首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a screening procedure that is based on a histochemical stain for the enzyme beta-glucuronidase, we have isolated several mutants of the nematode Caenorhabditis elegans affected in beta-glucuronidase activity. All of the mutations fall into one complementation group and identify a new gene, gus-1, which has been mapped on the right arm of linkage group I (LG I), 1.1 map units to the left of unc-54. The mutants have no visible phenotype, and their viabilities and fertilities are unaffected. Linked revertants of two of the mutations have been isolated. They restore enzyme activity to almost wild-type levels; the beta-glucuronidase that one of the revertants produces differs from that of the wild type. We propose that gus-1 is the structural locus for beta-glucuronidase.  相似文献   

2.
We have used the Escherichia coli beta-glucuronidase gene (GUS) as a gene fusion marker for analysis of gene expression in transformed plants. Higher plants tested lack intrinsic beta-glucuronidase activity, thus enhancing the sensitivity with which measurements can be made. We have constructed gene fusions using the cauliflower mosaic virus (CaMV) 35S promoter or the promoter from a gene encoding the small subunit of ribulose bisphosphate carboxylase (rbcS) to direct the expression of beta-glucuronidase in transformed plants. Expression of GUS can be measured accurately using fluorometric assays of very small amounts of transformed plant tissue. Plants expressing GUS are normal, healthy and fertile. GUS is very stable, and tissue extracts continue to show high levels of GUS activity after prolonged storage. Histochemical analysis has been used to demonstrate the localization of gene activity in cells and tissues of transformed plants.  相似文献   

3.
We have previously shown that yeast scaffold attachment regions (SARs) flanking a chimeric beta-glucuronidase (GUS) reporter gene increased per-copy expression levels by 24-fold in tobacco suspension cell lines stably transformed by microprojectile bombardment. In this study, we examined the effect of a DNA fragment originally identified in a tobacco genomic clone by its activity in an in vitro binding assay. The tobacco SAR has much greater scaffold binding affinity than does the yeast SAR, and tobacco cell lines stably transformed with constructs containing the tobacco SAR accumulated greater than fivefold more GUS enzyme activity than did lines transformed with the yeast SAR construct. Relative to the control construct, flanking the GUS gene with plant SARs increased overall expression per transgene copy by almost 140-fold. In transient expression assays, the same construct increased expression only approximately threefold relative to a control without SARs, indicating that the full SAR effect requires integration into chromosomal DNA. GUS activity in individual stable transformants was not simply proportional to transgene copy number, and the SAR effect was maximal in cell lines with fewer than approximately 10 transgene copies per tobacco genome. Lines with significantly higher copy numbers showed greatly greatly reduced expression relative to the low-copy-number lines. Our results indicate that strong SARs flanking a transgene greatly increases expression without eliminating variation between transformants. We propose that SARs dramatically reduce the severity or likelihood of homology-dependent gene silencing in cells with small numbers of transgenes but do not prevent silencing of transgenes present in many copies.  相似文献   

4.
5.
The use of the Escherichia coli enzyme beta-glucuronidase (GUS) as a reporter in gene expression studies is limited due to loss of activity during tissue fixation by glutaraldehyde or formaldehyde. We have directed the evolution of a GUS variant that is significantly more resistant to both glutaraldehyde and formaldehyde than the wild-type enzyme. A variant with eight amino acid changes was isolated after three rounds of mutation, DNA shuffling, and screening. Surprisingly, although glutaraldehyde is known to modify and cross-link free amines, only one lysine residue was mutated. Instead, amino acid changes generally occurred near conserved lysines, implying that the surface chemistry of the enzyme was selected to either accept or avoid glutaraldehyde modifications that would normally have inhibited function. We have shown that the GUS variant can be used to trace cell lineages in Xenopus embryos under standard fixation conditions, allowing double staining when used in conjunction with other reporters.  相似文献   

6.
S-Adenosylmethionine serves as a methyl group donor in numerous transmethylation reactions and plays a role in the biosynthesis of polyamines and ethylene. We have cloned and sequenced an S-adenosylmethionine synthetase gene (sam-1) of Arabidopsis thaliana. The deduced polypeptide sequence of the enzyme has extensive homology with the corresponding enzymes of Escherichia coli and yeast. Genomic hybridization indicates the presence of two adenosylmethionine synthetase genes per haploid Arabidopsis genome. RNA gel blot analysis shows that adenosylmethionine synthetase mRNA levels are high in stems and roots, correlating well with the higher enzyme activity in stems, compared with leaves. Histochemical analysis of transgenic Arabidopsis plants transformed with a chimeric beta-glucuronidase gene, under the control of 748-base pair 5' sequences of the sam-1 gene, demonstrates that the gene is expressed primarily in vascular tissues. In addition, high expression was observed in sclerenchyma and in the root cortex. A hypothesis for the strong cellular preference in the expression of the sam-1 gene is presented.  相似文献   

