首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins in the peribacteroid space (PBS) between the bacteroid outer membrane and the peribacteroid membrane in root nodules of Pisum sativum and Vicia faba induced by Rhizobium leguminosarum PRE were analysed by two-dimensional (2-D) gel electrophoresis. Most of the detectable proteins were found to migrate to identical positions; however the level of accumulation of some of these appear to be determined by the host plant. When a different R. leguminosarum strain (RB1) was used to inoculate P. sativum , the majority of the isolated PBS proteins were found to migrate in the 2-D gel to identical positions as those of the other two combinations ( R. leguminosarum PRE x P. sativum and R. leguminosarum PRE x V. faba ).  相似文献   

2.
3.
Guy  Micha  Kende  Hans 《Planta》1984,160(3):276-280
Protoplasts isolated from leaves of peas (Pisum sativum L.) and of Vicia faba L. produced 1-aminocyclopropane-1-carboxylic acid (ACC) from endogenous substrate. Synthesis of ACC and conversion of ACC to ethylene was promoted by light and inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and carbonyl cyanide m-chlorophenylhydrazone. Aminoethoxyvinylglycine inhibited ethylene synthesis to a minor extent when given during incubation of the protoplasts but was very effective when added both to the medium in which the protoplasts were isolated and to the incubation medium as well. Radioactivity from [U-14C]methionine was incorporated into ACC and ethylene. However, the specific radioactivity of the C-2 and C-3 atoms of ACC, from which ethylene is formed, increased much faster than the specific radioactivity of ethylene. It appears that ACC and ethylene are synthesized in different compartments of the cell and that protoplasts constitute a suitable system to study this compartmentation.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - CCCP carbonyl cyanide m-chlorophenylhydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

4.
There is a lack of knowledge concerning the effect of nitrate-nitrogen (NO3(-)-N) at levels known to inhibit nodule formation and functioning on root colonization of dinitrogen-fixing legumes. Firstly, this study investigated potential differences between Rhizobium leguminosarum bv. viciae 175F9 and its bioluminescent-labeled strain 175F9.lux on root colonization of faba bean (Vicia faba L.) and pea (Pisum sativum L.). These two strains similarly colonized the roots of both hosts. Secondly, this study evaluated the effects of 0 and 10 mol x m(-3) NO3(-)-N on root colonization of faba bean and pea by strain 175F9.lux, over time. Averaged over both hosts and harvest dates, the presence of NO3(-)-N increased the rhizobial population and the root length colonized. In addition, our results showed that bioluminescence activity increased from 7 to 14 days after sowing and was not correlated to rhizobial population. Finally, to demonstrate that an increase in bioluminescence activity was not an indirect effect of nitrate on R. leguminosarum bv. viciae 175F9.lux, this study investigated the effects of increasing carbon (mannitol) and nitrogen (NO3(-)-N) concentrations on the rhizobial population and bioluminescence activity. The carbon source was more important than the nitrogen source to increase the rhizobial population and bioluminescence activity, which increased with increasing mannitol concentration, but not with increasing nitrate concentration. Results from this study demonstrated that NO3(-)-N increased rhizobial population, especially for faba bean, and the length of root colonized.  相似文献   

