首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The B7-H4 molecule, a unique negative regulator of T lymphocytes which is overexpressed on the surface of various tumor cells, is a particularly important target candidate for tumor therapy because it can be blocked with anti-B7-H4 antibodies to inhibit the B7-H4 signaling pathway. Our previous work established an anti-B7-H4 single-chain variable fragment (scFv) library, so we have now amplified the genes encoding anti-B7-H4-scFv and human IgG1 CH3 and ligated them by overlap extension PCR to obtain a recombinant gene. After sequencing, the gene was cloned into the expression vector pET43.1a and expression was induced in E. coli BL21 (DE3) by isopropyl-β-D-1-thiogalactopyranoside (IPTG). The protein was purified on a nickel-nitrilotriacetic acid (Ni-NTA) resin column and its antigen specificity and affinity were examined by ELISA and western blotting. We also established a Lewis lung cancer model in C57BL/6 mice to further identify the biological function of the scFv protein in vivo. The results showed that tumor volume, body weight and necrotic tissues in the control group were significantly greater than in the experimental group, indicating that selected scFvs had good biological activity and could inhibit tumor growth in tumor-bearing mice. Our work thus offers a new approach for the development of cancer-targeted therapy.  相似文献   

2.
B7-H4 protein is expressed on the surface of a variety of immune cells and functions as a negative regulator of T cell responses. We independently identified B7-H4 (DD-O110) through a genomic effort to discover genes upregulated in tumors and here we describe a new functional role for B7-H4 protein in cancer. We show that B7-H4 mRNA and protein are overexpressed in human serous ovarian cancers and breast cancers with relatively little or no expression in normal tissues. B7-H4 protein is extensively glycosylated and displayed on the surface of tumor cells and we provide the first demonstration of a direct role for B7-H4 in promoting malignant transformation of epithelial cells. Overexpression of B7-H4 in a human ovarian cancer cell line with little endogenous B7-H4 expression increased tumor formation in SCID mice. Whereas overexpression of B7-H4 protected epithelial cells from anoikis, siRNA-mediated knockdown of B7-H4 mRNA and protein expression in a breast cancer cell line increased caspase activity and apoptosis. The restricted normal tissue distribution of B7-H4, its overexpression in a majority of breast and ovarian cancers and functional activity in transformation validate this cell surface protein as a new target for therapeutic intervention. A therapeutic antibody strategy aimed at B7-H4 could offer an exciting opportunity to inhibit the growth and progression of human ovarian and breast cancers.  相似文献   

3.
Streptococcus pneumoniae is a leading cause of bacterial pneumonia, sepsis and meningitis. Surface accessible proteins of S. pneumoniae are being explored for the development of a protein-based vaccine in order to overcome the limitations of existing polysaccharide-based pneumococcal vaccines. To identify a potential vaccine candidate, we resolved surface-associated proteins of S. pneumoniae TIGR4 strain using two-dimensional gel electrophoresis followed by immunoblotting with antisera generated against whole heat-killed TIGR4. Ten immunoreactive spots were identified by mass spectrometric analysis that included a putative lipoprotein SP0845. Analysis of the inferred amino acid sequence of sp0845 homologues from 36 pneumococcal strains indicated that SP0845 was highly conserved (>98% identity) and showed less than 11% identity with any human protein. Our bioinformatic and functional analyses demonstrated that SP0845 is the substrate-binding protein of an ATP-binding cassette (ABC) transporter that is involved in nucleoside uptake with cytidine, uridine, guanosine and inosine as the preferred substrates. Deletion of the gene encoding SP0845 renders pneumococci avirulent suggesting that it is essential for virulence. Immunoblot analysis suggested that SP0845 is expressed in in vitro grown pneumococci and during mice infection. Immunofluorescence microscopy and flow cytometry data indicated that SP0845 is surface exposed in encapsulated strains and accessible to antibodies. Subcutaneous immunization with recombinant SP0845 induced high titer antibodies in mice. Hyperimmune sera raised against SP0845 promoted killing of encapsulated pneumococcal strains in a blood bactericidal assay. Immunization with SP0845 protected mice from intraperitoneal challenge with heterologous pneumococcal serotypes. Based on its surface accessibility, role in virulence and ability to elicit protective immunity, we propose that SP0845 may be a potential candidate for a protein-based pneumococcal vaccine.  相似文献   