7.
The carboxy-terminal residues of several peroxisomal proteins were shown to act as a peroxisomal targetting signal. This study was conducted to test whether the C-terminus of glycolate oxidase, a key enzyme in the glycolate metabolism pathway, is functioning as a targetting signal that directs proteins into plant leaf peroxisomes. A chimeric gene coding for a fusion protein composed of the C-terminal-truncated beta-glucuronidase, a synthetic linker of four amino acids and the last six C-terminal amino acids of glycolate oxidase, was constructed. Transformation of tobacco plants with the chimeric gene resulted in expression of beta-glucuronidase enzymic activity. About 50% of the transgenic beta-glucuronidase activity was localized to the peroxisomes. The results indicate that the six C-terminal amino acid residues of glycolate oxidase act as a targetting signal that is recognized by leaf peroxisomes.  相似文献   

8.
H Weber  C Ziechmann    A Graessmann 《The EMBO journal》1990,9(13):4409-4415
A hemimethylated chimeric gene, containing the cauliflower mosaic virus 35S promoter, the beta-glucuronidase coding region and the polyadenylation signal of nopaline synthase, was introduced into tobacco protoplasts by polyethylene glycol mediated transfection. Hemimethylation led to complete inhibition of transient gene expression. In regenerated transgenic plants the integrated gene was constitutively hypermethylated at the sequences CpG and CpNpG and this was correlated with an inactivation of beta-glucuronidase in 12 out of 18 analyzed plant lines whereas two showed slight and four strong activity. From 10 control lines transformed with nonmethylated DNA, only two were inactive; three showed slight and five strong activity. 5-aza-cytidine treatment of plant tissue from 'hypermethylated' lines led to induction of beta-glucuronidase in most cases. Shoots regenerated from azaC treated calli revealed stable enzyme restoration and demethylation of the integrated transgene.  相似文献   

9.
10.
The plant VTC2 gene encodes GDP-L-galactose phosphorylase, a rate-limiting enzyme in plant vitamin C biosynthesis. Genes encoding apparent orthologs of VTC2 exist in both mammals, which produce vitamin C by a distinct metabolic pathway, and in the nematode worm Caenorhabditis elegans where vitamin C biosynthesis has not been demonstrated. We have now expressed cDNAs of the human and worm VTC2 homolog genes (C15orf58 and C10F3.4, respectively) and found that the purified proteins also display GDP-hexose phosphorylase activity. However, as opposed to the plant enzyme, the major reaction catalyzed by these enzymes is the phosphorolysis of GDP-D-glucose to GDP and D-glucose 1-phosphate. We detected activities with similar substrate specificity in worm and mouse tissue extracts. The highest expression of GDP-D-glucose phosphorylase was found in the nervous and male reproductive systems. A C. elegans C10F3.4 deletion strain was found to totally lack GDP-D-glucose phosphorylase activity; this activity was also found to be decreased in human HEK293T cells transfected with siRNAs against the human C15orf58 gene. These observations confirm the identification of the worm C10F3.4 and the human C15orf58 gene expression products as the GDP-D-glucose phosphorylases of these organisms. Significantly, we found an accumulation of GDP-D-glucose in the C10F3.4 mutant worms, suggesting that the GDP-D-glucose phosphorylase may function to remove GDP-D-glucose formed by GDP-D-mannose pyrophosphorylase, an enzyme that has previously been shown to lack specificity for its physiological D-mannose 1-phosphate substrate. We propose that such removal may prevent the misincorporation of glucosyl residues for mannosyl residues into the glycoconjugates of worms and mammals.  相似文献   

11.
12.
13.
14.
Ribonuclease H1 (RNase H1) is a widespread enzyme found in a range of organisms from viruses to humans. It is capable of degrading the RNA moiety of DNA-RNA hybrids and requires a bivalent ion for activity. In contrast with most eukaryotes, which have one gene encoding RNase H1, the activity of which depends on Mg(2+) ions, Caenorhabditis elegans has four RNase H1-related genes, and one of them has an isoform produced by alternative splicing. However, little is known about the enzymatic features of the proteins encoded by these genes. To determine the differences between these enzymes, we compared the expression patterns of each RNase H1-related gene throughout the development of the nematode and the RNase H activities of their recombinant proteins. We found gene-specific expression patterns and different enzymatic features. In particular, besides the enzyme that displays the highest activity in the presence of Mg(2+) ions, C. elegans has another enzyme that shows preference for Mn(2+) ion as a cofactor. We characterized this Mn(2+)-dependent RNase H1 for the first time in eukaryotes. These results suggest that there are at least two types of RNase H1 in C. elegans depending on the developmental stage of the organism.  相似文献   

