首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wild-type p53 has a major role in the response and execution of apoptosis after chemotherapy in many cancers. Although high levels of wild-type p53 and hardly any TP53 mutations are found in testicular cancer (TC), chemotherapy resistance is still observed in a significant subgroup of TC patients. In the present study, we demonstrate that p53 resides in a complex with MDM2 at higher cisplatin concentrations in cisplatin-resistant human TC cells compared with cisplatin-sensitive TC cells. Inhibition of the MDM2–p53 interaction using either Nutlin-3 or MDM2 RNA interference resulted in hyperactivation of the p53 pathway and a strong induction of apoptosis in cisplatin-sensitive and -resistant TC cells. Suppression of wild-type p53 induced resistance to Nutlin-3 in TC cells, demonstrating the key role of p53 for Nutlin-3 sensitivity. More specifically, our results indicate that p53-dependent induction of Fas membrane expression (∼threefold) and enhanced Fas/FasL interactions at the cell surface are important mechanisms of Nutlin-3-induced apoptosis in TC cells. Importantly, an analogous Fas-dependent mechanism of apoptosis upon Nutlin-3 treatment is executed in wild-type p53 expressing Hodgkin lymphoma and acute myeloid leukaemia cell lines. Finally, we demonstrate that Nutlin-3 strongly augmented cisplatin-induced apoptosis and cell kill via the Fas death receptor pathway. This effect is most pronounced in cisplatin-resistant TC cells.  相似文献   

2.
3.
We previously identified FOXF1 as a potential tumor suppressor gene with an essential role in preventing DNA rereplication to maintain genomic stability, which is frequently inactivated in breast cancer through the epigenetic mechanism. Here we further addressed the role of the p53-p21WAF1 checkpoint pathway in DNA rereplication induced by silencing of FOXF1. Knockdown of FOXF1 by small interference RNA (siRNA) rendered colorectal p53-null and p21WAF1-null HCT116 cancer cells more susceptible to rereplication and apoptosis than the wild-type parental cells. In parental HCT116 cells with a functional p53 checkpoint, the p53-p21WAF1 checkpoint pathway was activated upon FOXF1 knockdown, which was concurrent with suppression of the CDK2-Rb cascade and induction of G1 arrest. In contrast, these events were not observed in FOXF1-depleted HCT116-p53−/− and HCT116-p21−/− cells, indicating that the p53-dependent checkpoint function is vital for inhibiting CDK2 to induce G1 arrest and protect cells from rereplication. The pharmacologic inhibitor (caffeine) of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR) protein kinases abolished activation of the p53-p21WAF1 pathway upon FOXF1 knockdown, suggesting that suppression of FOXF1 function triggered the ATM/ATR-mediated DNA damage response. Cosilencing of p53 by siRNA synergistically enhanced the effect of FOXF1 depletion on the stimulation of DNA rereplication and apoptosis in wild-type HCT116. Finally, we show that FOXF1 expression is predominantly silenced in breast and colorectal cancer cell lines with inactive p53. Our study demonstrated that the p53-p21WAF1 checkpoint pathway is an intrinsically protective mechanism to prevent DNA rereplication induced by silencing of FOXF1.  相似文献   

4.
Epithelial ovarian cancer is a diverse molecular and clinical disease, yet standard treatment is the same for all subtypes. TP53 mutations represent a node of divergence in epithelial ovarian cancer histologic subtypes and may represent a therapeutic opportunity in subtypes expressing wild type, including most low-grade ovarian serous carcinomas, ovarian clear cell carcinomas and ovarian endometrioid carcinomas, which represent approximately 25% of all epithelial ovarian cancer. We therefore sought to investigate Nutlin-3a—a therapeutic which inhibits MDM2, activates wild-type p53, and induces apoptosis—as a therapeutic compound for TP53 wild-type ovarian carcinomas. Fifteen epithelial ovarian cancer cell lines of varying histologic subtypes were treated with Nutlin-3a with determination of IC50 values. Western Blot (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) analyses quantified MDM2, p53, and p21 expression after Nutlin-3a treatment. DNA from 15 cell lines was then sequenced for TP53 mutations in exons 2-11 including intron-exon boundaries. Responses to Nutlin-3a were dependent upon TP53 mutation status. By qRT-PCR and WB, levels of MDM2 and p21 were upregulated in wild-type TP53 sensitive cell lines, and p21 induction was reduced or absent in mutant cell lines. Annexin V assays demonstrated apoptosis in sensitive cell lines treated with Nutlin-3a. Thus, Nutlin-3a could be a potential therapeutic agent for ovarian carcinomas expressing wild-type TP53 and warrants further investigation.  相似文献   

