首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The widely expressed transmembrane molecule CD46 is the complement regulatory receptor for C3b as well as the receptor for several pathogens. Beside its binding functions, CD46 is also able to transduce signals. We showed that CD46 aggregation on human T cells induces p120CBL and linker for activation of T cells (LAT) phosphorylation. These two proteins are adaptor proteins known to regulate TCR signaling. p120CBL is a complex adaptor protein involved in negatively regulating signaling events, whereas LAT is a transmembrane adaptor protein found in glycolipid-enriched microdomains essential for T cell activation. Therefore, we investigated if a CD46/TCR costimulation would affect T cell activation. Indeed, CD46/CD3 costimulation strongly promotes T cell proliferation. Therefore, we propose that CD46 acts as a potent costimulatory molecule for human T cells.  相似文献   

2.
CD59 is one of the key molecules involved in cell protection against autologus complement. The fact that complement regulatory proteins are able to prevent hyperacute rejection of organs in pig to primate model, raises the question of possible complement regulatory protein (CRP) involvement in the maturation of immunological system. We report here that in foetal and postnatal human thymus, CD59 and CD55 are primarily located on Hassall's corpuscles and medullary epithelial cells. This localization highly correlates with the expression of CD30L, which is the member of the tumour necrosis factor superfamily. Additionally, TUNEL technique was used to visualize distribution of apoptotic cells in the thymus, which revealed the presence of apoptotic cells closely associated with the Hassall's corpuscles. The observed co-localization of CD59, CD55 and CD30L might suggest an involvement of the complement system in thymic selection in humans.  相似文献   

3.
CD97, the archetypal member of the EGF-TM7 protein family, is constitutively expressed on granulocytes and monocytes and rapidly up-regulated on T and B cells following activation. The key isoform of CD97 expressed on leukocytes binds the complement regulatory protein CD55 (also termed decay-accelerating factor). CD97 has been shown recently to mediate co-stimulation of T cells via CD55. Here, we demonstrate that blocking the interaction between CD55 on monocytes and CD97 on T cells leads to inhibition of proliferation and interferon-gamma secretion. This implies that bidirectional interactions between CD97 and CD55 are involved in T cell regulation. Structural studies presented here reveal the molecular basis for this activity. We have solved the structure of EMR2, a very close homolog of CD97, using x-ray crystallography. NMR-based chemical shift mapping of the EMR2-CD55 interaction has allowed us to generate a model for the CD97-CD55 complex. The structure of the complex reveals that the T cell and complement regulatory activities of CD55 occur on opposite faces of the molecule. This suggests that CD55 might simultaneously regulate both the innate and adaptive immune responses, and we have shown that CD55 can still regulate complement when bound to CD97.  相似文献   

4.
Previous studies have demonstrated that the murine monoclonal antibody (MoAb) NM-01 activates the human complement classical pathway resulting in lysis of human immunodeficiency virus (HIV). The present study was performed to determine the availability of the V3-loop of gp120 relative to the complement regulatory proteins, CD55 (DAF) and CD59 (HRF20) molecules on HIV. The results demonstrate that CD55 and CD59 exist on HIV virions, along with gp120 molecules. These findings suggest that activation of human complement on free viral particles is induced by MoAb NM-01 and that this occurs regardless of the presence of CD55 and CD59 molecules. The destruction of viral particles was demonstrated by a decrease in infectivity. The involvement of human complement in this process was confirmed with an immunoelectron microscopy technique by the presence of a human C9 to prove membrane attack complex (MAC). The results indicate that NM-01 can induce complement activation because of the ratios of CD55 and CD59 to gp120 molecules on HIV virions. The availability of the gp120 V3 domain on the virion is sufficient for binding of NM-01 and thereby the formation of MAC that results in virolysis.  相似文献   

