首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-Octyloxycarbonyl-R110 (1), with enhanced cell penetration and retention properties, was prepared from rhodamine 110. The tetrapeptide substrate N-Ac-DEVD-N'-octyloxycarbonyl-R110 (3) was prepared and shown to be efficiently cleaved by human recombinant caspase-3 and by apoptotic HL-60 cells. This substrate should prove useful in cell-based assays for apoptosis inducers and inhibitors.  相似文献   

2.
MCF-7 human breast cancer cells are widely utilized to study apoptotic processes. Recent studies demonstrated that these cells lack procaspase-3. In the present study, caspase activation and activity were examined in this cell line after treatment with the microtubule poison paclitaxel. When cells were harvested 72 h after the start of a 24-h treatment with 100 nm paclitaxel, 37 +/- 5% of the cells were nonadherent and displayed apoptotic morphological changes. Although mitochondrial cytochrome c release and caspase-9 cleavage were detectable by immunoblotting, assays of cytosol and nuclei prepared from the apoptotic cells failed to demonstrate the presence of activity that cleaved the synthetic caspase substrates LEHD-7-amino-4-trifluoromethylcoumarin (LEHD-AFC), DEVD-AFC, and VEID-AFC. Likewise, the paclitaxel-treated MCF-7 cells failed to cleave a variety of caspase substrates, including lamin A, beta-catenin, gelsolin, protein kinase Cdelta, topoisomerase I, and procaspases-6, -8, and -10. Transfection of MCF-7 cells with wild type procaspase-3 partially restored cleavage of these polypeptides but did not result in detectable activities that could cleave the synthetic caspase substrates. Immunoblotting revealed that caspase-9, and -3, which were proteolytically cleaved in paclitaxel-treated MCF-7/caspase-3 cells, were sequestered in a salt-resistant sedimentable fraction rather than released to the cytosol. Immunofluorescence indicated large cytoplasmic aggregates containing cleaved caspase-3 in these apoptotic cells. These observations suggest that sequestration of caspases can occur in some model systems, causing tetrapeptide-based activity assays to underestimate the amount of caspase activation that has occurred in situ.  相似文献   

3.
Initiator caspases are the first caspases that are activated following an apoptotic stimulus, and are responsible for cleaving and activating downstream effector caspases, which directly cause apoptosis. We have cloned a cDNA encoding an ortholog of the initiator caspase Dronc in the lepidopteran insect Spodoptera frugiperda. The SfDronc cDNA encodes a predicted protein of 447 amino acids with a molecular weight of 51 kDa. Overexpression of SfDronc induced apoptosis in Sf9 cells, while partial silencing of SfDronc expression in Sf9 cells reduced apoptosis induced by baculovirus infection or by treatment with UV or actinomycin D. Recombinant SfDronc exhibited several expected biochemical characteristics of an apoptotic initiator caspase: 1) SfDronc efficiently cleaved synthetic initiator caspase substrates, but had very little activity against effector caspase substrates; 2) mutation of a predicted cleavage site at position D340 blocked autoprocessing of recombinant SfDronc and reduced enzyme activity by approximately 10-fold; 3) SfDronc cleaved the effector caspase Sf-caspase-1 at the expected cleavage site, resulting in Sf-caspase-1 activation; and 4) SfDronc was strongly inhibited by the baculovirus caspase inhibitor SpliP49, but not by the related protein AcP35. These results indicate that SfDronc is an initiator caspase involved in caspase-dependent apoptosis in S. frugiperda, and as such is likely to be responsible for the initiator caspase activity in S. frugiperda cells known as Sf-caspase-X.  相似文献   

4.
Caspase-3 and -7 represent executioner/effector caspases that directly cause apoptotic morphological changes by cleaving various death substrates. The substrates for caspases generally interact with active caspases, but not with inactive zymogens of caspase or procaspases. Here, to isolate proteins that interact with caspase-7, we established a yeast two-hybrid screening system using reversed-caspase-7, a constitutive active mutant of caspase-7 as a bait plasmid. Screening of an adult brain cDNA library led to isolation of proteasome activator 28 subunit, PA28gamma. In vitro translates of PA28gamma were cleaved by both recombinant caspase-3 and -7. Mutagenesis of potential cleavage site DGLD80 to EGLE80 completely abolished caspase-mediated cleavage. Moreover, endogenous PA28gamma was cleaved during not only Fas-induced apoptosis of HeLa cells, but also cisplatin-induced cell death of MCF7 cells, which are devoid of caspase-3. These findings indicate that PA28gamma is an endogenous substrate for caspase-3 and -7 and that yeast two-hybrid screening using reversed-caspase is a novel and useful approach to clone substrates for effector caspases.  相似文献   