4.
Chen W  Hou Z  Li C  Xiong S  Liu H 《PloS one》2011,6(6):e21341

Background

Members of the B7 superfamily costimulate the proliferation of lymphocytes during the initiation and maintenance of antigen-specific humoral and cell-mediated immune responses. B7-H3 (CD276) is a newly identified member of the B7 superfamily. It has been shown that B7-H3 plays a significant role in regulating T cell response in humans and mice, but it is not known whether a counterpart of human or murine B7-H3 exists in porcine species.

Methodology/Principal Findings

We cloned the porcine 4ig-b7-h3 gene using a blast search at the NCBI database with human b7-h3, RT-PCR and 3′-terminus RACE. Protein sequence analysis showed that the protein encoded by this gene contained 4Ig-like domains and was 90.88% identical with human 4Ig-B7-H3. Results of Dot-blot hybridization and RT-PCR showed that B7-H3 was broadly distributed in porcine tissues mainly as two isoforms, 2Ig-B7-H3 and 4Ig-B7-H3, of which 4Ig-B7-H3 was dominant. We further demonstrated that porcine 4Ig-B7-H3 was able to inhibit the proliferation and cytokine production of porcine T cells activated through the TCR pathway, similar to human B7-H3.

Conclusion

We cloned the porcine 4ig-b7-h3 gene and demonstrated that the porcine 4Ig-B7-H3 serves as a negative regulator for the T-cell immune response.  相似文献   

5.
For highly conserved mammalian protein, chicken is a suitable immune host to generate antibodies. Monoclonal antibodies have been successfully targeted with immunity checkpoint proteins as a means of cancer treatment; this treatment enhances tumor-specific immunity responses through immunoregulation. Studies have identified the importance of B7-H4 in immunoregulation and its use as a potential target for cancer treatment. High levels of B7-H4 expression are found in tumor tissues and are associated with adverse clinical and pathological characteristics. Using the phage display technique, this study isolated specific single-chain antibody fragments (scFvs) against B7-H4 from chickens. Our experiment proved that B7-H4 clearly induced the inhibition of T-cell activation. Therefore, use of anti-B7-H4 scFvs can effectively block the exhaustion of immunity cells and also stimulate and activate T-cells in peripheral blood mononuclear cells. Sequence analysis revealed that two isolated scFv S2 and S4 have the same VH complementarity-determining regions (CDRs) sequence. Molecule docking was employed to simulate the complex structures of scFv with B7-H4 to analyze the interaction. Our findings revealed that both scFvs employed CDR-H1 and CDR-H3 as main driving forces and had strong binding effects with the B7-H4. The affinity of scFv S2 was better because the CDR-L2 loop of the scFv S2 had three more hydrogen bond interactions with B7-H4. The results of this experiment suggest the usefulness of B7-H4 as a target for immunity checkpoints; the isolated B7-H4-specific chicken antibodies have the potential for use in future cancer immunotherapy applications.  相似文献   