5.
Out of 70 bacterial strains isolated from root nodules of Lupinus albus and L. angustifolius grown in the soils from the Maamora forest in Morocco, 56 isolates possessed the nodC symbiotic gene, as determined by nodC-PCR, and they were able to renodulate their original hosts.The phenotypic analysis showed that many strains had great potential for using different carbon compounds and amino acids as sole carbon and nitrogen sources. The majority of strains grew in media with pH values between 6 and 8. Only one strain isolated from L. angustifolius was able to grow at low pH values, whereas fourteen strains nodulating L. albus grew at pH 5. No strain developed at 40 °C, and eighteen strains grew at NaCl concentrations as high as 855 mM. A total of 17 strains solubilized phosphates, whereas 20 produced siderophores and seven produced IAA. Only three strains, Lalb41, Lang10 and Lang16, possessed all three plant growth promoting activities. The strains were grouped into eight genetic groups by rep-PCR. Analysis of the 16S rRNA sequences of eight strains representing the different groups showed that they were members of the genus Bradyrhizobium. The sequencing of the five housekeeping genes atpD, glnII, dnaK, gyrB and recA, from the eight representative strains, and the phylogenetic analysis of their concatenated sequences, showed that both plants were nodulated by different Bradyrhizobium species. Accordingly, two strains, Lalb41 and Lalb5.2, belonged to B. lupini, whereas two strains, Lalb2 and Lang17.2, were affiliated to B. cytisi, and one strain, Lang2, was close to B. canariense. The fourth group of strains, Lalb25, Lang14.3 and Lang8.3, which had similarity values of less than 96% with their closest named species, B. cytisi, may belong to two new genospecies in the genus Bradyrhizobium. All the strains nodulated Lupinus cosentinii, L. luteus, Retama sphaerocarpa, R. monosperma, Chamaecytisus albus, but not Vachellia gummifera, Phaseolus vulgaris or Glycine max. The nodA, nodC and nifH sequence analyses and their phylogeny confirmed that the strains isolated from the two lupines were members of the symbiovar genistearum.  相似文献   

6.
7.
Souguir D  Ferjani E  Ledoigt G  Goupil P 《Protoplasma》2008,233(3-4):203-207
The potential genotoxicity of Cu(2+) was investigated in Vicia faba and Pisum sativum seedlings in hydroponic culture conditions. Cu(2+) caused a dose-dependent increase in micronuclei frequencies in both plant models. Cytological analysis of root tips cells showed clastogenic and aneugenic effects of this heavy metal on V. faba root meristems. Cu(2+) induced chromosomal alterations at the lowest concentration used (2.5 mM) when incubated for 42 h, indicating the potent mutagenic effect of this ion. A spectrum of chromosomal abnormalities was observed in V. faba root meristems, illustrating the genotoxic events leading to micronuclei formation.  相似文献   

8.
Four strains, coded as UPM1132, UPM1133T, UPM1134 and UPM1135, and isolated from nodules of Pisum sativum plants grown on Ni-rich soils were characterised through a polyphasic taxonomy approach. Their 16S rRNA gene sequences were identical and showed 100% similarity with their closest phylogenetic neighbors, the species included in the ‘R. leguminosarum group’: R. laguerreae FB206T, R. leguminosarum USDA 2370T, R. anhuiense CCBAU 23252T, R. sophoreae CCBAU 03386T, R. acidisoli FH13T and R. hidalgonense FH14T, and 99.6% sequence similarity with R. esperanzae CNPSo 668T. The analysis of combined housekeeping genes recA, atpD and glnII sequences showed similarities of 92-95% with the closest relatives. Whole genome average nucleotide identity (ANI) values were 97.5-99.7% ANIb similarity among the four strains, and less than 92.4% with closely related species, while digital DNA-DNA hybridization average values (dDDH) were 82-85% within our strains and 34-52% with closely related species. Major fatty acids in strain UPM1133T were C18:1 ω7c / C18:1 ω6c in summed feature 8, C14:0 3OH/ C16:1 iso I in summed feature 2 and C18:0. Colonies were small to medium, pearl-white coloured in YMA at 28 °C and growth was observed in the ranges 8-34 °C, pH 5.5-7.5 and 0-0.7% (w/v) NaCl. The DNA G + C content was 60.8 mol %. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strains UPM1132, UPM1133T, UPM1134 and UPM1135 into a novel species of Rhizobium, for which the name Rhizobium ruizarguesonis sp. nov. is proposed. The type strain is UPM1133T (=CECT 9542T = LMG 30526T).  相似文献   