5.
Martin MM  Jean F 《Biological chemistry》2006,387(8):1075-1080
The study of host and viral membrane-associated proteases has been hampered due to a lack of in vivo assays. We report here the development of a cell-based fluorescence assay for detecting hepatitis C virus (HCV) NS3/4A juxtamembrane protease activity. Intracellular membrane-anchored protein substrates were engineered comprising: (1) an endoplasmic reticulum targeting domain, the HCV NS5A N-terminal amphipathic alpha-helix; (2) a NS3/4A-specific cleavage site; and (3) a red fluorescent reporter group, DsRed. The results of our immunofluorescence and Western blotting studies demonstrate that our membrane-bound fluorescent probe was cleaved specifically and efficiently by NS3/4A expressed in human cells.  相似文献   

6.
Activated caspases play a central role in the execution of apoptosis by cleaving endogenous substrates. Here, we developed a high throughput screening method to identify novel substrates for caspase-3 in a neuronal cell line. Critical steps in our strategy consist of two-dimensional electrophoresis-based protein separation and in vitro caspase-3 incubation of immobilized proteins to sort out direct substrates. Among 46 putative substrates identified in MN9D neuronal cells, we further evaluated whether caspase-3-mediated cleavage of anamorsin, a recently recognized cell death-defying factor in hematopoiesis, is a general feature of apoptosis. In vitro and cell-based cleavage assays indicated that anamorsin was specifically cleaved by caspase-3 but not by other caspases, generating 25- and 10-kDa fragments. Thus, in apoptosis of neuronal and non-neuronal cells induced by various stimuli including staurosporine, etoposide, or 6-hydroxydopamine, the cleavage of anamorsin was found to be blocked in the presence of caspase inhibitor. Among four tetrapeptide consensus DXXD motifs existing in anamorsin, we mapped a specific cleavage site for caspase-3 at DSVD209↓L. Intriguingly, the 25-kDa cleaved fragment of anamorsin was also detected in post-mortem brains of Alzheimer and Parkinson disease patients. Although the RNA interference-mediated knockdown of anamorsin rendered neuronal cells more vulnerable to staurosporine treatment, reintroduction of full-length anamorsin into an anamorsin knock-out stromal cell line made cells resistant to staurosporine-induced caspase activation, indicating the antiapoptotic function of anamorsin. Taken together, our approach seems to be effective to identify novel substrates for caspases and has the potential to provide meaningful insights into newly identified substrates involved in neurodegenerative processes.  相似文献   

7.
Hu X 《Cytokine》2003,21(6):286-294
Following binding its death receptor on the plasma membrane, tumor necrosis factor (TNF) induces the receptor trimerization and recruits a number of death domain-containing molecules to form the receptor complex. The complex promotes activation of downstream caspase cascade and induces degradation of IkappaBalpha. Caspases are activated using mechanisms of oligomeration and 'self-controlled proteolysis'. According to their structures and functions, apoptosis related caspases can be divided into upstream and downstream caspases. In general, upstream caspases cleave and activate downstream caspases by proteolysis of the Asp-X site. Activated caspases then cleaved target substrates. To date, more than 70 proteins have been identified to be substrates of caspases in mammalian cells. Caspases can alter the function of their target proteins by destroying structural components of the cytoskeleton and nuclear scaffold or by removing their regulatory domains. Activation of NF-kappaB is dependent on the degradation of IkappaBalpha. IkappaB kinase (IKK) phosphorylates IkappaBalpha at the residues 32 and 36 followed by polyubiquitination at lysine 21 and 22 and subsequent degradation of the molecules by 26S proteasome. There is extensive crosstalk between the apoptotic and NF-kappaB signaling pathways that emanate from TNF-R1. On the one hand, activation of NF-kappaB can inactivate caspases; on the other hand, activated caspases can inhibit the activation of NF-kappaB. Both processes involve in proteolysis. This crosstalk may be important for maintaining the balance between the two pathways and for determining whether a cell should live or die.  相似文献   