5.
6.
Defects in apoptosis are frequently the cause of cancer emergence, as well as cellular resistance to chemotherapy. These phenotypes may be due to mutations of the tumor suppressor TP53 gene. In this study, we examined the effect of various mitotic spindle poisons, including the new isocombretastatin derivative isoNH2CA-4 (a tubulin-destabilizing molecule, considered to bind to the colchicine site by analogy with combretastatin A-4), on BL (Burkitt lymphoma) cells. We found that resistance to spindle poison-induced apoptosis could be reverted in tumor protein p53 (TP53)-mutated cells by EBV (Epstein Barr virus) infection. This reversion was due to restoration of the intrinsic apoptotic pathway, as assessed by relocation of the pro-apoptotic molecule Bax to mitochondria, loss of mitochondrial integrity and activation of the caspase cascade with PARP (poly ADP ribose polymerase) cleavage. EBV sensitized TP53-mutated BL cells to all spindle poisons tested, including vincristine and taxol, an effect that was systematically downmodulated by pretreatment of cells with inhibitors of p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases. Exogenous activation of p38 and JNK pathways by dihydrosphingosine reverted resistance of TP53-mutated BL cells to spindle poisons. Dihydrosphingosine treatment of TP53-deficient Jurkat and K562 cell lines was also able to induce cell death. We conclude that activation of p38 and JNK pathways may revert resistance of TP53-mutated cells to spindle poisons. This opens new perspectives for developing alternative therapeutic strategies when the TP53 gene is inactivated.  相似文献   

7.
Six p53 wild-type cancer cell lines from infrequently p53-mutated entities (neuroblastoma, rhabdomyosarcoma, and melanoma) were continuously exposed to increasing concentrations of the murine double minute 2 inhibitor nutlin-3, resulting in the emergence of nutlin-3-resistant, p53-mutated sublines displaying a multi-drug resistance phenotype. Only 2 out of 28 sublines adapted to various cytotoxic drugs harboured p53 mutations. Nutlin-3-adapted UKF-NB-3 cells (UKF-NB-3rNutlin10 μM, harbouring a G245C mutation) were also radiation resistant. Analysis of UKF-NB-3 and UKF-NB-3rNutlin10 μM cells by RNA interference experiments and lentiviral transduction of wild-type p53 into p53-mutated UKF-NB-3rNutlin10 μM cells revealed that the loss of p53 function contributes to the multi-drug resistance of UKF-NB-3rNutlin10 μM cells. Bioinformatics PANTHER pathway analysis based on microarray measurements of mRNA abundance indicated a substantial overlap in the signalling pathways differentially regulated between UKF-NB-3rNutlin10 μM and UKF-NB-3 and between UKF-NB-3 and its cisplatin-, doxorubicin-, or vincristine-resistant sublines. Repeated nutlin-3 adaptation of neuroblastoma cells resulted in sublines harbouring various p53 mutations with high frequency. A p53 wild-type single cell-derived UKF-NB-3 clone was adapted to nutlin-3 in independent experiments. Eight out of ten resulting sublines were p53-mutated harbouring six different p53 mutations. This indicates that nutlin-3 induces de novo p53 mutations not initially present in the original cell population. Therefore, nutlin-3-treated cancer patients should be carefully monitored for the emergence of p53-mutated, multi-drug-resistant cells.  相似文献   

8.
目的 p53是人体内重要的肿瘤抑制因子,但在人类肿瘤中因高频突变而失去抑癌功能。突变型p53 (mutant p53,mutp53)可促进肿瘤的发生、发展和转移。由于在肿瘤细胞中通常有较高表达,mutp53已成为区别于正常细胞的一个特异性抗肿瘤靶点。本研究旨在探索穿心莲内酯的抗肿瘤作用机制,为寻找靶向mutp53的抗肿瘤化合物提供理论依据。方法 构建可以快速筛选具有恢复mutp53下游转录因子的荧光素酶系统,观察穿心莲内酯对H1299-p53 R273H-PUMAluciferase和H1299-p53R175H-PUMA-luciferase细胞中PUMA基因的表达情况;采用免疫荧光实验,检测穿心莲内酯对HT29(R273H)和SK-BR-3 (R175H)细胞中mutp53的表达影响;采用免疫印迹实验进一步观察穿心莲内酯恢复了mutp53肿瘤细胞中p53下游靶蛋白PUMA、p21、Noxa的表达;随后采用MTT和流式细胞分析,检测穿心莲内酯对肿瘤细胞增殖和凋亡的影响;此外,还通过si RNA敲低Hsp70表达后,研究穿心莲内酯对mutp53下游基因的重激活作用。结果 穿心莲内酯可以...  相似文献   