6.
A newly identified costimulatory molecule, programmed death-1 (PD-1), provides a negative signal that is essential for immune homeostasis. However, it has been suggested that its ligands, B7-H1 (PD-L1) and B7-dendritic cells (B7-DC; PD-L2), could also costimulate T cell proliferation and cytokine secretion. Here we demonstrate the involvement of PD-1/B7-H1 and B7-DC interaction in the development of colitis. We first examined the expression profiles of PD-1 and its ligands in both human inflammatory bowel disease and a murine chronic colitis model induced by adoptive transfer of CD4(+)CD45RB(high) T cells to SCID mice. Second, we assessed the therapeutic potential of neutralizing anti-B7-H1 and/or B7-DC mAbs using this colitis model. We found significantly increased expression of PD-1 on T cells and of B7-H1 on T, B, and macrophage/DCs in inflamed colon from both inflammatory bowel disease patients and colitic mice. Unexpectedly, the administration of anti-B7-H1, but not anti-B7-DC, mAb after transfer of CD4(+)CD45RB(high) T cells suppressed wasting disease with colitis, abrogated leukocyte infiltration, and reduced the production of IFN-gamma, IL-2, and TNF-alpha, but not IL-4 or IL-10, by lamina propria CD4(+) T cells. These data suggest that the interaction of PD-1/B7-H1, but not PD-1/B7-DC, might be involved in intestinal mucosal inflammation and also show a possible role of interaction between B7-H1 and an as yet unidentified receptor for B7-H1 in inducing T cell activation.  相似文献   

7.
B7-H3, a novel B7 family member, positively or negatively regulates T-cell responses. We investigated the clinical relevance and prognostic significance of B7-H3 in hepatocellular carcinoma (HCC). Western blotting showed B7-H3 upregulation in 17 of 24 (70.8 %) HCC tissues compared with nontumor liver tissues (p = 0.028). B7-H3 immunostaining on tissue microarrays containing 240 HCC patient samples indicated that 225 (93.8 %) tumors had aberrant B7-H3 expression, with strong intensity in 79 (32.9 %) cases, whereas B7-H3 expression in peritumor liver cells was weak in most cases (226; 94.2 %). Notably, patients with high/moderate tumor cell B7-H3 expression showed significantly poorer survival (p = 0.009) and increased recurrence (p = 0.002). After multivariable adjustment, high/moderate B7-H3 expression remained significant for an increased risk of recurrence (hazard ratio = 1.79; 95 % confidence interval = 1.19–2.70; p = 0.005). B7-H3 expression correlated with invasive phenotypes like vascular invasion and advanced tumor stage, and the metastatic potential of HCC cell lines. Flow cytometry showed that B7-H3 expression is inversely correlated with proliferation and interferon-γ production by infiltrating T cells. Interferon-γ stimulation significantly upregulated B7-H3 expression in HCC cells in vitro, implicating B7-H3 expression as a feedback mechanism to evade anti-tumor immunity. Importantly, the prognostic value of B7-H3 expression was validated in an independent cohort of 206 HCC patients. Collectively, our data suggest that B7-H3 was abundantly expressed in HCC and was associated with adverse clinicopathologic features and poor outcome. Thus, B7-H3 represents an attractive target for diagnostic and therapeutic manipulation in human HCC.  相似文献   

8.
Costimulation via the PD-1 and B7-H1/B7-DC pathway regulates immunity. We investigated whether the PD-1/PD-L pathway is impaired in autoimmune diabetes. A progressive increase in the expression of PD-1 and B7-H1/B7-DC on T cells and APC, respectively, was observed in the pancreatic lymph nodes of female non-obese diabetic (NOD) mice as they developed diabetes. A significantly decreased expression of PD-1 and B7-H1/B7-DC on T cells and APC, respectively, was observed in the periphery of prediabetic NOD mice versus non-diabetic C57BL/6 strain. NOD islets also displayed a reduced capacity to upregulate B7-H1 following exposure to inflammatory cytokines. In vivo blocking studies in NOD/B7-2KONOD mice revealed that B7-H1 and B7-DC positively costimulate autoreactive CD4 and CD8 T cells and may co-operate with B7-2 to augment priming and expansion of naïve autoreactive T cells. In summary, these data suggest that diabetes susceptibility in NOD mice is associated with altered PD-1/PD-L availability.  相似文献   

9.
10.

Background

A pathogenic hallmark of rheumatoid arthritis (RA) is persistent inflammatory responses in target tissues and organs. Immune responses mediated by T cells and autoantibodies are known to play pivotal roles. A possible interpretation for this observation is a loss of negative regulation of autoimmune responses. Here we sought to investigate whether B7-H4, a cell surface inhibitory molecule of the B7-CD28 signaling pathway, may play a role in the pathogenesis of RA.