15.
16.
We present evidence that a 480G-->A transition in the coding region of the beta-glucuronidase gene, which results in an aspartic-acid-to-asparagine substitution at amino acid position 152 (D152N), produces a pseudodeficiency allele (GUSBp) that leads to greatly reduced levels of beta-glucuronidase activity without apparent deleterious consequences. The 480G-->A mutation was found initially in the pseudodeficient mother of a child with mucopolysaccharidosis VII (MPSVII), but it was not on her disease-causing allele, which carried the L176F mutation. The 480G-->A change was also present in an unrelated individual with another MPSVII allele who had unusually low beta-glucuronidase activity, but whose clinical symptoms were probably unrelated to beta-glucuronidase deficiency. This individual also had an R357X mutation, probably on his second allele. We screened 100 unrelated normal individuals for the 480G-->A mutation with a PCR method and detected one carrier. Reduced beta-glucuronidase activity following transfection of COS cells with the D152N cDNA supported the causal relationship between the D152N allele and pseudodeficiency. The mutation reduced the fraction of expressed enzyme that was secreted. Pulse-chase experiments indicated that the reduced activity in COS cells was due to accelerated intracellular turnover of the D152N enzyme. They also suggested that a potential glycosylation site created by the mutation is utilized in approximately 50% of the enzyme expressed.  相似文献   

17.
18.
The cis-acting elements for regulating gene expression of the tobacco pathogenesis-related 1a protein gene were analyzed in transgenic plants. The 5'-flanking 2.4-kilobase fragment from the pathogenesis-related 1a protein gene was joined to the bacterial beta-glucuronidase gene and introduced into tobacco cells by Agrobacterium-mediated gene transfer. Promoter activity was monitored by quantitative and histochemical assay of beta-glucuronidase activity in leaves of regenerated transgenic plants. The level of beta-glucuronidase activity was clearly increased by treatment with salicylic acid, by cutting stress, and by local lesion formation caused by tobacco mosaic virus infection. Cytochemical studies of the induced beta-glucuronidase activity revealed tissue-specific and developmentally regulated expression of the pathogenesis-related 1a gene after stress or chemical treatment and after pathogen attack. To identify the cis-acting element more precisely, a series of 5'-deleted chimeric genes was constructed and transformed into tobacco plants. Transgenic plants with a 0.3-kilobase fragment of the 5'-flanking region of the pathogenesis-related 1a gene had the same qualitative response as those with the 2.4-kilobase fragment upon treatment with salicylic acid or infection with TMV. Thus, the 0.3-kilobase DNA sequence fragment was sufficient to allow the regulated expression of the pathogenesis-related 1a gene.  相似文献   

19.
The S locus glycoprotein (SLG) gene of Brassica encodes stigmatic glycoproteins that are implicated in the pollen-stigma interaction of self-incompatibility. We have transformed the related plant Arabidopsis thaliana with a chimaeric gene consisting of the promoter region of an SLG gene fused to the reporter gene beta-glucuronidase (GUS). In transgenic plants the gene was expressed in two cell types of the flower. In stigmas, the timing and distribution of GUS activity was similar to that previously described for SLG expression in Brassica. In anthers, expression was detected at an earlier stage of flower development with GUS activity restricted to the tapetal cell layer. The novel finding of SLG-promoter activity in the anther supports the hypothesis that sporophytic control of self-incompatibility is a result of SLG-gene expression in the tapetum.  相似文献   

20.
Analysis of the 3(')-hydroxyl group in Drosophila siRNA function   总被引:2,自引:0,他引:2  
Members of the RNA-dependent RNA polymerase (RdRP) gene family have been shown to be essential for dsRNA-mediated gene silencing based on genetic screens in a variety of organisms, including Caenorhabditis elegans, Arabidopsis, Neurospora, and Dictyostelium. A hallmark of this process is the formation of small 21- to 25-bp dsRNAs, termed siRNAs for small interfering RNAs, which are derived from the dsRNA that initiates gene silencing. We have developed methods to demonstrate that these siRNAs produced in Drosophila embryo extract can be uniformly incorporated into dsRNA in a template-specific manner that is subsequently degraded by RNase III-related enzyme activity to create a second generation of siRNAs. SiRNA function in dsRNA synthesis and mRNA degradation depends upon the integrity of the 3'-hydroxyl of the siRNA, consistent with the interpretation that siRNAs serve as primers for RdRP activity in the formation of dsRNA. This process of siRNA incorporation into dsRNA followed by degradation and the formation of new siRNAs has been termed "degradative PCR" and the proposed mechanism is consistent with the genetic and biochemical data derived from studies in C. elegans, Arabidopsis, Drosophila, and Dictyostelium. The methods used to study the function of both natural and synthetic siRNAs in RNA interference in Drosophila embryo extracts are detailed. The importance of the 3'-hydroxyl group for siRNA function and its incorporation into dsRNA is emphasized and the results support a model that places RNA-dependent RNA polymerase as a key mediator in the RNA interference mechanism in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号