首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Vivek Malhotra 《The EMBO journal》2013,32(12):1660-1664
The process by which proteins are secreted without entering the classical endoplasmic reticulum (ER)–Golgi complex pathway, in eukaryotic cells, is conveniently called unconventional protein secretion. Recent studies on one such protein called Acb1 have revealed a number of components involved in its secretion. Interestingly, conditions that promote the secretion of Acb1 trigger the biogenesis of a new compartment called CUPS (Compartment for Unconventional Protein Secretion). CUPS form near the ER exit site but lack ER‐specific proteins. Other proteins that share some of the features common with the secretion of Acb1 are interleukin‐1β and tissue transglutaminase. Here I will review recent advances made in the field and propose a new model for unconventional protein secretion.  相似文献   

2.
The endoplasmic reticulum (ER)-Golgi-independent, unconventional secretion of Acb1 requires many different proteins. They include proteins necessary for the formation of autophagosomes, proteins necessary for the fusion of membranes with the endosomes, proteins of the multivesicular body pathway, and the cell surface target membrane SNARE Sso1, thereby raising the question of what achieves the connection between these diverse proteins and Acb1 secretion. In the present study, we now report that, upon starvation in Saccharomyces cerevisiae, Grh1 is collected into unique membrane structures near Sec13-containing ER exit sites. Phosphatidylinositol 3 phosphate, the ESCRT (endosomal sorting complex required for transport) protein Vps23, and the autophagy-related proteins Atg8 and Atg9 are recruited to these Grh1-containing membranes, which lack components of the Golgi apparatus and the endosomes, and which we call a novel compartment for unconventional protein secretion (CUPS). We describe the cellular proteins required for the biogenesis of CUPS, which we believe is the sorting station for Acb1's release from the cells.  相似文献   

3.
ABSTRACT

Endomembrane transport system begins at the endoplasmic reticulum (ER), continues to the Golgi apparatus and subsequent compartment called trans-Golgi network (TGN). We found that SUT2, a tobacco sucrose-transporter ortholog and was localized in the TGN, decreased significantly under a sucrose-starvation condition. The tobacco SNARE protein SYP41, localized in the TGN and secretory vesicle cluster (SVC), also decreased under the starvation. Similarly, the SCAMP2-RFP fusion protein, which is localized in TGN, SVC, and plasma membrane (PM), was distributed solely in the PM under the starvation. Under the same starvation condition, protein secretion was not arrested but pectin deposition to cell wall was suppressed. These data indicated that the protein composition in TGN and existence of the SVC are regulated by sugar availability. Furthermore, our findings as well as the involvement of SVC in pectin secretion suggested that synthesis and transport of pectin are regulated by the level of extracellular sugars.  相似文献   

4.
Several soluble proteins that reside in the lumen of the ER contain a specific C-terminal sequence (KDEL) which prevents their secretion. This sequence may be recognized by a receptor that either immobilizes the proteins in the ER, or sorts them from other proteins at a later point in the secretory pathway and returns them to their normal location. To distinguish these possibilities, I have attached an ER retention signal to the lysosomal protein cathepsin D. The oligosaccharide side chains of this protein are normally modified sequentially by two enzymes to form mannose-6-phosphate residues; these enzymes do not act in the ER, but are thought to be located in separate compartments within (or near) the Golgi apparatus. Cathepsin D bearing the ER signal accumulates within the ER, but continues to be modified by the first of the mannose-6-phosphate forming enzymes. Modification is strongly temperature-dependent, which is also a feature of ER-to-Golgi transport. These results support the idea that luminal ER proteins are continuously retrieved from a post-ER compartment, and that this compartment contains N-acetylglucosaminyl-1-phosphotransferase activity.  相似文献   