5.
Abstract: The expression of decay-accelerating factor CD55, membrane cofactor protein CD46, and CD59 was studied on Schwann cells cultured from human sural nerve and myelin membranes prepared from human cauda equina and spinal cord. These proteins are regulatory membrane molecules of the complement system. CD55 and CD46 are inhibitors of C3 and C5 convertases and CD59 inhibits C8 and C9 incorporation into C5b-9 complex and C9-C9 polymerization. The presence of these proteins was assessed by using antibodies to each of the proteins by fluorescent microscopy, fluorescence-activated cell sorter analysis, and also sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analysis. Schwann cells in culture expressed CD55, CD46, and CD59. It is interesting that only CD59 was detected on myelin from both central and peripheral nerve tissue. The ability of these proteins to limit C3 peptide deposition and C9 polymerization in myelin was studied by western blot analysis. C3b deposition was readily detected on antibody-sensitized myelin incubated with normal human serum used as a source of complement but not with EDTA-treated or heat-inactivated serum. C3b deposition was not affected by anti-CD55 antibody. On the other hand, poly-C9 formation in myelin, which was maximum when 50% normal human serum was used, was increased four- to fivefold when myelin was preincubated with anti-CD59. Our data suggest that complement activation on myelin is down-regulated at the step of the assembly of terminal complement complexes, including C5b-9, due to the presence of CD59.  相似文献   

6.
Decay-accelerating factor (CD55) is a complement regulatory protein, which is expressed by most cells to protect them from complement-mediated attack. CD55 also binds CD97, an EGF-TM7 receptor constitutively expressed on granulocytes and monocytes and rapidly up-regulated on T and B cells upon activation. Early results suggested that CD55 could further enhance T cell proliferation induced by phorbol ester treatment. The present study demonstrates that coengagement of CD55, using either cross-linking mAbs or its natural ligand CD97, and CD3 results in enhanced proliferation of human peripheral blood CD4(+) T cells, expression of the activation markers CD69 and CD25, and secretion of IL-10 and GM-CSF. Recently, an increase in T cell responsiveness in CD55(-/-) mice was shown to be mediated by a lack of complement regulation. In this study, we show that direct stimulation of CD55 on CD4(+) T cells with CD97 can modulate T cell activation but does not interfere with CD55-mediated complement regulation. Our results support a multifaceted role for CD55 in human T cell activation, constituting a further link between innate and adaptive immunity.  相似文献   

7.
Mesenchymal stem cells (MSC) preferentially migrate to damaged tissues and, due to their immunomodulatory and trophic properties, contribute to tissue repair. Although MSC express molecules, such as membrane cofactor protein (CD46), complement decay-accelerating factor (CD55), and protectin (CD59), which confer protection from complement-mediated lysis, MSC are recruited and activated by anaphylatoxins after transplantation, potentially causing MSC death and limiting therapeutic benefit. We have previously demonstrated that transduction of MSC with a retrovirus encoding HCMV-US proteins resulted in higher levels of MSC engraftment due to decreased HLA-I expression. Here, we investigate whether engineering MSC to express US2 (MSC-US2), US3 (MSC-US3), US6 (MSC-US6), or US11 (MSC-US11) HCMV proteins can alter complement recognition, thereby better protecting MSC from complement attack and lysis. HCMV-US proteins increased MSC CD59 expression at different levels as determined by flow cytometric evaluation of the median fluorescence intensity ratio (MFI). A significant increase in CD59 expression was seen in MSC-US2, MSC-US3, and MSC-US6, but not in MSC-US11. Only MSC-US2 displayed increased expression of CD46, while US2 and US3 proteins were both able to augment the percentage of MSC expressing this molecule. Regardless of the HCMV protein expressed, none changed CD55 MFI; however, expression of US6, US11, and US2 each increased the percentage of MSC that were positive for this molecule. Because US2 protein was the most efficient in up-regulating all three complement regulatory proteins, we used a functional complement-mediated cytotoxicity assay to investigate whether MSC-US2 were protected from complement-mediated lysis. We demonstrated that over-expression of the US2 protein reduced complement lysis by 59.10±12.89% when compared to untransduced MSC. This is the first report, to our knowledge, describing a role of HCMV-US proteins in complement evasion, and our data shows that over-expression of US2 protein on MSC could serve as a strategy to protect these cells from complement lysis.  相似文献   