Methods and Findings

In a cross-sectional study of a clinical convenience sample using monoclonal antibodies against human B7-H4 molecules, we detected high levels of the soluble form of B7-H4 (sH4) in the sera of 65% of patients with RA (n = 68) versus only 13% of healthy donors (n = 24). Elevated sH4 was associated with an increased disease severity score (DAS28) in a cross-sectional analysis. In a mouse model of RA, transgenic expression of sH4 or genetic deletion of B7-H4 accelerated the progression of collagen-induced arthritis, accompanied by enhanced T and B cell–mediated autoimmune responses as well as increased activity of neutrophils. Expression in vivo of an agonist, a B7-H4-immunoglobulin Fc fusion protein, profoundly suppressed disease progression in the mouse model.

Conclusions

Our findings in mice indicate that sH4 acts as a decoy molecule to block the inhibitory functions of cell-surface B7-H4, leading to exacerbation of collagen-induced arthritis. If the preliminary correlation between sH4 levels and disease activity in patients with RA can be confirmed to reflect a similar mechanism, these findings suggest a novel target for treatment approaches. Please see later in the article for the Editors'' Summary  相似文献   

11.

Background

Cervical cancer is the second-most-common cause of malignancies in women worldwide, and the oncogenic activity of the human papilloma virus types (HPV) E7 protein has a crucial role in anogenital tumors. In this study, we have designed a therapeutic vaccine based on chitosan nanodelivery systems to deliver HPV-16 E7 DNA vaccine, considered as a tumor specific antigen for immunotherapy of HPV-associated cervical cancer. We have developed a Nano-chitosan (NCS) as a carrier system for intramuscular administration using a recombinant DNA vaccine expressing HPV-16 E7 (NCS-DNA E7 vaccine). NCS were characterized in vitro for their gene transfection ability.

Results

The transfection of CS-pEGFP NPs was efficient in CHO cells and the expression of green fluorescent proteins was well observed. In addition, NCS-DNA E7 vaccine induced the strongest E7-specific CD8+ T cell and interferon γ responses in C57BL/6 mice. Mice vaccinated with NCS-DNA E7 vaccine were able to generate potent protective and therapeutic antitumor effects against challenge with E7-expressing tumor cell line, TC-1.

Conclusions

The strong therapeutic effect induced by the Chitosan-based nanodelivery suggest that nanoparticles may be an efficient carrier to improve the immunogenicity of DNA vaccination upon intramuscular administration and the platform could be further exploited as a potential cancer vaccine candidate in humans.  相似文献   

12.
The immune response of CAF1 mice to various synthetic peptides (SP) related to the amino acid sequence (PDTRPAPGSTAPPAHGVTSA) of the tandem repeat of the MUC1 human breast mucin core peptide was evaluated. The most immunogenic preparations of the synthetic peptides were those conjugated to keyhole limpet hemocyanin (KLH) or clustered in a dendritic multiple antigenic peptide (MAP-4) configuration. The mice were immunized subcutaneously with synthetic peptides emulsified in RIBI adjuvant, employing various immunization protocols. Equivalently high IgG responses were induced using SP-KLH conjugates (GVTSAPDTRPAPGSTA-KLH) or an SP — MAP-4 chimeric configuration (SP1-6), which also included a universal malarial CST-3 T-helper epitope (SP1-6 = SAPDTRPAEKKIAKMEKASSVFNVVNS — MAP-4). These IgG antibodies bound both the appropriate MUC1 synthetic peptides and the cell surface expressed MUC1 mucin on murine mammary cells that had been transfected with the human MUC1 gene and a human breast cancer cell line that expresses cell-surface MUC1. A MAP-4 molecule, which included the entire 20-aminoacid sequence of the MUC1 tandem repeat (SP1-5 = PDTRPAPGSTAPPAHGVTSA—MAP-4) induced a poor IgG response. In contrast, all three types of molecule: SP-KLH, SP1-6 and SP1-5, were found to be good immunogens for the induction of specific delayedtype hypersensitivity (DTH) reactions measured using either synthetic peptides or MUC1-transfected cells. In addition, immunization with irradiated MUC1-transfected cells induced strong DTH reactions measured using synthetic peptides that expressed the PDTRP sequence, which has been shown to be, or to overlap, a T cell epitope in humans and a B cell epitope in mice. Finally, it was demonstrated that synthetic MUC1 peptide vaccines could be used both prophylactically and therapeutically to inhibit the growth of MUC1-transfected tumor cells and prolong the survival of tumor-bearing mice.  相似文献   