8.
Cleavage of caspase substrates is believed to be the commitment point that will lead a cell towards apoptosis. While the cleavage of some caspase substrates participates directly in the dismantling of the cell, others regulate the extent of caspase activation. In this communication, we discuss some recent findings indicating that two caspase substrates, MEKK1 and RasGAP, change their functions from anti- to pro-apoptotic as caspase activity increases. MEKK1 is a MAPK kinase kinase regulating the JNK MAPK pathway. As a full-length protein, MEKK1 generates protective signals (e.g. in cardiomyocytes), but potentiates apoptosis when cleaved by caspases. This switch is mediated by a translocation of the kinase activity from insoluble to soluble cellular structures. RasGAP is a regulator of Ras GTPase family members. As a full-length protein, RasGAP does not modulate apoptosis. However, low caspase activity readily induces the cleavage of RasGAP into an N-terminal fragment that generates potent anti-apoptotic signals. At higher caspase activity, the N-terminal fragment is further cleaved into two fragments that strongly potentiate apoptosis. RasGAP can, thus, be viewed as an apoptostat because it allows the cells to determine when caspases have been mildly activated to fulfill functions other than apoptosis or when caspases are strongly activated to mediate apoptosis.  相似文献   

9.
Glucocorticoids are widely used as anti-inflammatory and chemotherapeutic agents. However, prolonged use of glucocorticoids leads to osteoporosis. This study was designed to examine the mechanism of dexamethasone (DEX)-induced apoptosis in murine osteoblastic MC3T3-E1 cells. Total RNA was extracted from MC3T3-E1 cells treated with 10(-7) M DEX for 6 h. DEX exerted a variety of effects on apoptotic gene expression in osteoblasts. Ribonuclease protection assays (RPA) revealed that DEX upregulated mRNA levels of caspases-1, -3, -6, -8, -11, -12, and bcl-XL. Western blot analysis showed enhanced processing of these caspases, with the appearance of their activated enzymes 8 h after DEX treatment. In addition, DEX also induced the activation of caspase-9. DEX elevated the levels of cleaved poly(ADP-ribose) polymerase and lamin A, a caspase-3 and a caspase-6 substrate, respectively. Expression of bcl-XL protein level was upregulated by DEX. Cytochrome c release was detected in the cytosol of DEX-treated cells. Furthermore, caspase-3 enzyme activity was elevated by 2-fold after DEX treatment for 7 h. Finally, early apoptotic cells were detected in cells treated with DEX for 3 h. Our results demonstrate that DEX-induced apoptosis involves gene activation of a number of caspases.  相似文献   

10.
The cytotoxic lymphocyte serine proteinase granzyme B induces apoptosis of abnormal cells by cleaving intracellular proteins at sites similar to those cleaved by caspases. Understanding the substrate specificity of granzyme B will help to identify natural targets and develop better inhibitors or substrates. Here we have used the interaction of human granzyme B with a cognate serpin, proteinase inhibitor 9 (PI-9), to examine its substrate sequence requirements. Cleavage and sequencing experiments demonstrated that Glu(340) is the P1 residue in the PI-9 RCL, consistent with the preference of granzyme B for acidic P1 residues. Ala-scanning mutagenesis demonstrated that the P4-P4' region of the PI-9 RCL is important for interaction with granzyme B, and that the P4' residue (Glu(344)) is required for efficient serpin-proteinase binding. Peptide substrates based on the P4-P4' PI-9 RCL sequence and containing either P1 Glu or P1 Asp were cleaved by granzyme B (k(cat)/K(m) 9.5 x 10(3) and 1.2 x 10(5) s(-1) M(-1), respectively) but were not recognized by caspases. A substrate containing P1 Asp but lacking P4' Glu was cleaved less efficiently (k(cat)/K(m) 5.3 x 10(4) s(-1) M(-1)). An idealized substrate comprising the previously described optimal P4-P1 sequence (Ile-Glu-Pro-Asp) fused to the PI-9 P1'-P4' sequence was efficiently cleaved by granzyme B (k(cat)/K(m) 7.5 x 10(5) s(-1) M(-1)) and was also recognized by caspases. This contrasts with the literature value for a tetrapeptide comprising the same P4-P1 sequence (k(cat)/K(m) 6.7 x 10(4) s(-1) M(-1)) and confirms that P' residues promote efficient interaction of granzyme B with substrates. Finally, molecular modeling predicted that PI-9 Glu(344) forms a salt bridge with Lys(27) of granzyme B, and we showed that a K27A mutant of granzyme B binds less efficiently to PI-9 and to substrates containing a P4' Glu. We conclude that granzyme B requires an extended substrate sequence for specific and efficient binding and propose that an acidic P4' substrate residue allows discrimination between early (high affinity) and late (lower affinity) targets during the induction of apoptosis.  相似文献   