8.
The complement system is a powerful innate mechanism involved in protection of the host against pathogens. It also has a role in the clearance of apoptotic cells and has been implicated in a range of pathologies including autoimmunity and graft rejection. The control of complement is mediated through the complement regulatory proteins (CRPs). These are present on most cells and protect normal cells from complement-mediated attack during innate activation. However, in a range of pathologies and cancer, these molecules are up or down regulated, sometimes secreted and even lost. We will review the expression of CRPs in cancer, focussing on CD55 and highlight other roles of the CRPs and their involvement in leukocyte function. We will also provide some data providing a potential mechanism by which soluble CD55 can inhibit T-cell function and discuss some of the implications of this data.This article is a symposium paper from the “Robert Baldwin Symposium: 50 years of Cancer Immunotherapy”, held in Nottingham, Great Britain, on 30 June 2005.  相似文献   

9.
A coxsackievirus B3 (CB3) isolate adapted to growth in RD cells shows an alteration in cell tropism as a result of its capacity to bind a 70-kDa cell surface molecule expressed on these cells. We now show that this molecule is the complement regulatory protein, decay-accelerating factor (DAF) (CD55). Anti-DAF antibodies prevented CB3 attachment to the cell surface. Radiolabeled CB3 adapted to growth in RD cells bound to CHO cells transfected with human DAF, whereas CB3 (strain Nancy), the parental strain, did not bind to DAF transfectants. These results indicate that growth of CB3 in RD cells selected for a virus strain that uses DAF for cell surface attachment.  相似文献   

10.
Efficient T cell activation requires at least two signals, one mediated by the engagement of the TCR-CD3 complex and another one mediated by a costimulatory molecule. We recently showed that CD46, a complement regulatory receptor for C3b as well as a receptor for several pathogens, could act as a potent costimulatory molecule for human T cells, highly promoting T cell proliferation. Indeed, we show in this study that CD46/CD3 costimulation induces a synergistic activation of extracellular signal-related kinase mitogen-activated protein kinase. Furthermore, whereas T lymphocytes primarily circulate within the bloodstream, activation may induce their migration toward secondary lymphoid organs or other tissues to encounter APCs or target cells. In this study, we show that CD46/CD3 costimulation also induces drastic morphological changes of primary human T cells, as well as actin relocalization. Moreover, we show that the GTP/GDP exchange factor Vav is phosphorylated upon CD46 stimulation alone, and that CD46/CD3 costimulation induces a synergistic increase of Vav phosphorylation. These results prompted us to investigate whether CD46/CD3 costimulation induced the activation of GTPases from the Rho family. Indeed, we report that the small GTPase Rac is also activated upon CD46/CD3 costimulation, whereas no change of Rho and Cdc42 activity could be detected. Therefore, CD46 costimulation profoundly affects T cell behavior, and these results provide important data concerning the biology of primary human T cells.  相似文献   

11.
A variety of pathogens use CD46, a ubiquitously expressed membrane protein that regulates complement activation, as a cellular attachment receptor. While the CD46 binding sites of several pathogens, including measles virus, Neisseria gonorrhea, and human herpesvirus 6, have been described, the region of CD46 responsible for adenovirus binding has not been determined. In this study, we used competition experiments with known CD46 ligands, CD46-specific antibodies, and a set of CD46 mutants to localize the binding domain for the group B adenovirus serotype 35 (Ad35). Our results show that Ad35 competes with measles virus for binding to CD46 but not with complement protein C3b. We further show that this interaction is a protein-protein interaction and that N glycosylations do not critically contribute to infection with Ad35 fiber-containing Ad vectors. Our data demonstrate that the native conformation of the CCP2 domain is crucial for Ad35 binding and that the substitution of amino acids at positions 130 to 135 or 152 to 156 completely abolishes the receptor function of CD46. These regions localize to the same planar face of CD46 and likely form an extended adenovirus binding surface, since no single amino acid substitution within these areas eliminates virus binding. Finally, we demonstrate that the infection with a virus possessing human group B serotype Ad11 fibers is also mediated by the CCP2 domain. This information is important to better characterize the mechanisms of the receptor recognition by adenovirus relative to other pathogens that interact with CD46, and it may help in the design of antiviral therapeutics against adenovirus serotypes that use CD46 as a primary cellular attachment receptor.  相似文献   