13.
B7-H4 is expressed in a variety of tumor cells and functions as a negative regulator of T cells. However, clarification is needed as to whether B7-H4 mediates tumorigenesis through mechanisms, such as apoptosis, in addition to mediating tumor immune escape. We investigate the mechanisms involved in enhanced oncogenicity and the inhibition of apoptosis by B7-H4 in pancreatic cancer cells. Short interfering RNAs (siRNAs) specific for B7-H4 were evaluated for their ability to knockdown B7-H4 mRNA and protein expression in pancreatic cancer cells and the most effective siRNA was selected for investigating the effect of B7-H4 gene silencing in a number of functional assays. The inhibition of B7-H4 increased cell-cell adhesion and decreased the formation of pseudopodia. It also increased the expression of E-cadherin and decreased the expression of vimentin and CD44. B7-H4 siRNA inhibited cell proliferation, colony formation and migration of pancreatic cancer cells. Moreover, increased apoptosis in pancreatic cancer cells following B7-H4 silencing was demonstrated in vitro by using flow cytometry and in a xenograft tumor model and was associated with increased caspase activity and decreased Erk1/2 phosphorylation both in vitro and in vivo. Loss of B7-H4 function thus prevents tumor growth through many processes, including the induction of apoptosis and inhibition of the Erk1/2 signaling pathway indicating that B7-H4 is a cancer promoter and a potentially important therapeutic target. B7-H4 inhibition might offer an exciting opportunity to inhibit the progression of human pancreatic cancers.  相似文献   

14.
A major goal in rabies virus (RV) research is to develop a single-dose postexposure prophylaxis (PEP) that would simplify vaccination protocols, reduce costs associated with rabies prevention in humans, and save lives. Live replication-deficient RV-based vaccines are emerging as promising single-dose vaccines to replace currently licensed inactivated RV-based vaccines. Nonetheless, little is known about how effective B cells develop in response to live RV-based vaccination. Understanding this fundamental property of rabies immunology may help in developing a single-dose RV vaccine. Typically, vaccines induce B cells secreting high-affinity, class-switched antibodies during germinal center (GC) reactions; however, there is a lag time between vaccination and the generation of GC B cells. In this report, we show that RV-specific antibodies are detected in mice immunized with live but not inactivated RV-based vaccines before B cells displaying a GC B cell phenotype (B220+GL7hiCD95hi) are formed, indicating a potential role for T cell-independent and early extrafollicular T cell-dependent antibody responses in the protection against RV infection. Using two mouse models of CD4+ T cell deficiency, we show that B cells secreting virus-neutralizing antibodies (VNAs) are induced via T cell-independent mechanisms within 4 days postimmunization with a replication-deficient RV-based vaccine. Importantly, mice that are completely devoid of T cells (B6.129P2-Tcrβtm1Mom Tcrδtm1Mom/J) show protection against pathogenic challenge shortly after immunization with a live replication-deficient RV-based vaccine. We show that vaccines that can exploit early pathways of B cell activation and development may hold the key for the development of a single-dose RV vaccine wherein the rapid induction of VNA is critical.  相似文献   

15.

Background

Burkholderia pseudomallei is the causative agent of melioidosis, a disease of significant morbidity and mortality in both human and animals in endemic areas. There is no vaccine towards the bacterium available in the market, and the efficacy of many of the bacterium''s surface and secreted proteins are currently being evaluated as vaccine candidates.