5.
Filamentous fungi are excellent hosts for industrial protein production due to their superior secretory capacity; however, the yield of heterologous eukaryotic proteins is generally lower than that of fungal or endogenous proteins. Although activating protein folding machinery in the endoplasmic reticulum (ER) improves the yield, the importance of intracellular transport machinery for heterologous protein secretion is poorly understood. Here, using Aspergillus oryzae as a model filamentous fungus, we studied the involvement of two putative lectin-like cargo receptors, A. oryzae Vip36 (AoVip36) and AoEmp47, in the secretion of heterologous proteins expressed in fusion with the endogenous enzyme α-amylase as the carrier. Fluorescence microscopy revealed that mDsRed-tagged AoVip36 localized in the Golgi compartment, whereas AoEmp47 showed localization in both the ER and the Golgi compartment. Deletion of AoVip36 and AoEmp47 improved heterologous protein secretion, but only AoVip36 deletion had a negative effect on the secretion of α-amylase. Analysis of ER-enriched cell fractions revealed that AoVip36 and AoEmp47 were involved in the retention of heterologous proteins in the ER. However, the overexpression of each cargo receptor had a different effect on heterologous protein secretion: AoVip36 enhanced the secretion, whereas AoEmp47 promoted the intracellular retention. Taken together, our data suggest that AoVip36 and AoEmp47 hinder the secretion of heterologous proteins by promoting their retention in the ER but that AoVip36 also promotes the secretion of heterologous proteins. Moreover, we found that genetic deletion of these putative ER-Golgi cargo receptors significantly improves heterologous protein production. The present study is the first to propose that ER-Golgi transport is a bottleneck for heterologous protein production in filamentous fungi.  相似文献   

6.
Under artificial conditions Golgi enzymes have the capacity to rapidly accumulate in the endoplasmic reticulum (ER). These observations prompted the idea that Golgi enzymes constitutively recycle through the ER. We have tested this hypothesis under physiological conditions through use of a procedure that captures Golgi enzymes in the ER. In the presence of rapamycin, which induces a tight association between FKBP (FK506-binding protein) and FRAP (FKBP-rapamycin-associated protein), an FKBP-tagged Golgi enzyme can be trapped when it visits the ER by an ER-retained protein fused to FRAP. We find that although FKBP-ERGIC-53 of the ER-Golgi intermediate compartment (ERGIC) rapidly cycles through the ER (30 min), FKBP-Golgi enzyme chimeras remain stably associated with Golgi membranes. We also demonstrate that Golgi dispersion upon nocodazole treatment mainly occurs through a mechanism that does not involve the recycling of Golgi membranes through the ER. Our findings suggest that the Golgi apparatus, as defined by its collection of resident enzymes, exists independent of the ER.  相似文献   

7.
Pulse-chase analysis of folded and misfolded insulin precursor (IP) expressed in Saccharomyces cerevisiae was performed to establish the requirements for intracellular transport and the influence of the secretory pathway quality control mechanisms on secretion. Metabolic labelling of the IP expressed in S. cerevisiae showed that the effect of a leader was to stabilise the IP in the endoplasmic reticulum (ER), and facilitate intracellular transport of the fusion protein and rapid secretion. The first metabolically labelled IP appeared in the culture supernatant within 2-4 min of chase, and most of the secreted IP appeared within the first 15 min of chase. After enzymatic removal of the leader in a late Golgi apparatus compartment, the IP followed one of two routes: (1) to the plasma membrane and hence to the culture supernatant, or (2) to a Golgi or post-Golgi compartment from which secretion was restricted. Combined secretion and intracellular retention of the IP reflected either saturation of a Golgi or post-Golgi compartment and secretion as a consequence of overexpression, or competition between secretion and intracellular retention. IP which was misfolded, either due to amino acid substitution or because disulphide bond formation had been prevented with dithiothreitol (DTT), was transported from the ER to the Golgi apparatus but then retained in a Golgi or post-Golgi compartment and not exported to the culture supernatant.  相似文献   

8.
Starving Dictyostelium discoideum cells secrete AcbA, an acyl coenzyme A–binding protein (ACBP) that lacks a conventional signal sequence for entering the endoplasmic reticulum (ER). Secretion of AcbA in D. discoideum requires the Golgi-associated protein GRASP. In this study, we report that starvation-induced secretion of Acb1, the Saccharomyces cerevisiae ACBP orthologue, also requires GRASP (Grh1). This highlights the conserved function of GRASP in unconventional secretion. Although genes required for ER to Golgi or Golgi to cell surface transport are not required for Acb1 secretion in yeast, this process involves autophagy genes and the plasma membrane t-SNARE, Sso1. Inhibiting transport to vacuoles does not affect Acb1 secretion. In sum, our experiments reveal a unique secretory pathway where autophagosomes containing Acb1 evade fusion with the vacuole to prevent cargo degradation. We propose that these autophagosome intermediates fuse with recycling endosomes instead to form multivesicular body carriers that then fuse with the plasma membrane to release cargo.  相似文献   