12.
Formation of the cytolytic membrane attack complex of complement on host cells is inhibited by the membrane-bound glycoprotein, CD59. The inhibitory activity of CD59 is species restricted, and human CD59 is not effective against rat complement. Previous functional analysis of chimeric human/rat CD59 proteins indicated that the residues responsible for the species selective function of human CD59 map to a region contained between positions 40 and 66 in the primary structure. By comparative analysis of rat and human CD59 models and by mutational analysis of candidate residues, we now identify the individual residues within the 40-66 region that confer species selective function on human CD59. All nonconserved residues within the 40-66 sequence were substituted from human to rat residues in a series of chimeric human/rat CD59 mutant proteins. Functional analysis revealed that the individual human to rat residue substitutions F47A, T51L, R55E, and K65Q each produced a mutant human CD59 protein with enhanced rat complement inhibitory activity with the single F47A substitution having the most significant effect. Interestingly, the side chains of the residues at positions 47, 51, and 55 are all located on the short single helix (residues 47-55) of CD59 and form an exposed continuous strip parallel to the helix axis. A single human CD59 mutant protein containing rat residue substitutions at all three helix residues produced a protein with species selective activity comparable to that of rat CD59. We further found that synthetic peptides spanning the human CD59 helix sequence were able to inhibit the binding of human CD59 to human C8, but had little effect on the binding of rat CD59 to rat C8.  相似文献   

13.
CD55 limits excessive complement activation on the host cell surface by accelerating the decay of C3 convertases. In this study, we observed that hepatitis C virus (HCV) infection of hepatocytes or HCV core protein expression in transfected hepatocytes upregulated CD55 expression at the mRNA and protein levels. Further analysis suggested that the HCV core protein or full-length (FL) genome enhanced CD55 promoter activity in a luciferase-based assay, which was further augmented in the presence of interleukin-6. Mutation of the CREB or SP-1 binding site on the CD55 promoter impaired HCV core protein-mediated upregulation of CD55. HCV-infected or core protein-transfected Huh7.5 cells displayed greater viability in the presence of CD81 and CD55 antibodies and complement. Biochemical analysis revealed that CD55 was associated with cell culture-grown HCV after purification by sucrose density gradient ultracentrifugation. Consistent with this, a polyclonal antibody to CD55 captured cell culture-grown HCV. Blocking antibodies against CD55 or virus envelope glycoproteins in the presence of normal human serum as a source of complement inhibited HCV infection. The inhibition was enhanced in the presence of both the antibodies and serum complement. Collectively, these results suggest that HCV induces and associates with a negative regulator of the complement pathway, a likely mechanism for immune evasion.  相似文献   

14.
In the female reproductive tract, the complement system represents a defense mechanism that can act directly against pathogens and cells, and mediates inflammatory response. Endometrial cells are protected from autologous complement attack by membrane-bound complement regulatory proteins (CRPs) that prevent complement activation: membrane cofactor protein (CD46), decay accelerating factor (CD55), and protectin (CD59). In this work we show that all CRPs were overexpressed after LPS exposure. Maximal stimulatory effect was detected after 6h, and was declining after 12h, reaching control levels in 24h. CD59 was the protein showing the more prominent effect. There seems to be a slight increase of CRP expression in the endometrium of sterile patients that have anti-endometrial antibodies (AEA) in their serum. Our results suggest that under stress, the high expression of CRPs (CD46, CD55, and CD59) could protect endometrial injured cells against complement mediated lysis. The survival of these cells with some biochemical modifications would enable autoimmune response.  相似文献   