11.
The specificity of 10 recombinant caspases was investigated using a set of competitive substrates. The caspase activity was determined by high-performance liquid chromatography using highly fluorescent peptides containing 2-aminoacridone (AMAC) as reporting group. The sequences of the used substrates were designed according to literature data for being specific for 10 of the caspases. The described approach allows the concentration changes of several substrates to be monitored simultaneously in a single sample. Because the substrates are in competitive conditions, the preferences of particular caspases to given peptide sequences are most clearly demonstrated. In the studied competitive assay conditions, all tested caspases except caspase 2 exhibit activity toward more than one substrate. None of the used peptide sequences was found to be highly specific for a defined caspase. The results obtained indicate that there is well-expressed group specificity among the caspases.  相似文献   

12.
Apoptosis, or programmed cell death, is a vital cellular process often impaired in diseases such as cancer. Aspartic acid-directed proteases known as caspases cleave a broad spectrum of cellular proteins and are central constituents of the apoptotic machinery. Caspases are regulated by a variety of mechanisms including protein phosphorylation. One intriguing mechanism by which protein kinases can modulate caspase pathways is by blocking substrate cleavage through phosphorylation of residues adjacent to caspase cleavage sites. To explore this mechanism in detail, we recently undertook a systematic investigation using a combination of bioinformatics, peptide arrays, and peptide cleavage assays to identify proteins with overlapping protein kinase and caspase recognition motifs (Duncan et al., Sci Signal 4:ra30, 2011). These studies implicated protein kinase CK2 as a global regulator of apoptotic pathways. In this article, we extend the analysis of proteins with overlapping CK2 and caspase consensus motifs to examine the convergence of CK2 with specific caspases and to identify CK2/caspase substrates known to be phosphorylated or cleaved in cells. Given its constitutive activity and elevated expression in cancer, these observations suggest that the ability of CK2 to modulate caspase pathways may contribute to a role in promoting cancer cell survival and raise interesting prospects for therapeutic targeting of CK2.  相似文献   

