. As an alternative strategy for kinase inhibition, we sought to explore whether allosteric activation mechanisms could effectively be disrupted. The kinase domain of EGFR forms an atypical asymmetric dimer via head-to-tail interactions and serves as a requisite for kinase activation. The kinase dimer interface is primarily formed by the H-helix derived from one kinase monomer and the small lobe of the second monomer. We hypothesized that a peptide designed to resemble the binding surface of the H-helix may serve as an effective disruptor of EGFR dimerization and activation. A library of constrained peptides was designed to mimic the H-helix of the kinase domain and interface side chains were optimized using molecular modeling. Peptides were constrained using peptide “stapling” to structurally reinforce an alpha-helical conformation. Peptide stapling was demonstrated to notably enhance cell permeation of an H-helix derived peptide termed EHBI2. Using cell-based assays, EHBI2 was further shown to significantly reduce EGFR activity as measured by EGFR phosphorylation and phosphorylation of the downstream signaling substrate Akt. To our knowledge, this is the first H-helix-based compound targeting the asymmetric interface of the kinase domain that can successfully inhibit EGFR activation and signaling. This study presents a novel, alternative targeting site for allosteric inhibition of EGFR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号