15.
The expression of the carbohydrate antigen 3-fucosyl-N-acetyl-lactosamine (CD15, LeX) on human neutrophil glycoproteins has been studied by immunoprecipitation and immunoblotting by using monoclonal antibody MC2. The antigen is expressed on membrane glycoproteins of approximate molecular mass 165 and 105 kDa. These glycoproteins include the complement receptor and adhesion molecule, CR3, in which the beta-chain (CD18, 105 kDa) shows much greater expression than the alpha-chain (CD11b, 165 kDa). Most of the 165 kDa CD15 antigen is accounted for by expression on the carcinoembryonic antigen (CEA)-related molecule NCA160. Other members of this family, NCA95, NCA90 and NCA55, which are also found in neutrophils, do not express the CD15 antigen. There is a marked increase in the surface expression of CD15, CR3 and the antigen recognized by anti-CEA antibodies upon activation of neutrophils by the chemotactic peptide N-formylmethionyl-leucylphenylalanine.  相似文献   

16.
Dysferlin is expressed in skeletal and cardiac muscles. However, dysferlin deficiency results in skeletal muscle weakness, but spares the heart. We compared intraindividual mRNA expression profiles of cardiac and skeletal muscle in dysferlin-deficient SJL/J mice and found down-regulation of the complement inhibitor, decay-accelerating factor/CD55, in skeletal muscle only. This finding was confirmed on mRNA and protein levels in two additional dysferlin-deficient mouse strains, A/J mice and Dysf-/- mice, as well as in patients with dysferlin-deficient muscular dystrophy. In vitro, the absence of CD55 led to an increased susceptibility of human myotubes to complement attack. Evidence is provided that decay-accelerating factor/CD55 is regulated via the myostatin-SMAD pathway. In conclusion, a novel mechanism of muscle fiber injury in dysferlin-deficient muscular dystrophy is demonstrated, possibly opening therapeutic avenues in this to date untreatable disorder.  相似文献   

17.
CD46 is a ubiquitous human cell surface receptor for the complement components C3b and C4b and for various pathogens, including the measles virus and human herpes virus 6. Ligand binding to CD46 affects (i) protection of autologous cells from complement attack by breakdown of complement components, (ii) intracellular signals that affect the regulation of immune cell function, (iii) antigen presentation, and (iv) down-regulation of cell surface CD46. Recent evidence indicates that CD46 signaling can link innate and acquired immune function. The molecular mechanisms for these processes and the importance of intracellular trafficking of the receptor have not yet been elucidated. We demonstrate here that, in nonlymphoid cells, CD46 is constitutively internalized via clathrin-coated pits, traffics to multivesicular bodies, and is recycled to the cell surface. However, cross-linking of CD46 at the cell surface, by either multivalent antibody or by measles virus, induces pseudopodia that engulf the ligand in a process similar to macropinocytosis, and leads to the degradation of cell surface CD46. Thus, we have elucidated two pathways for CD46 internalization, which are regulated by the valence of cross-linking of CD46 and which utilize either clathrin-coated pits or pseudopodial extension. This has important implications for CD46 signaling, antigen presentation, CD46 down-regulation, and engulfment of pathogens.  相似文献   