13.
Traditional combinatorial peptidyl substrate library approaches generally utilize natural amino acids, limiting the usefulness of this tool in generating selective substrates for proteases that share similar substrate specificity profiles. To address this limitation, we synthesized a Hybrid Combinatorial Substrate Library (HyCoSuL) with the general formula of Ac-P4-P3-P2-Asp-ACC, testing the approach on a family of closely related proteases – the human caspases. The power of this library for caspase discrimination extends far beyond traditional PS-SCL approach, as in addition to 19 natural amino acids we also used 110 diverse unnatural amino acids that can more extensively explore the chemical space represented by caspase-active sites. Using this approach we identified and employed peptide-based substrates that provided excellent discrimination between individual caspases, allowing us to simultaneously resolve the individual contribution of the apical caspase-9 and the executioner caspase-3 and caspase-7 in the development of cytochrome-c-dependent apoptosis for the first time.Apoptosis, the most well-understood form of programmed cell death, is a highly regulated process controlled and executed by proteolytic enzymes called caspases. The apoptotic process is somewhat hierarchical and caspases can be assigned as initiators (2, 8, 9, and 10) and executioners (3, 6, and 7).1, 2, 3 Apoptosis can be triggered extrinsically via ligation of a death receptor by its cognate ligands, leading to the activation of caspases 8 and 10, or intrinsically following the release of cytochrome c from mitochondria with formation of a caspase 9 activation complex known as the apoptosome.3, 4, 5 Mechanistically, caspases display a near absolute preference for aspartate at the P1 position of their substrates. In addition, they require a minimum substrate length of four amino acids N-terminal of the scissile bond. Thornberry et al.6, 7 used a combinatorial library of fluorogenic substrates to profile nine human caspases at the P4–P2 region, demonstrating that the caspases tended to have specificity profiles that enabled grouping based on substrate preferences.6, 7 This work provided a great insight into caspase recognition patterns and opened the door for others to pursue small molecule probes for caspase investigations.To date, various types of substrates and inhibitors have been developed and biologically evaluated against caspases.2, 8, 9, 10, 11 Unfortunately, most of them lack selectivity and cannot be used for selectively targeting or analyzing particular enzymes in complex biological environments.12, 13, 14, 15 This is entirely because of the overlapping specificities of the caspases on their preferred natural amino acid sequences. To address this problem we designed and synthesized a Hybrid Combinatorial Substrate Library (HyCoSuL) containing 19 natural amino acids (omitting cysteine) and 110 unnatural amino acids. We propose that such a large and varied set of chemical structures provides an excellent tool to investigate caspases and distinguish between them. In this work we dissected the kinetic profiles of six human apoptotic recombinant caspases through HyCoSuL screening. We then designed and synthesized new caspase substrates with the ability to discriminate these enzymes within a group. To further test the specificity and utility of the designed hybrid substrates, we performed a series of experiments in a cell-free model of apoptosis where multiple caspases are activated.  相似文献   

14.
Bid is instrumental in death receptor-mediated apoptosis where it is cleaved by caspase 8 at aspartate 60 and aspartate 75 to generate truncated Bid (tBID) forms that facilitate release of mitochondrial cytochrome c. Bid is also cleaved at these sites by caspase 3 that is activated downstream of cytochrome c release after diverse apoptotic stimuli. In this context, tBid may amplify the apoptotic process. Bid is phosphorylated in vitro by casein kinases that regulate its cleavage by caspase 8 (Desagher, S., Osen-Sand, A., Montessuit, S., Magnenat, E., Vilbois, F., Hochmann, A., Journot, L. Antonsson, A., and Martinou, J.-C. (2001) Mol. Cell 8, 601-611). Using a Bid decapeptide substrate, we observed that phosphorylation at threonine 59 inhibited cleavage by caspase 8. This was also seen when recombinant Bid (rBid) and Bid isolated from murine kidney were incubated with casein kinase II. However, there were differences in the susceptibility of rBid and isolated Bid to cleavage by caspases 3 and 8. Caspase 8 cleaved rBid to generate two C-terminal products, p15 and p13 tBid, but produced only p15 tBid from isolated Bid. Contrary to rBid, isolated Bid was resistant to cleavage by caspase 3, yet was readily cleaved within the cytosolic milieu. Our data suggest that one or more distinct cellular mechanisms regulate Bid cleavage by caspases 8 and 3 in situ.  相似文献   

15.
Enzymatic activity monitoring of caspases, which are a class of cysteine protease, was performed by using peptide arrays based on surface plasmon resonance (SPR) imaging. The strategy of the detection is straightforward, using streptavidin to amplify the SPR signals of the surface-immobilized substrate peptides labeled with biotin at the C termini. Thus, the cleavage of the substrate peptides by caspases was detected as a signal decrease. Using this method, we succeeded in monitoring the activities of purified caspases and caspases in cell lysates. The SPR imaging-based peptide array would be applicable to cell-based drug screening and biochemical studies to reveal signal transduction processes.  相似文献   