9.
Faba bean (Vicia faba L.) is a major introduced grain-legume crop cultivated in China. In this study, rhizobia that nodulated faba bean grown in soils from three sites in North China (Hebei Province) were isolated and characterized. Firstly, isolates were categorized into genotypes by ribosomal IGS PCR-RFLP analysis, then representatives of the different IGS genotypes were further identified by phylogenetic analyses of 16S rRNA, housekeeping (atpD, recA) and nodulation (nodC) gene sequences. Rhizobial distribution based on the IGS genotype was related to the different soil physicochemical features by redundancy analysis. IGS typing and phylogenetic analyses of 16S rRNA and concatenated housekeeping gene sequences affiliated the 103 rhizobial strains isolated into four Rhizobium species/genospecies. A total of 69 strains of 3 IGS types were assigned to R. sophorae, 20 isolates of 5 IGS types to R. changzhiense and 9 isolates of 3 IGS types to R. indicum. The representative strain of the five remaining isolates (1 IGS type) was clearly separated from all Rhizobium type strains and was most closely related to defined genospecies according to the recently described R. leguminosarum species complex. Rhizobium sophorae strains (67% of total isolates) were common in all sites and shared an identical nodC sequence typical of faba bean symbionts belonging to symbiovar viciae. In this first study of rhizobia nodulating faba bean in Hebei Province, China, R. sophorae was found to be the dominant symbiont in contrast to other countries.  相似文献   

10.
Red and blue light triggered the opening of isolated stomata of Pisum sativum L. cv. Peleg Alvador, Vicia faba L. (unknown cultivar) and Pelargonium sp. The stimulatory effect of short irradiation with red or blue light was reversed by a subsequent short irradiation with far-red light. In Pisum the stimulatory effect of a continuous irradiation with red or blue light was also abolished by a concomitant far-red light. In leaf pieces of P. sativum blue light was more effective than red, but not in isolated guard cells. In the presence of mesophyll, DCMU inhibited stomatal opening in red light more than in blue, and thus increased the relative response to blue light. This was less evident in isolated guard cells.  相似文献   

11.
After removal of the embryo from developing ovules of Viciafaba L. and Pisum sativum L., seed-coat exudates were collectedand the amino acid fraction of the exudate was analyzed. InV. faba, alanine was the most important compound of the aminoacid fraction. In P. sativum, alanine and glutamine were thetwo most important components, whereas only small amounts ofasparagine were present. Comparison with published data suggeststhat seed-coat exudates may differ from phloem sap in the relativeimportance of these amino acids. Pisum sativum, pea, Vicia faba, broad bean, amino acid transport, amino acid unloading, seed-coat exudate, seed development  相似文献   

12.
Summary Isolated chloroplasts from Pisum sativum were found to contain at least 32 tRNA species. Hybridization of in vitro labeled, identified, chloroplast tRNAs to Pisum chloroplast DNA fragments revealed the locations of the tRNA genes on the circular chloroplast genome. Comparison of this gene map to the maps of Vicia faba and Phaseolus vulgaris showed that the chloroplast genomes of Pisum and Phaseolus are otherwise more closely related than either genome is to the chloroplast genome of Vicia. Furthermore, the results suggest how possible recombination events could be involved in the evolution of these three closely related, but divergent, chloroplast genomes.  相似文献   

13.
Three strains of rhizobia isolated from effective root nodules of pea (Pisum sativum L.) collected from the Indian trans-Himalayas were characterized using 16S rRNA, atpD and recA genes. Phylogeny of the 16S rRNA genes revealed that the newly isolated strains were members of the genus Rhizobium with ≥99.9% sequence similarity to the members within the “Rhizobium leguminosarum” group. Phylogenetic analyses based on the concatenated sequences of atpD and recA gene, and 92 core genes extracted from the genome sequences indicated that strains JKLM 12A2T and JKLM 13E are grouped as a separate clade closely related to R. laguerreae FB206T. In contrast, the strain JKLM 19E was placed with “R. hidalgonense” FH14T. Whole-genome average nucleotide identity (ANI) values were 97.6% within strains JKLM 12A2T and JKLM 13E, and less than 94% with closely related species. The digital DNA-DNA hybridization (dDDH) values were 81.45 within the two strains and less than 54.8% to closely related species. The major cellular fatty acids were C18:1w7c in summed feature 8, C14:0 3OH/C16:1 iso I in summed feature 2, and C18:0. The DNA G + C content of JKLM 12A2T and JKLM 13E was 60.8 mol%. The data on genomic, chemotaxonomic, and phenotypic characteristics indicates that the strains JKLM 12A2T and JKLM 13E represent a novel species, Rhizobium indicum sp. nov. The type strain is JKLM 12A2T (= MCC 3961T = KACC 21380T = JCM 33658T). However, the strain JKLM 19E represents a member of “R. hidalgonense” and the symbiovar viciae.  相似文献   

