共查询到20条相似文献,搜索用时 0 毫秒
1.
Efficient differentiation of embryonic stem cells into neurons in glial cell-conditioned medium under attaching conditions 总被引:1,自引:0,他引:1
Embryonic stem (ES) cells can differentiate into neurons in vitro, which provides hope for the treatment of some neurodegenerative diseases through cell transplantation. However, it remains a challenge to efficiently induce ES cells to differentiate into neurons. Here, we show that murine ES cells can efficiently differentiate into neurons when cultured in glial cell- conditioned medium (GCM) under attaching conditions without the formation of embryoid bodies. In comparison with murine embryonic fibroblast-conditioned medium, we found that GCM has a positive effect on limiting the generation of non-neuronal cells, such as astrocytes. In addition, compared with suspension conditions, attaching conditions delay the differentiation process of ES cells. 相似文献
2.
Directed differentiation of embryonic stem cells into motor neurons 总被引:52,自引:0,他引:52
3.
Direct differentiation of embryonic stem (ES) cells into functional motor neurons represents a promising resource to study disease mechanisms, to screen new drug compounds, and to develop new therapies for motor neuron diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Many current protocols use a combination of retinoic acid (RA) and sonic hedgehog (Shh) to differentiate mouse embryonic stem (mES) cells into motor neurons. However, the differentiation efficiency of mES cells into motor neurons has only met with moderate success. We have developed a two-step differentiation protocol that significantly improves the differentiation efficiency compared with currently established protocols. The first step is to enhance the neuralization process by adding Noggin and fibroblast growth factors (FGFs). Noggin is a bone morphogenetic protein (BMP) antagonist and is implicated in neural induction according to the default model of neurogenesis and results in the formation of anterior neural patterning. FGF signaling acts synergistically with Noggin in inducing neural tissue formation by promoting a posterior neural identity. In this step, mES cells were primed with Noggin, bFGF, and FGF-8 for two days to promote differentiation towards neural lineages. The second step is to induce motor neuron specification. Noggin/FGFs exposed mES cells were incubated with RA and a Shh agonist, Smoothened agonist (SAG), for another 5 days to facilitate motor neuron generation. To monitor the differentiation of mESs into motor neurons, we used an ES cell line derived from a transgenic mouse expressing eGFP under the control of the motor neuron specific promoter Hb9. Using this robust protocol, we achieved 51 ± 0.8% of differentiation efficiency (n = 3; p < 0.01, Student's t-test). Results from immunofluorescent staining showed that GFP+ cells express the motor neuron specific markers, Islet-1 and choline acetyltransferase (ChAT). Our two-step differentiation protocol provides an efficient way to differentiate mES cells into spinal motor neurons. 相似文献
4.
低氧促进神经干细胞向多巴胺能神经元分化 总被引:2,自引:0,他引:2
神经干细胞(neural stem cells,NSCs)作为具有多向分化潜能的神经前体细胞,被广泛应用于细胞移植等研究,而低氧不但调节干细胞的体外增殖,在干细胞分化中也具有重要的作用。本文着重探讨了低氧对NSCs分化的调节作用。采用Wistar孕大鼠(E13.5d),分离胚胎中脑NSCs,加入无血清DMEM/F12培养液(含20ng/mL EGF、20ng/mL bFGF、1% N2和B27),3~5d后传代,细胞培养至第三代进行诱导分化,分别在低氧(3%O2)和常氧(20%O2)条件下诱导分化3d,然后在常氧条件下分化成熟5~7d(DMEM/F12含1%FBS、N2和B27)后进行检测。Nestin、NeuN以及TH免疫组织化学鉴定NSCs;流式细胞术分析测定NSCs向TH阳性神经元方向的分化;高效液相色谱测定细胞培养上清液中多巴胺(dopamine,DA)含量。结果显示,分离培养的NSCs均为nestin阳性细胞;低氧可明显促进NSCs向神经元方向的分化;TH阳性神经元比例在常氧和低氧组分别为(10.25±1.03)%和(19.88±1.44)%。NSCs诱导分化7d后,低氧组细胞培养上清液中DA浓度明显增加,约为常氧组的2倍(P〈0.05,n=8)。上述结果表明,3%低氧可促进NSCs向神经元方向,特别是向DA能神经元方向分化。这为NSCs应用于临床治疗帕金森病提供了基础。 相似文献
5.