9.
Vesicle-associated membrane protein–associated protein (VAP) is an endoplasmic reticulum (ER)-resident integral membrane protein that controls a nonvesicular mode of ceramide and cholesterol transfer from the ER to the Golgi complex by interacting with ceramide transfer protein and oxysterol-binding protein (OSBP), respectively. We report that VAP and its interacting proteins are required for the processing and secretion of pancreatic adenocarcinoma up-regulated factor, whose transport from the trans-Golgi network (TGN) to the cell surface is mediated by transport carriers called “carriers of the trans-Golgi network to the cell surface” (CARTS). In VAP-depleted cells, diacylglycerol level at the TGN was decreased and CARTS formation was impaired. We found that VAP forms a complex with not only OSBP but also Sac1 phosphoinositide phosphatase at specialized ER subdomains that are closely apposed to the trans-Golgi/TGN, most likely reflecting membrane contact sites. Immobilization of ER–Golgi contacts dramatically reduced CARTS production, indicating that association–dissociation dynamics of the two membranes are important. On the basis of these findings, we propose that the ER–Golgi contacts play a pivotal role in lipid metabolism to control the biogenesis of transport carriers from the TGN.  相似文献   

10.
Autophagy is the engulfment of cytosol and organelles by double-membrane vesicles termed autophagosomes. Autophagosome formation is known to require phosphatidylinositol 3-phosphate (PI(3)P) and occurs near the endoplasmic reticulum (ER), but the exact mechanisms are unknown. We show that double FYVE domain-containing protein 1, a PI(3)P-binding protein with unusual localization on ER and Golgi membranes, translocates in response to amino acid starvation to a punctate compartment partially colocalized with autophagosomal proteins. Translocation is dependent on Vps34 and beclin function. Other PI(3)P-binding probes targeted to the ER show the same starvation-induced translocation that is dependent on PI(3)P formation and recognition. Live imaging experiments show that this punctate compartment forms near Vps34-containing vesicles, is in dynamic equilibrium with the ER, and provides a membrane platform for accumulation of autophagosomal proteins, expansion of autophagosomal membranes, and emergence of fully formed autophagosomes. This PI(3)P-enriched compartment may be involved in autophagosome biogenesis. Its dynamic relationship with the ER is consistent with the idea that the ER may provide important components for autophagosome formation.  相似文献   

11.
After growth factor stimulation, kinases are activated to regulate multiple aspects of cell physiology. Activated Src is present on Golgi membranes, but its function here remains unclear. We find that Src regulates mucin-type protein O-glycosylation through redistribution of the initiating enzymes, polypeptide N-acetylgalactosaminyl transferases (GalNac-Ts), from the Golgi to the ER. Redistribution occurs after stimulation with EGF or PDGF in a Src-dependent manner and in cells with constitutively elevated Src activity. All GalNac-T family enzymes tested are affected, whereas multiple other glycosylation enzymes are not displaced from the Golgi. Upon Src activation, the COP-I coat is also redistributed in punctate structures that colocalize with GalNac-Ts and a dominant-negative Arf1 isoform, Arf1(Q71L), efficiently blocks GalNac-T redistribution, indicating that Src activates a COP-I–dependent trafficking event. Finally, Src activation increases O-glycosylation initiation as seen by lectin staining and metabolic labeling. We propose that growth factor stimulation regulates O-glycosylation initiation in a Src-dependent fashion by GalNac-T redistribution to the ER.  相似文献   