14.
Rhizobium leguminosarum strains that can form nodules on Pisum sativum cv. Afghanistan have been reported as uncommon in Europe, North America and Africa [11, 12]. The organization of the nodulation regions of the symbiotic plasmids of five strains of R. leguminosarum originating from Denmark [9], which can nodulate P. sativum cv. Afghanistan, was compared with that of a Turkish strain (TOM [18]) by DNA hybridizations. Four of the five Danish strains were found to be very similar to the Turkish strain with respect to the overall organizations of their respective nodulation regions.  相似文献   

15.
Little is known about factors that affect the indigenous populations of rhizobia in soils. We compared the abundance, diversity and genetic structure of Rhizobium leguminosarum biovar viciae populations in soils under different crop managements, i.e., wheat and maize monocultures, crop rotation, and permanent grassland. Rhizobial populations were sampled from nodules of pea- or vetch plants grown in soils collected at three geographically distant sites in France, each site comprising a plot under long-term maize monoculture. Molecular characterization of isolates was performed by PCR-restriction fragment length polymorphism of 16S-23S rDNA intergenic spacer as a neutral marker of the genomic background, and PCR-restriction fragment length 0polymorphism of a nodulation gene region, nodD, as a marker of the symbiotic function. The diversity, estimated by richness in types and Simpson's index, was consistently and remarkably lower in soils under maize monoculture than under the other soil managements at the three sites, except for the permanent grassland. The highest level of diversity was found under wheat monoculture. Nucleotide sequences of the main rDNA intergenic spacer types were determined and sequence analysis showed that the prevalent genotypes in the three maize fields were closely related. These results suggest that long-term maize monoculturing decreased the diversity of R. leguminosarum biovar viciae populations and favored a specific subgroup of genotypes, but the size of these populations was generally preserved. We also observed a shift in the distribution of the symbiotic genotypes within the populations under maize monoculture, but the diversity of the symbiotic genotypes was less affected than that of IGS types. The possible effect of such changes on biological nitrogen fixation remains unknown and this requires further investigation.  相似文献   

16.
A cytochemical study of naphthol AS-D esterases in vegetativeshoot apices of Pisum sativum and Vicia faba L. has shown thepresence of carboxyl esterases (E.C. 3.1.1.1 [EC] .) in those meristemcells already committed to form vascular elements. These cellsform a sequence linking the morphologically identifiable procambiumto the cells of the tunica layers at a site either already identifiableas the next primordium or which will form the next primordium.The implications of this result are briefly discussed in relationto the control of primordia formation and procambial cell development. Pisum sativum, Vicia faba, determination, vascular tissue, shoot apex, cytochemistry  相似文献   