16.
Excessive signaling via the Notch1 receptor inhibits apoptosis in T lymphocytes. Since several antiapoptotic proteins are cleaved by caspases during cell death, we investigated whether Notch1 was a caspase substrate. Results demonstrate that the intracellular domain of Notch1 (NICD) is cleaved into six fragments during apoptosis in Jurkat cells or peripheral T lymphocytes. Notch1 cleavage is prevented by the caspase inhibitors DEVD-fmk and VEID-fmk or by Bcl-2 expression. Caspase-3 and caspase-6 cleave the NICD into six fragments using sites located within the NF-kappaB binding domain, the ankyrin repeats and the transactivation domain. Notch1 cleavage correlates with the loss of HES-1 expression in apoptotic T cells. Notch1 fragments cannot inhibit activation-induced cell death in a T-cell hybridoma, confirming the abrogation of Notch1 antiapoptotic activity by caspases. The ability of the NICD but not the fragments to antagonize Nur77 activity supports a role for this factor in Notch1 antiapoptotic function.  相似文献   

17.
In the present study, we determined the contribution of myometrial hyperplasia, hypertrophy, and apoptosis to uterine growth during pregnancy. The changes in two endogenous markers of cell replication, proliferating cell nuclear antigen (PCNA) protein expression and bromodeoxyuridine (BrdU) incorporation, were studied. Myocyte hypertrophy was assessed by measuring the protein:DNA ratio. The expression levels of antiapoptotic regulatory proteins (BCL2 and BCL2L1) and enzymes involved in apoptosis (caspases 3, 6, 7, 9, and 10) were assessed by immunoblotting throughout gestation and postpartum. Myometrial cell apoptosis was determined by TUNEL staining and DNA fragmentation assays. Both BrdU incorporation and PCNA labeling were elevated in early pregnant myometrium and decreased dramatically after midgestation, with a simultaneous increase in cellular hypertrophy. Levels of BCL2 were high during early gestation, followed by significantly elevated levels of BCL2L1 at midgestation. The expression of caspase 10 in myometrial samples declined from a high nonpregnant level to a complete loss at early gestation. The cleaved forms of caspases (CC) 3, 6, 7, and 9, as well as poly(ADP-ribose)polymerase-1, were undetectable in the myometrial samples at early or late gestation but were transiently elevated at midgestation. Immunohistochemical staining of CC3 confirmed the activation of the caspase cascade, but TUNEL-positive staining or the increase in DNA fragmentation was not detected. Collectively, two distinct phases of myometrial growth were observed: myocyte hyperplasia associated with an increase in antiapoptotic proteins during the first half of gestation, and cellular hypertrophy during the second part of gestation. The transition between these phases was associated with transient activation of the caspase cascade that triggered the differentiation of uterine smooth muscle.  相似文献   

18.
19.
Induction of apoptosis in a variety of cell types leads to inhibition of protein synthesis. Recently, the cleavage of eukaryotic translation initiation factor 4G (eIF4G) by caspase 3 was described as a possible event contributing to translation inhibition. Here, we report the cleavage of another initiation factor in apoptotic cells, eIF2alpha, that could contribute to regulation of translation during apoptosis. This cleavage event could be completely inhibited by pretreatment of HeLa cells with Z-VAD-fmk. In vitro analysis using purified eIF2 and purified caspases showed cleavage of eIF2alpha by caspase 3, 6, 8, and 10 but not 9. Caspase 3 most efficiently cleaved eIF2alpha and this could be inhibited by addition of Ac-DEVD-CHO in vitro. Comparison of cleavage of phosphorylated versus nonphosphorylated eIF2alpha revealed a modest preference of the caspases for the nonphosphorylated form. When eIF2. 2B complex was used as substrate, only caspase 3 was capable of eIF2alpha cleavage, which was not affected by phosphorylation of the alpha subunit. The eIF2.GDP binary complex was cleaved much less efficiently by caspase 3. Sequence analysis of the cleavage fragment suggested that the cleavage site is located in the C-terminal portion of the protein. Analysis showed that after caspase cleavage, exchange of GDP bound to eIF2 was very rapid and no longer dependent upon eIF2B. Furthermore, in vitro translation experiments indicated that cleavage of eIF2alpha results in functional alteration of the eIF2 complex, which no longer stimulated upstream AUG selection on a mRNA containing a viral internal ribosome entry site and was no longer capable of stimulating overall translation. In conclusion, we describe here the cleavage of a translation initiation factor, eIF2alpha that could contribute to inhibition or alteration of protein synthesis during the late stages of apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号