18.
Newcastle disease virus (NDV), an avian paramyxovirus, is inherently tumor selective and is currently being considered as a clinical oncolytic virus and vaccine vector. In this study, we analyzed the effect of complement on the neutralization of NDV purified from embryonated chicken eggs, a common source for virus production. Fresh normal human serum (NHS) neutralized NDV by multiple pathways of complement activation, independent of neutralizing antibodies. Neutralization was associated with C3 deposition and the activation of C2, C3, C4, and C5 components. Interestingly, NDV grown in mammalian cell lines was resistant to complement neutralization by NHS. To confirm whether the incorporation of regulators of complement activity (RCA) into the viral envelope afforded complement resistance, we grew NDV in CHO cells stably transfected with CD46 or HeLa cells, which strongly express CD46 and CD55. NDV grown in RCA-expressing cells was resistant to complement by incorporating CD46 and CD55 on virions. Mammalian CD46 and CD55 molecules on virions exhibited homologous restriction, since chicken sera devoid of neutralizing antibodies to NDV were able to effectively neutralize these virions. The incorporation of chicken RCA into NDV produced in embryonated eggs similarly provided species specificity toward chicken sera.  相似文献   

19.
During evolution, herpesviruses have developed numerous, and often very ingenious, strategies to counteract efficient host immunity. Specifically, Kaposi''s sarcoma-associated herpesvirus (KSHV) eludes host immunity by undergoing a dormant stage, called latency wherein it expresses a minimal number of viral proteins to evade host immune activation. Here, we show that during latency, KSHV hijacks the complement pathway to promote cell survival. We detected strong deposition of complement membrane attack complex C5b-9 and the complement component C3 activated product C3b on Kaposi''s sarcoma spindle tumor cells, and on human endothelial cells latently infected by KSHV, TIME-KSHV and TIVE-LTC, but not on their respective uninfected control cells, TIME and TIVE. We further showed that complement activation in latently KSHV-infected cells was mediated by the alternative complement pathway through down-regulation of cell surface complement regulatory proteins CD55 and CD59. Interestingly, complement activation caused minimal cell death but promoted the survival of latently KSHV-infected cells grown in medium depleted of growth factors. We found that complement activation increased STAT3 tyrosine phosphorylation (Y705) of KSHV-infected cells, which was required for the enhanced cell survival. Furthermore, overexpression of either CD55 or CD59 in latently KSHV-infected cells was sufficient to inhibit complement activation, prevent STAT3 Y705 phosphorylation and abolish the enhanced survival of cells cultured in growth factor-depleted condition. Together, these results demonstrate a novel mechanism by which an oncogenic virus subverts and exploits the host innate immune system to promote viral persistent infection.  相似文献   

20.
Critical protection from renal ischemia reperfusion injury by CD55 and CD59   总被引:11,自引:0,他引:11  
Renal ischemia-reperfusion injury (IRI) is a feature of ischemic acute renal failure and it impacts both short- and long-term graft survival after kidney transplantation. Complement activation has been implicated in renal IRI, but its mechanism of action is uncertain and the determinants of complement activation during IRI remain poorly understood. We engineered mice deficient in two membrane complement regulatory proteins, CD55 and CD59, and used them to investigate the role of these endogenous complement inhibitors in renal IRI. CD55-deficient (CD55(-/-)), but not CD59-deficient (CD59(-/-)), mice exhibited increased renal IRI as indicated by significantly elevated blood urea nitrogen levels, histological scores, and neutrophil infiltration. Remarkably, although CD59 deficiency alone was inconsequential, CD55/CD59 double deficiency greatly exacerbated IRI. Severe IRI in CD55(-/-)CD59(-/-) mice was accompanied by endothelial deposition of C3 and the membrane attack complex (MAC) and medullary capillary thrombosis. Complement depletion in CD55(-/-)CD59(-/-) mice with cobra venom factor prevented these effects. Thus, CD55 and CD59 act synergistically to inhibit complement-mediated renal IRI, and abrogation of their function leads to MAC-induced microvascular injury and dysfunction that may exacerbate the initial ischemic assault. Our findings suggest a rationale for anti-complement therapies aimed at preventing microvascular injury during ischemia reperfusion, and the CD55(-/-)CD59(-/-) mouse provides a useful animal model in this regard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号