首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The biodiversity of culturable acidophilic microbes in three acidic (pH 2.7–3.7), metal-rich waters at an abandoned subarctic copper mine in central Norway was assessed. Acidophilic bacteria were isolated by plating on selective solid media, and dominant isolates were identified from their physiological characteristics and 16S rRNA gene sequences. The dominant iron-oxidizing acidophile in all three waters was an Acidithiobacillus ferrooxidans -like eubacterium, which shared 98% 16S rDNA identity with the type strain. A strain of Leptospirillum ferrooxidans was obtained from one of the waters after enrichment in pyrite medium, but this iron oxidizer was below detectable levels in the acidic waters themselves. In two sites, there were up to six distinct heterotrophic acidophiles, present at 103 ml−1. These included Acidiphilium -like isolates (one closely related to Acidiphilium rubrum , a second to Acidiphilium cryptum and a third apparently novel isolate), an Acidocella -like isolate (96% 16S rDNA identity to Acidocella facilis ) and a bacterium that shared 94.5% 16S rDNA identity to Acidisphaera rubrifaciens. The other numerically significant heterotrophic isolate was not apparently related to any known acidophile, with the closest match (96% 16S rDNA sequence identity) to an acetogen, Frateuria aurantia . The results indicated that the biodiversity of acidophilic bacteria, especially heterotrophs, in acidic mine waters may be much greater than previously recognized.  相似文献   

2.
Seawater contains free-living and particle-attached bacteria. Only a small fraction is cultivable on plates. As free-living and particle-associated bacteria differ in their physiological traits, their cultivability on plates may coincide with particle association. Using filtration and Imhoff sedimentation cones, particles were collected during a spring phytoplankton bloom off Helgoland (North Sea) in order to obtain particle-associated bacteria as inocula. Direct dilution plating resulted in 526 strains from 3 µm filtration retentates and 597 strains from settled particles. Motile Gammaproteobacteria from the genera Pseudoalteromonas, Shewanella, Psychrobacter, Vibrio and Colwellia, as well as particle-attached Flavobacteriia affiliating with the genera Tenacibaculum and Gramella, were frequently isolated. As a result, a diverse collection comprised of 266 strains was deposited. Two strains were most likely to represent novel genera and 78 strains were probably novel species. Recently, a high-throughput cultivation study from the same site using seawater as an inoculum had retrieved 271 operational phylogenetic units (OPUs) that represented 88% of the 4136 characterized strains at the species level. A comparison of 16S rRNA gene sequences revealed that the collection obtained matched 104 of the 271 seawater OPUs at the species level and an additional 113 at the genus level. This large overlap indicated a significant contribution of particle-associated bacteria to the cultivable microbiome from seawater. The presence of 49 genera not identified in the larger seawater study suggested that sample fractionation was an efficient strategy to cultivate rare members of the planktonic microbiome. The diverse collection of heterotrophic bacteria retrieved in this study will be a rich source for future studies on the biology of particle-associated bacteria.  相似文献   

3.
The bacteria associated with oceanic algal blooms are acknowledged to play important roles in carbon, nitrogen, and sulfur cycling, yet little information is available on their identities or phylogenetic affiliations. Three culture-independent methods were used to characterize bacteria from a dimethylsulfoniopropionate (DMSP)-producing algal bloom in the North Atlantic. Group-specific 16S rRNA-targeted oligonucleotides, 16S ribosomal DNA (rDNA) clone libraries, and terminal restriction fragment length polymorphism analysis all indicated that the marine Roseobacter lineage was numerically important in the heterotrophic bacterial community, averaging >20% of the 16S rDNA sampled. Two other groups of heterotrophic bacteria, the SAR86 and SAR11 clades, were also shown by the three 16S rRNA-based methods to be abundant in the bloom community. In surface waters, the Roseobacter, SAR86, and SAR11 lineages together accounted for over 50% of the bacterial rDNA and showed little spatial variability in abundance despite variations in the dominant algal species. Depth profiles indicated that Roseobacter phylotype abundance decreased with depth and was positively correlated with chlorophyll a, DMSP, and total organic sulfur (dimethyl sulfide plus DMSP plus dimethyl sulfoxide) concentrations. Based on these data and previous physiological studies of cultured Roseobacter strains, we hypothesize that this lineage plays a role in cycling organic sulfur compounds produced within the bloom. Three other abundant bacterial phylotypes (representing a cyanobacterium and two members of the alpha Proteobacteria) were primarily associated with chlorophyll-rich surface waters of the bloom (0 to 50 m), while two others (representing Cytophagales and delta Proteobacteria) were primarily found in deeper waters (200 to 500 m).  相似文献   