12.
13.
Compartment-specific control of phosphoinositide lipids is essential for cell function. The Sac1 lipid phosphatase regulates endoplasmic reticulum (ER) and Golgi phosphatidylinositol-4-phosphate [PI(4)P] in response to nutrient levels and cell growth stages. During exponential growth, Sac1p interacts with Dpm1p at the ER but shuttles to the Golgi during starvation. Here, we report that a C-terminal region in Sac1p is required for retention in the perinuclear ER, whereas the N-terminal domain is responsible for Golgi localization. We also show that starvation-induced shuttling of Sac1p to the Golgi depends on the coat protein complex II and the Rer1 adaptor protein. Starvation-induced shuttling of Sac1p to the Golgi specifically eliminates a pool of PI(4)P generated by the lipid kinase Pik1p. In addition, absence of nutrients leads to a rapid dissociation of Pik1p, together with its non-catalytical subunit Frq1p, from Golgi membranes. Reciprocal rounds of association/dissociation of the Sac1p lipid phosphatase and the Pik1p/Frq1p lipid kinase complex are responsible for growth-dependent control of Golgi phosphoinositides. Sac1p and Pik1p/Frq1p are therefore elements of a unique machinery that synchronizes ER and Golgi function in response to different growth conditions.  相似文献   

14.
The relationship between maturation of lipoprotein lipase (LPL) and its translocation from the endoplasmic reticulum (ER) to the Golgi complex was determined by measuring lipolytic activity under conditions preventing transport of the enzyme from the ER to the Golgi compartment. In the presence of brefeldin A, a reagent that inhibits movement of proteins from the ER and causes the disassembly of the Golgi complex, pro-5 Chinese hamster ovary cells accumulated catalytically active LPL, while secretion of the enzyme was effectively blocked. LPL retained intracellularly by brefeldin A treatment possessed oligosaccharide chains that were processed to the complex form by the Golgi enzymes redistributed into the ER. At 16 degrees C, a condition disrupting protein transport to the cis-Golgi, the retained enzyme again remained catalytically active although the oligosaccharides remained in the high mannose form. Lastly, attachment of the specific ER retention signal KDEL (Lys-Asp-Glu-Leu) to the carboxyl terminus of LPL also resulted in intracellularly retained enzyme that was fully active. The importance of oligosaccharide processing for attainment of LPL catalytic activity in vitro was also determined. LPL was active and secreted when trimming of the mannose residues was inhibited by deoxymannojirimycin and when addition of complex sugars was blocked using Chinese hamster ovary mutants (lec1 and lec2), indicating that these processing events are not necessary for the expression of a functional enzyme. However, blocking glucose removal by glucosidase inhibitors (castanospermine and N-methyl-deoxynojirimycin) resulted in a significant reduction in LPL specific activity and secretion. Thus, glucose trimming of LPL oligosaccharides is essential for enzyme activation; however, further oligosaccharide processing or translocation of the enzyme to the cis-Golgi is not required for full expression of lipolytic activity in vitro.  相似文献   

15.
Mouse hepatitis coronavirus (MHV) buds into pleomorphic membrane structures with features expected of the intermediate compartment between the ER and the Golgi complex. Here, we characterize the MHV budding compartment in more detail in mouse L cells using streptolysin O (SLO) permeabilization which allowed us to better visualize the membrane structures at the ER-Golgi boundary. The MHV budding compartment shares membrane continuities with the rough ER as well as with cisternal elements on one side of the Golgi stack. It also labeled with p58 and rab2, two markers of the intermediate compartment, and with PDI, usually considered to be a marker of the rough ER. The membranes of the budding compartment, as well as the budding virions themselves, but not the rough ER, labeled with the N-acetyl- galactosamine (GalNAc)-specific lectin Helix pomatia. When the SLO- permeabilized cells were treated with guanosine 5'-(3-O- thio)triphosphate (GTP gamma S), the budding compartment accumulated a large number of beta-cop-containing buds and vesicular profiles. Complementary biochemical experiments were carried out to determine whether vesicular transport was required for the newly synthesized M protein, that contains only O-linked oligosaccharides, to acquire first, GalNAc and second, the Golgi modifications galactose and sialic acid. The results from both in vivo studies and from the use of SLO- permeabilized cells showed that, while GalNAc addition occurred under conditions which block vesicular transport, both cytosol and ATP were prerequisites for the M protein oligosaccharides to acquire Golgi modifications. Collectively, our data argue that transport from the rough ER to the Golgi complex requires only one vesicular transport step and that the intermediate compartment is a specialized domain of the endoplasmatic reticulum that extends to the first cisterna on the cis side of the Golgi stack.  相似文献   