Manman Xu Xu Tan Na Li Hao Wu Yue Wang Junxia Xie Jun Wang 《Journal of cellular physiology》2019,234(4):4232-4242
Previous studies have demonstrated an effect of estrogen on iron metabolism in peripheral tissues. The role of estrogen on brain iron metabolism is currently unknown. In this study, we investigated the effect and mechanism of estrogen on iron transport proteins. We demonstrated that the iron exporter ferroportin 1 (FPN1) and iron importer divalent metal transporter 1 (DMT1) were upregulated and iron content was decreased after estrogen treatment for 12 hr in primary cultured astrocytes. Hypoxia-inducible factor-1 alpha (HIF-1α) was upregulated, but HIF-2α remained unchanged after estrogen treatment for 12 hr in primary cultured astrocytes. In primary cultured neurons, DMT1 was downregulated, FPN1 was upregulated, iron content decreased, iron regulatory protein (IRP1) was downregulated, but HIF-1α and HIF-2α remained unchanged after estrogen treatment for 12 hr. These results suggest that the regulation of iron metabolism by estrogen in astrocytes and neurons is different. Estrogen increases FPN1 and DMT1 expression by inducing HIF-1α in astrocytes, whereas decreased expression of IRP1 may account for the decreased DMT1 and increased FPN1 expression in neurons. 相似文献
6.
Sarichelou I Cappuccio I Ferranti F Mosillo P Ciceroni C Sale P Stocchi F Battaglia G Nicoletti F Melchiorri D 《Cell death and differentiation》2008,15(4):700-707
Mouse embryonic stem (ES) cells were stimulated to differentiate either as adherent monolayer cultures in DMEM/F12 supplemented with N2/B27, or as floating embryoid bodies (EBs) exposed to 1 microM retinoic acid (RA) for 4 days, starting from 4 DIV, and subsequently re-plated in DMEM/F12 medium. Adherent monolayer cultures of ES cells expressed mGlu5 receptors throughout the entire differentiation period. Selective pharmacological blockade of mGlu5 receptors with methyl-6-(phenylethynyl)-pyridine (MPEP) (1 microM, added once a day) accelerated the appearance of the neuronal marker, beta-tubulin. In addition, treatment with MPEP increased the number of cells expressing glutamate decarboxylase-65/67 (GAD(65/67)), a marker of GABAergic neurons. In floating EBs, mGlu5 receptors are progressively replaced by mGlu4 receptors. The orthosteric mGlu4/6/7/8 receptor agonist, L-2-amino-4-phosphonobutanoate (L-AP4), or the selective mGlu4 receptor enhancer, PHCCC,--both combined with RA at concentrations of 30 microM--increased the expression of both beta-tubulin and GAD(65/67), inducing the appearance of fully differentiated neurons that released GABA in response to membrane depolarization. We conclude that mGlu receptor subtypes regulate neuronal differentiation of ES cells in a context-dependent manner, and that subtype-selective ligands of these receptors might be used for the optimization of in vitro protocols aimed at producing GABAergic neurons from ES cells. 相似文献
7.
8.
9.
10.
Differentiation of embryonic stem cells into retinal neurons 总被引:14,自引:0,他引:14
Mouse embryonic stem (ES) cells are continuous cell lines derived from the inner mass of blastocysts. Neural progenitors derived from these cells serve as an excellent model for controlled neural differentiation and as such have tremendous potential to understand and treat neurodegenerative diseases. Here, we demonstrate that ES cell-derived neural progenitors express regulatory factors needed for retinal differentiation and that in response to epigenetic cues a subset of them differentiate along photoreceptor lineage. During the differentiation, they activate photoreceptor regulatory genes, suggesting that ES cell-derived neural progenitors recruit mechanisms normally used for photoreceptor differentiation in vivo. These observations suggest that ES cells can serve as an excellent model for understanding mechanisms that regulate specification of retinal neurons and as an unlimited source of neural progenitors for treating degenerative diseases of the retina by cell replacement. 相似文献
11.
Coleman B Fallon JB Pettingill LN de Silva MG Shepherd RK 《Experimental cell research》2007,313(2):232-243
Auditory neurons, the target neurons of the cochlear implant, degenerate following a sensorineural hearing loss. The goal of this research is to direct the differentiation of embryonic stem cells (SCs) into bipolar auditory neurons that can be used to replace degenerating neurons in the deafened mammalian cochlea. Successful replacement of auditory neurons is likely to result in improved clinical outcomes for cochlear implant recipients. We examined two post-natal auditory co-culture models with and without neurotrophic support, for their potential to direct the differentiation of mouse embryonic SCs into characteristic, bipolar, auditory neurons. The differentiation of SCs into neuron-like cells was facilitated by co-culture with auditory neurons or hair cell explants, isolated from post-natal day five rats. The most successful combination was the co-culture of hair cell explants with whole embryoid bodies, which resulted in significantly greater numbers of neurofilament-positive, neuron-like cells. While further characterization of these differentiated cells will be essential before transplantation studies commence, these data illustrate the effectiveness of post-natal hair cell explant co-culture, at providing valuable molecular cues for directed differentiation of SCs towards an auditory neuron lineage. 相似文献
12.