17.
Egyptian soils are generally characterized by slightly alkaline to alkaline pH values (7.5–8.7) which are mainly due to its dry environment. In arid and semi-arid regions, salts are less concentrated and sodium dominates in carbonate and bicarbonate forms, which enhance the formation of alkaline soils. Alkaline soils have fertility problems due to poor physical properties which adversely affect the growth and the yield of crops. Therefore, this study was devoted to investigating the synergistic interaction of Rhizobium and arbuscular mycorrhizal fungi for improving growth of faba bean grown in alkaline soil. A total of 20 rhizobial isolates and 4 species of arbuscular mycorrhizal fungi (AMF) were isolated. The rhizobial isolates were investigated for their ability to grow under alkaline stress. Out of 20 isolates 3 isolates were selected as tolerant isolates. These 3 rhizobial isolates were identified on the bases of the sequences of the gene encoding 16S rRNA and designated as Rhizobium sp. Egypt 16 (HM622137), Rhizobium sp. Egypt 27 (HM622138) and Rhizobium leguminosarum bv. viciae STDF-Egypt 19 (HM587713). The best alkaline tolerant was R. leguminosarum bv. viciae STDF-Egypt 19 (HM587713). The effect of R. leguminosarum bv. viciae STDF-Egypt 19 and mixture of AMF (Acaulospora laevis, Glomus geosporum, Glomus mosseae and Scutellospora armeniaca) both individually and in combination on nodulation, nitrogen fixation and growth of Vicia faba under alkalinity stress were assessed. A significant increase over control in number and mass of nodules, nitrogenase activity, leghaemoglobin content of nodule, mycorrhizal colonization, dry mass of root and shoot was recorded in dual inoculated plants than plants with individual inoculation. The enhancement of nitrogen fixation of faba bean could be attributed to AMF facilitating the mobilization of certain elements such as P, Fe, K and other minerals that involve in synthesis of nitrogenase and leghaemoglobin. Thus it is clear that the dual inoculation with Rhizobium and AMF biofertilizer is more effective for promoting growth of faba bean grown in alkaline soils than the individual treatment, reflecting the existence of synergistic relationships among the inoculants.  相似文献   

18.
19.
Assessing the diversity and genetic structure of faba bean (Vicia faba L.) germplasm is essential to improve the quality and yield of this economically important crop. In this study, simple sequence repeats (SSRs) were utilized to evaluate the diversity and structure of 35 faba bean genotypes originating from three different geographical regions (Northern Africa, Eastern Africa, and Near East). All 15 SSR loci generated a total of 100 alleles. The allele number per locus varied from 4 to 11, with a mean of 6.67. The expected heterozygosity (He) of SSR loci ranged between 0.51 and 0.81, with a mean of 0.63. The PIC value also varied from 0.44 to 0.78, with an average of 0.58. The expected heterozygosity of 22 faba bean genotypes was higher than the observed one. Interestingly, AMOVA analysis showed that much of variability resided within accessions (79.2%). A highly significant difference among regions was also evidenced, and represented 5.3% of the total variation. Moreover, cluster analysis divided the 35 faba bean genotypes into two main clusters. The first main cluster comprised all faba bean genotypes originating from the Near East region, whereas the second main cluster comprised all the genotypes originating from the Northern and Eastern Africa regions, indicating that the Northern and Eastern African faba bean genotypes were more closely related to each other than to the Near East genotypes. Structure analysis also revealed that the 35 faba bean genotypes might be assigned to two populations, in complete accordance with cluster analysis data. In conclusion, this study showed high levels of diversity in the analysed genotypes of faba bean, and could be utilized in future breeding programmes to develop new cultivars of high yield.  相似文献   

20.
In this study, we obtained a total of 60 rhizobial isolates from root nodules of Vicia faba L. (n = 30) and Pisum sativum L. (n = 30) grown in the Central Black Sea region of Turkey. The 16S rDNA PCR-RFLP analysis with enzymes CfoI, HinfI, NdeII and MspI revealed a single pattern. Moreover, nucleotide sequence phylogenies based on both the 16S rDNA and recA suggested that these isolates belonged to Rhizobium leguminosarum. Phylogenetic analysis showed that some of our V. faba L.-originated isolates were closely related, indicating molecular evidence for the selection of some special R. leguminosarum bv. viciae isolates by V. faba L., as suggested in previous studies. Network analysis based on recA sequences revealed a common evolutionary history for Turkish, European, North and South American, and Jordanian R. leguminosarum bv. viciae isolates. We isolated four haplotypes using nodA and nifH nucleotide sequence data, i.e. four types of sym plasmids. Two of these types were common to rhizobial isolates from both V. faba L. and P. sativum L., indicating that nodulation factors may not be the mechanism for selection of the special R. leguminosarum bv. viciae populations by V. faba L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号