16.
Ecto-nucleoside triphosphate diphosphohydrolases, NTPDase1 (CD39) and NTPDase3, are integral plasma membrane proteins that hydrolyze extracellular nucleotides, thereby modulating the function of purinergic receptors. During processing in the secretory pathway, the active sites of ecto-nucleotidases are located in the lumen of vesicular compartments, thus raising the question whether the ecto-nucleotidases affect the ATP-dependent processes in these compartments, including protein folding in the endoplasmic reticulum (ER). It has been reported (J. Biol. Chem. (2001) 276, 41518-41525) that CD39 is not active until it reaches the plasma membrane, suggesting that terminal glycosylation in Golgi is critical for its activity. To investigate the subcellular location and the mechanism of ecto-nucleotidase activation, we expressed human NTPDase3 in COS-1 cells and blocked the secretory transport with monensin or brefeldin A, or by targeting to ER with a signal peptide. Cell surface biotinylation, sensitivity to glycosidases, and fluorescence microscopy analyses suggest that, in contrast to the previous report on CD39, NTPDase3 becomes catalytically active in the ER or in the ER-Golgi intermediate compartment, and that terminal glycosylation in Golgi is not essential for activity. Moreover, ER-targeted NTPDase3, but not wild-type NTPDase3 or ER-targeted inactive G221A mutant, significantly diminished the folding efficiency and the transport to the plasma membrane of coexpressed CD39 used as a reporter protein. These data suggest that ER-targeted NTPDase3 significantly depletes ATP in ER, whereas wild-type NTPDase3 is likely to acquire ATPase activity in a post-ER, but pre-Golgi, compartment, thus avoiding unproductive ATP hydrolysis and interference with protein folding in the ER. ER-targeted NTPDase3 may be a useful experimental tool to study the effects of ER ATP depletion on ER function under normal and stress conditions.  相似文献   

17.
T R Graham  P A Scott    S D Emr 《The EMBO journal》1993,12(3):869-877
We have found that brefeldin A (BFA) inhibited the growth of an ise1 mutant of Saccharomyces cerevisiae. Genetic complementation and mapping studies demonstrated that ise1 was allelic to erg6, a gene required for the biosynthesis of the principal membrane sterol of yeast, ergosterol. Treatment of ise1 cells with BFA resulted in an immediate block in protein transport through the secretory pathway. Vacuolar carboxypeptidase Y (CPY) and the secreted pheromone alpha-factor accumulated as both the core glycosylated (ER) and alpha 1,6 mannosylated (early Golgi) forms in drug-treated cells. The modification of alpha-factor with alpha 1,6 mannose in BFA-treated cells did not appear to result from retrograde transport of the alpha 1,6 mannosyl-transferase into the ER. We found that transport of CPY from medial and late Golgi compartments to the vacuole was unaffected by BFA, nor was secretion of alpha 1,3 mannosylated alpha-factor or invertase blocked by BFA. The effects of BFA on the secretory pathway were also reversible after brief exposure (< 40 min) to the drug. We suggest that the primary effect of BFA in S. cerevisiae is restricted to the ER and the alpha 1,6 mannosyltransferase compartment of the Golgi complex.  相似文献   

18.
Rubella virus E1 glycoprotein normally complexes with E2 in the endoplasmic reticulum (ER) to form a heterodimer that is transported to and retained in the Golgi complex. In a previous study, we showed that in the absence of E2, unassembled E1 subunits accumulate in a tubular pre-Golgi compartment whose morphology and biochemical properties are distinct from both rough ER and Golgi. We hypothesized that this compartment corresponds to hypertrophied ER exit sites that have expanded in response to overexpression of E1. In the present study we constructed BHK cells stably expressing E1 protein containing a cytoplasmically disposed epitope and isolated the pre-Golgi compartment from these cells by cell fractionation and immunoisolation. Double label indirect immunofluorescence in cells and immunoblotting of immunoisolated tubular networks revealed that proteins involved in formation of ER-derived transport vesicles, namely p58/ERGIC 53, Sec23p, and Sec13p, were concentrated in the E1-containing pre-Golgi compartment. Furthermore, budding structures were evident in these membrane profiles, and a highly abundant but unknown 65-kDa protein was also present. By comparison, marker proteins of the rough ER, Golgi, and COPI vesicles were not enriched in these membranes. These results demonstrate that the composition of the tubular networks corresponds to that expected of ER exit sites. Accordingly, we propose the name SEREC (smooth ER exit compartment) for this structure.  相似文献   