Addae C Yi X Gernapudi R Cheng H Musto A Martinez-Ceballos E 《Differentiation; research in biological diversity》2012,83(5):233-241
Embryonic stem (ES) cells are pluripotent cells that can differentiate into all three main germ layers: endoderm, mesoderm, and ectoderm. Although a number of methods have been developed to differentiate ES cells into neuronal phenotypes such as sensory and motor neurons, the efficient generation of GABAergic interneurons from ES cells still presents an ongoing challenge. Because the main output of inhibitory GABAergic interneurons is the gamma-aminobutyric-acid (GABA), a neurotransmitter whose controlled homeostasis is required for normal brain function, the efficient generation in culture of functional interneurons may have future implications on the treatment of neurological disorders such as epilepsy, autism, and schizophrenia. The goal of this work was to examine the generation of GABAergic neurons from mouse ES cells by comparing an embryoid body-based methodology versus a hydrogel-based encapsulation protocol that involves the use of all-trans-retinoid acid (RA). We observed that (1) there was a 2-fold increase in neuronal differentiation in encapsulated versus non-encapsulated cells and (2) there was an increase in the specificity for interneuronal differentiation in encapsulated cells, as assessed by mRNA expression and electrophysiology approaches. Furthermore, our results indicate that most of the neurons obtained from encapsulated mouse ES cells are GABA-positive (~87%). Thus, these results suggest that combining encapsulation of ES cells and RA treatment provide a more efficient and scalable differentiation strategy for the generation in culture of functional GABAergic interneurons. This technology may have implications for future cell replacement therapies and the treatment of CNS disorders. 相似文献
13.
Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells 总被引:2,自引:0,他引:2
Vaca P Berná G Araujo R Carneiro EM Bedoya FJ Soria B Martín F 《Experimental cell research》2008,314(5):969-974
The poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice. Here we show that undifferentiated mouse ES cells treated with nicotinamide: (i) showed an 80% decrease in cell proliferation; (ii) co-expressed insulin, C-peptide and Glut-2; (iii) had values of insulin and C-peptide corresponding to 10% of normal mouse islets; (iv) released insulin and C-peptide in response to stimulatory glucose concentrations; and (v) after transplantation into diabetic mice, normalized blood glucose levels over 7 weeks. Our data indicate that nicotinamide decreases ES cell proliferation and induces differentiation into insulin-secreting cells. Both aspects are very important when thinking about cell therapy for the treatment of diabetes based on ES cells. 相似文献
14.
An early embryonic stem cell line, EES-6 cells, was established from 2-cell stage embryos of ddY mice. The cells were maintained in an undifferentiated state with D-MEM/F12 medium supplemented with 10% fetal bovine serum (FBS) (GM) and 1 ng of leukemia inhibitory factor (LIF) without any feeder cells. In this study, EES cells were cultured with a medium containing embryotrophic factors (ETFs) which promoted the differentiation of EES cells into white and brown adipocytes-like cells for a period of 5 days. Lipid droplets in brown adipocyte-like cells were stained with Sudan III; however, large lipid-like droplets in white or brown adipocyte-like cells were unstained with either Sudan III or alcian blue. These findings have numerous possibilities for therapeutic use such as regeneration of skin and wound healing. 相似文献
15.
Corti S Nizzardo M Simone C Falcone M Donadoni C Salani S Rizzo F Nardini M Riboldi G Magri F Zanetta C Faravelli I Bresolin N Comi GP 《Experimental cell research》2012,318(13):1528-1541
Generating neural stem cells and neurons from reprogrammed human astrocytes is a potential strategy for neurological repair. Here we show dedifferentiation of human cortical astrocytes into the neural stem/progenitor phenotype to obtain progenitor and mature cells with a neural fate. Ectopic expression of the reprogramming factors OCT4, SOX2, or NANOG into astrocytes in specific cytokine/culture conditions activated the neural stem gene program and induced generation of cells expressing neural stem/precursor markers. Pure CD44+ mature astrocytes also exhibited this lineage commitment change and did not require passing through a pluripotent state. These astrocyte-derived neural stem cells gave rise to neurons, astrocytes, and oligodendrocytes and showed in vivo engraftment properties. ASCL1 expression further promoted neuronal phenotype acquisition in vitro and in vivo. Methylation analysis showed that epigenetic modifications underlie this process. The restoration of multipotency from human astrocytes has potential in cellular reprogramming of endogenous central nervous system cells in neurological disorders. 相似文献
16.
17.