Methodology/Principal Findings

With the availability of the B. pseudomallei whole genome sequence, we undertook to identify genes encoding the known immunogenic outer membrane protein A (OmpA). Twelve OmpA domains were identified and ORFs containing these domains were fully annotated. Of the 12 ORFs, two of these OmpAs, Omp3 and Omp7, were successfully cloned, expressed as soluble protein and purified. Both proteins were recognised by antibodies in melioidosis patients'' sera by Western blot analysis. Purified soluble fractions of Omp3 and Omp7 were assessed for their ability to protect BALB/c mice against B. pseudomallei infection. Mice were immunised with either Omp3 or Omp7, subsequently challenged with 1×106 colony forming units (cfu) of B. pseudomallei via the intraperitoneal route, and examined daily for 21 days post-challenge. This pilot study has demonstrated that whilst all control unimmunised mice died by day 9 post-challenge, two mice (out of 4) from both immunised groups survived beyond 21 days post-infection.

Conclusions/Significance

We have demonstrated that B. pseudomallei OmpA proteins are immunogenic in mice as well as melioidosis patients and should be further assessed as potential vaccine candidates against B. pseudomallei infection.  相似文献   

16.
Programmed death receptor ligand 1 (PD-L1, also called B7-H1) is a recently described B7 family member. In contrast to B7-1 and B7-2, PD-L1 does not interact with either CD28 or CTLA-4. To date, one specific receptor has been identified that can be ligated by PD-L1. This receptor, programmed death receptor 1 (PD-1), has been shown to negatively regulate T-cell receptor (TCR) signaling. Upon ligating its receptor, PD-L1 has been reported to decrease TCR-mediated proliferation and cytokine production. PD-1 gene–deficient mice developed autoimmune diseases, which early led to the hypothesis of PD-L1 regulating peripheral tolerance. In contrast to normal tissues, which show minimal surface expression of PD-L1 protein, PD-L1 expression was found to be abundant on many murine and human cancers and could be further up-regulated upon IFN- stimulation. Thus, PD-L1 might play an important role in tumor immune evasion. This review discusses the currently available data concerning negative T-cell regulation via PD-1, the blockade of PD-L1/PD-1 interactions, and the implications for adoptive T-cell therapies.  相似文献   

17.
A Phase I trial conducted in 2009–2010 demonstrated that oral vaccination with a replication competent Ad4-H5 (A/Vietnam) vector with dosages ranging from 107-1011 viral particles was well tolerated. HA-specific T-cell responses were efficiently induced, but very limited hemagglutination-inhibiting (HI) humoral responses were measured. However, a single boost of Ad4-H5-Vtn vaccinated individuals with a unadjuvanted licensed H5N1 (A/Vietnam) subunit vaccine resulted in superior HI titers compared with unprimed subjects. In the current study, the impact of Ad4-H5 priming on the quality of the polyclonal humoral immune response was evaluated using a real-time kinetics assay by surface plasmon resonance (SPR). Total binding of serum polyclonal antibodies from the Ad4-H5-Vtn primed groups against both homologous H5N1-A/Vietnam/1194/2004 (clade 1) and heterologous A/Indonesia-5/2005 (clade 2.1) HA1 head domain was significantly higher compared with sera from individuals that received subunit H5N1 vaccination alone. SPR measurements also demonstrated that the antigen-antibody complex dissociation rates (a surrogate for antibody affinity) of serum antibodies against the HA1 of H5N1-A/Vietnam were significantly higher in the Ad4-H5 primed groups compared with those from the unprimed group. Furthermore, strong correlations were observed between the antibody affinities for HA1 (but not HA2) and the virus neutralization titers against the homologous strain and a panel of heterologous clade 2 H5N1 strains. These findings support the concept of oral prime-boost vaccine approaches against pandemic influenza to elicit long-term memory B cells with high affinity capable of rapid response to variant pandemic viruses likely to emerge and adapt to human transmissions.  相似文献   