9.
DNA damage induces cell cycle arrest through both Chk1 and the p53 tumor suppressor protein, the latter arresting cells through induction of p21waf1 protein. Arrest permits cells to repair the damage and recover. The frequent loss of p53 in tumor cells makes them more dependent on Chk1 for arrest and survival. However, some p53 wild type tumor cell lines, such as HCT116 and U2OS, are also sensitive to inhibition of Chk1 due to attenuated p21waf1 induction upon DNA damage. The purpose of this study is to determine the cause of this attenuated p21waf1 protein induction. We find that neither the induction of p21waf1 mRNA nor protein half-life is sufficient to explain the low p21waf1 protein levels in HCT116 and U2OS cells. The induced mRNA associates with polysomes but little protein is made suggesting these two cell lines have a reduced rate of p21waf1 mRNA translation. This represents a novel mechanism for disruption of the p53-p21waf1 pathway as currently known mechanisms involve either mutation of p53 or reduction of p53 protein levels. As a consequence, this attenuated p21waf1 expression may render some p53 wild type tumors sensitive to a combination of DNA damage plus checkpoint inhibition.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Inhibition of Mdm2 function is a validated approach to restore p53 activity for cancer therapy; nevertheless, inhibitors of Mdm2 such as Nutlin-3 have certain limitations, suggesting that additional targets in this pathway need to be further elucidated. Our finding that the Herpesvirus-Associated Ubiquitin-Specific Protease (HAUSP, also called USP7) interacts with the p53/Mdm2 protein complex, was one of the first examples that deubiquitinases (DUBs) exhibit a specific role in regulating protein stability. Here, we show that inhibitors of HAUSP and Nutlin-3 can synergistically activate p53 function and induce p53-dependent apoptosis in human cancer cells. Notably, HAUSP can also target the N-Myc oncoprotein in a p53-independent manner. Moreover, newly synthesized HAUSP inhibitors are more potent than the commercially available inhibitors to suppress N-Myc activities in p53 mutant cells for growth suppression. Taken together, our study demonstrates the utility of HAUSP inhibitors to target cancers in both a p53-depdentent and -independent manner.  相似文献   

17.
18.
19.
20.
Disruption of Mdm2-p53 interaction activates p53 signaling, disrupts the balance ofantiapoptotic and proapoptotic Bcl-2 family proteins and induces apoptosis in acutemyeloid leukemia (AML). Overexpression of Bcl-2 may inhibit this effect. Thus,functional inactivation of antiapoptotic Bcl-2 proteins may enhance apoptogenic effects ofMdm2 inhibition. We here investigate the potential therapeutic utility of combinedtargeting of Mdm2 by Nutlin-3a and Bcl-2 by ABT-737, recently developed inhibitors ofprotein-protein interactions. Nutlin-3a and ABT-737 induced Bax conformational changeand mitochondrial apoptosis in AML cells in a strikingly synergistic fashion. Nutlin-3ainduced p53-mediated apoptosis predominantly in S and G2/M cells, while cells in G1 were protected through induction of p21. In contrast, ABT-737 induced apoptosis predominantly in G1 , the cell cycle phase with the lowest Bcl-2 protein levels and Bcl-2/Bax ratios. In addition, Bcl-2 phosphorylation on Ser70 was absent in G1 but detectable in G2/M, thus lower Bcl-2 levels and absence of Bcl-2 phosphorylation appeared to facilitate ABT-737-induced apoptosis of G1 cells. The complementary effects of Nutlin-3a and ABT-737 in different cell cycle phases could, in part, account for their synergistic activity. Our data suggest that combined targeting of Mdm2 and Bcl-2 proteins could offer considerable therapeutic promise in AML.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号