Mai Nakamura Yu Kamishibahara Ayako Kitazawa Hideo Kawaguchi Norio Shimizu 《Cytotechnology》2016,68(3):409-417
Mouse embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have the ability to differentiate in vitro into various cell lineages including neurons. The differentiation of these cells into neurons has potential applications in regenerative medicine. Previously, we reported that a chick dorsal root ganglion (DRG)-conditioned medium (CM) promoted the differentiation of mouse ES and iPS cells into neurons. Here, we used real-time PCR to investigate the differentiation patterns of ES and iPS cells into neurons when DRG-CM was added. DRG-CM promoted the expression levels of βIII-tubulin gene (a marker of postmitotic neurons) in ES and iPS cells. ES cells differentiated into neurons faster than iPS cells, and the maximum peaks of gene expression involved in motor, sensory, and dopaminergic neurons were different. Rho kinase (ROCK) inhibitors could be very valuable at numerous stages in the production and use of stem cells in basic research and eventual cell-based therapies. Thus, we investigated whether the addition of a ROCK inhibitor Y-27632 and DRG-CM on the basis of the differentiation patterns promotes the neuronal differentiation of ES cells. When the ROCK inhibitor was added to the culture medium at the initial stages of cultivation, it stimulated the neuronal differentiation of ES cells more strongly than that stimulated by DRG-CM. Moreover, the combination of the ROCK inhibitor and DRG-CM promoted the neuronal differentiation of ES cells when the ROCK inhibitor was added to the culture medium at day 3. The ROCK inhibitor may be useful for promoting neuronal differentiation of ES cells. 相似文献
18.
An analysis of embryonic stem cell (ESC) derivation in vertebrates has revealed that the potential to form ESC is dependent on the setting aside of a pluripotent lineage from extraembryonic lineages early in development. Derivation of ESCs from all amniotes and also many lower vertebrates with that pattern of lineage allocation is thus predictable. Culture conditions during derivation in all groups share some similar characteristics, most of which are related to retaining potency coupled with extensive proliferative capacity. This in turn probably reflects the environment that maintains and causes the primordial germ cells (PGC) to proliferate in vivo. Hence culture usually involves feeder layers and serum or factors derived from them and the use of small clumps of pluriblast or epiblast cells instead of total dissociation, to facilitate cell-cell signalling. Currently addition of FGF has proven to be important but that of LIF has not been fully explored. 相似文献
19.
Bettiol E Sartiani L Chicha L Krause KH Cerbai E Jaconi ME 《Differentiation; research in biological diversity》2007,75(8):669-681
During development, cardiac commitment within the mesoderm requires endoderm-secreted factors. Differentiation of embryonic stem cells into the three germ layers in vitro recapitulates developmental processes and can be influenced by supplements added to culture medium. Hence, we investigated the effect of fetal bovine serum (FBS) and KnockOut serum replacement (SR) on germ layers specification and cardiac differentiation of H1 human embryonic stem cells (hESC) within embryoid bodies (EB). At the time of EB formation, FBS triggered an increased apoptosis. As assessed by quantitative PCR on 4-, 10-, and 20-day-old EB, FBS promoted a faster down-regulation of pluripotency marker Oct4 and an increased expression of endodermal (Sox17, alpha-fetoprotein, AFP) and mesodermal genes (Brachyury, CSX). While neuronal and hematopoietic differentiation occurred in both supplements, spontaneously beating cardiomyocytes were only observed in FBS. Action potential (AP) morphology of hESC-derived cardiomyocytes indicated that ventricular cells were present only after 2 months of culture. However, quantification of myosin light chain 2 ventricular (mlc2v)-positive areas revealed that mlc2v-expressing cardiomyocytes could be detected already after 2 weeks of differentiation, but not in all beating clusters. In conclusion, FBS enabled cardiac differentiation of hESC, likely in an endodermal-dependent pathway. Among cardiac cells, ventricular cardiomyocytes differentiated over time, but not as the predominant cardiac cell subtype. 相似文献
20.
Haase I Knaup R Wartenberg M Sauer H Hescheler J Mahrle G 《European journal of cell biology》2007,86(11-12):801-805
Embryonic stem (ES) cells are omnipotent; they can differentiate into every cell type of the body. The development of culture conditions that allow their differentiation has made it conceivable to produce large numbers of cells with lineage-specific characteristics in vitro. Here, we describe a method by which murine ES cells can be differentiated into cells with characteristics of epidermal keratinocytes. Keratinocyte-like cells were isolated from embryoid bodies and grown in culture. Potential applications of this method are the in vitro differentiation of cells of interest from ES cells of mice with lethal phenotypes during embryonic development and the production of genetically modified epidermal keratinocytes that could be used as temporary wound dressing or as carriers of genes of interest in gene therapeutic treatments. 相似文献