18.
To develop a superior chimeric peptide (CP) vaccine of human chorionic gonadotropin (hCG), two CP antigens (named CP12 and CP22) encoding one or two copies of three linear B cell epitopes from the β-hCG subunit and six foreign T cell epitopes, including two promiscuous TCEs from hepatitis B surface antigen and tetanus toxoid, were constructed and biosynthesized. The hCG CP12 and CP22 of 21 or 23 kDa, respectively, were expressed in Escherichia coli at the level of ∼1% of total cell proteins when inserted into thermo-inducible pBV221 expression vector. The purified CP12 and CP22 proteins with >95% relative homogeneity are immunogenic, and elicited antibodies against the β5, β9 and β8 BCEs of β-hCG in both rabbits and three different inbred strains of mice. A mouse uterine weight study in Balb/c mice demonstrated that the CP12 and CP22 antigens with an additional β5 neutralizing epitope enhanced the in vivo bio-neutralization capacity of the induced antibodies compared to the C-terminal immunogen of β-hCG. We propose that the biosynthesized CP22, possessing with two copies of three BCEs, represents a novel candidate antigen for an hCG contraceptive or tumor therapeutic vaccine.  相似文献   

19.
B7-H3 is a cell surface molecule in the immunoglobulin superfamily that is frequently upregulated in response to autoantigens and pathogens during host T cell immune responses. However, B7-H3''s role in the differential regulation of T cell subsets remains largely unknown. Therefore, we constructed a new B7-H3 deficient mouse strain (B7-H3 KO) and evaluated the functions of B7-H3 in the regulation of Th1, Th2, and Th17 subsets in experimental autoimmune encephalomyelitis (EAE), experimental asthma, and collagen-induced arthritis (CIA); these mouse models were used to predict human immune responses in multiple sclerosis, asthma, and rheumatoid arthritis, respectively. Here, we demonstrate that B7-H3 KO mice have significantly less inflammation, decreased pathogenesis, and limited disease progression in both EAE and CIA mouse models when compared with littermates; these results were accompanied by a decrease in IFN-γ and IL-17 production. In sharp contrast, B7-H3 KO mice developed severe ovalbumin (OVA)-induced asthma with characteristic infiltrations of eosinophils in the lung, increased IL-5 and IL-13 in lavage fluid, and elevated IgE anti-OVA antibodies in the blood. Our results suggest B7-H3 has a costimulatory function on Th1/Th17 but a coinhibitory function on Th2 responses. Our studies reveal that B7-H3 could affect different T cell subsets which have important implications for regulating pathogenesis and disease progression in human autoimmune disease.  相似文献   

20.
EGFR基因重组T7噬菌体疫苗抗Lewis肺癌的实验研究   总被引:1,自引:0,他引:1  
本研究中制备了表达表皮生长因子受体(EGFR)部分肽段的基因重组T7噬菌体疫苗,并开展了诱导小鼠产生内源性抗EGFR抗体的实验性抗肿瘤作用研究。由T7噬菌体展示系统将7个经筛选的异种属(人源、鸡源)EGFR膜外区片段展示在其壳体次要头蛋白(P10B)上,用所制备的基因重组噬茵体疫苗免疫小鼠,免疫4W后皮下接种Lewis肺癌细胞,10d后分离瘤体并称重,观察各实验组的抗肿瘤效果。Western Blot检测重组的融合壳蛋白均有EGFR抗原性:高表达EGFR的A431 细胞与免疫3W的小鼠抗血清结合并被荧光二抗标记,流式细胞仪检测法确认有抗EGFR抗体产生;各实验组肿瘤均重统计结果显示,P-CL1-670组、P-cp1-130组、P-cp2-136组、P-cp3-145组、 P-cp4-142组与空白噬菌体组差异性显著。说明表达EGFR的基因重组噬菌体疫苗诱导产生的内源性抗体.在一定程度上抑制了EGFR阳性肿瘤的生长.为诱导型内源性抗EGFR抗体的肿瘤靶向治疗研究开辟了新的途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号