19.
The Saccharomyces cerevisiae Wbp1 protein is an endoplasmic reticulum (ER), type I transmembrane protein which contains a cytoplasmic dilysine (KKXX) motif. This motif has previously been shown to direct Golgi-to-ER retrieval of type I membrane proteins in mammalian cells (Jackson, M. R., T. Nilsson, and P. A. Peterson. 1993. J. Cell Biol. 121: 317-333). To analyze the role of this motif in yeast, we constructed a SUC2-WBP1 chimera consisting of the coding sequence for the normally secreted glycoprotein invertase fused to the coding sequence of the COOH terminus (including the transmembrane domain and 16-amino acid cytoplasmic tail) of Wbplp. Carbohydrate analysis of the invertase-Wbp1 fusion protein using mannose linkage-specific antiserum demonstrated that the fusion protein was efficiently modified by the early Golgi initial alpha 1,6 mannosyltransferase (Och1p). Subcellular fractionation revealed that > 90% of the alpha 1,6 mannose-modified fusion protein colocalized with the ER (Wbp1p) and not with the Golgi Och1p-containing compartment or other membrane fractions. Amino acid changes within the dily sine motif (KK-->QK, KQ, or QQ) did not change the kinetics of initial alpha 1,6 mannose modification of the fusion protein but did dramatically increase the rate of modification by more distal Golgi (elongating alpha 1,6 and alpha 1,3) mannosyltransferases. These mutant fusion proteins were then delivered directly from a late Golgi compartment to the vacuole, where they were proteolytically cleaved in a PEP4-dependent manner. While amino acids surrounding the dilysine motif played only a minor role in retention ability, mutations that altered the position of the lysines relative to the COOH terminus of the fusion protein also yielded a dramatic defect in ER retention. Collectively, our results indicate that the KKXX motif does not simply retain proteins in the ER but rather directs their rapid retrieval from a novel, Och1p-containing early Golgi compartment. Similar to observations in mammalian cells, it is the presence of two lysine residues at the appropriate COOH-terminal position which represents the most important features of this sorting determinant.  相似文献   

20.
The sec18 and sec23 secretory mutants of Saccharomyces cerevisiae have previously been shown to exhibit temperature-conditional defects in protein transport from the ER to the Golgi complex (Novick, P., S. Ferro, and R. Schekman, 1981. Cell. 25:461-469). We have found that the Sec18 and Sec23 protein functions are rapidly inactivated upon shifting mutant cells to the nonpermissive temperature (less than 1 min). This has permitted an analysis of the potential role these SEC gene products play in transport events distal to the ER. The sec-dependent transport of alpha-factor (alpha f) and carboxypeptidase Y (CPY) biosynthetic intermediates present throughout the secretory pathway was monitored in temperature shift experiments. We found that Sec18p/NSF function was required sequentially for protein transport from the ER to the Golgi complex, through multiple Golgi compartments and from the Golgi complex to the cell surface. In contrast, Sec23p function was required in the Golgi complex, but only for transport of alpha f out of an early compartment. Together, these studies define at least three functionally distinct Golgi compartments in yeast. From cis to trans these compartments contain: (a) An alpha 1----6 mannosyltransferase; (b) an alpha 1----3 mannosyltransferase; and (c) the Kex2 endopeptidase. Surprisingly, we also found that a pool of Golgi-modified CPY (p2 CPY) located in a compartment distal to the alpha 1----3 mannosyltransferase does not require Sec18p function for final delivery to the vacuole. This compartment appears to be equivalent to the Kex2 compartment as we show that a novel vacuolar CPY-alpha f-invertase fusion protein undergoes efficient Kex2-dependent cleavage resulting in the secretion of invertase. We propose that this Kex2 compartment is the site in which vacuolar proteins are sorted from proteins destined to be secreted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号