4.
The diversity of culturable bacteria associated with sandy intertidal sediments from the coastal regions of the Chinese Antarctic Zhongshan Station on the Larsemann Hills (Princess Elizabeth Land, East Antarctica) was investigated. A total of 65 aerobic heterotrophic bacterial strains were isolated at 4°C. Microscopy and 16S rRNA gene sequence analysis indicated that the isolates were dominated by Gram-negative bacteria, while only 16 Gram-positive strains were isolated. The bacterial isolates fell in five phylogenetic groups: Alpha- and Gammaproteobacteria, Bacteroidetes, Actinobacteria and Firmicutes. Based on phylogenetic trees, all the 65 isolates were sorted into 29 main clusters, corresponding to at least 29 different genera. Based on sequence analysis (<98% sequence similarity), the Antarctic isolates belonged to at least 37 different bacterial species, and 14 of the 37 bacterial species (37.8%) represented potentially novel taxa. These results indicated a high culturable diversity within the bacterial community of the Antarctic sandy intertidal sediments.  相似文献   

5.
Haloarchaea are the dominant microbial flora in hypersaline waters with near-saturating salt levels. The haloarchaeal diversity of an Australian saltern crystallizer pond was examined by use of a library of PCR-amplified 16S rRNA genes and by cultivation. High viable counts (10(6) CFU/ml) were obtained on solid media. Long incubation times (> or =8 weeks) appeared to be more important than the medium composition for maximizing viable counts and diversity. Of 66 isolates examined, all belonged to the family Halobacteriaceae, including members related to species of the genera Haloferax, Halorubrum, and Natronomonas. In addition, isolates belonging to a novel group (the ADL group), previously detected only as 16S rRNA genes in an Antarctic hypersaline lake (Deep Lake), were cultivated for the first time. The 16S rRNA gene library identified the following five main groups: Halorubrum groups 1 and 2 (49%), the SHOW (square haloarchaea of Walsby) group (33%), the ADL group (16%), and the Natronomonas group (2%). There were two significant differences between the organisms detected in cultivation and 16S rRNA sequence results. Firstly, Haloferax spp. were frequently isolated on plates (15% of all isolates) but were not detected in the 16S rRNA sequences. Control experiments indicated that a bias against Haloferax sequences in the generation of the 16S rRNA gene library was unlikely, suggesting that Haloferax spp. readily form colonies, even though they were not a dominant group. Secondly, while the 16S rRNA gene library identified the SHOW group as a major component of the microbial community, no isolates of this group were obtained. This inability to culture members of the SHOW group remains an outstanding problem in studying the ecology of hypersaline environments.  相似文献   

6.
The composition of 681 aerobic and heterotrophic strains that were isolated on two different media was assessed at four sampling points along a ~300 m stretch of a karst water rivulet. Based on partial sequence analysis of 16S rRNA genes, members of 35 genera were identified; however, only a few species dominated as their representatives were repeatedly isolated at different sampling sites. Determination of the phylum affiliation showed that the isolates included members of Bacteriodetes (especially the genus Flavobacterium) and Proteobacteria (mainly Pseudomonas and Stenotrophomonas). MALDI-TOF analysis and/or similarities of partial sequences of flavobacterial strains resulted in the generation of almost complete 16S rRNA gene sequences for 100 isolates, about 60 of which may represent novel phylospecies. The number as well as the intra-phylum distribution of the isolates changed with distance from the discharge site. While phylogenetically restricted at the spring, diversity increased at downstream sampling sites.  相似文献   

7.
The bacteria associated with oceanic algal blooms are acknowledged to play important roles in carbon, nitrogen, and sulfur cycling, yet little information is available on their identities or phylogenetic affiliations. Three culture-independent methods were used to characterize bacteria from a dimethylsulfoniopropionate (DMSP)-producing algal bloom in the North Atlantic. Group-specific 16S rRNA-targeted oligonucleotides, 16S ribosomal DNA (rDNA) clone libraries, and terminal restriction fragment length polymorphism analysis all indicated that the marine Roseobacter lineage was numerically important in the heterotrophic bacterial community, averaging >20% of the 16S rDNA sampled. Two other groups of heterotrophic bacteria, the SAR86 and SAR11 clades, were also shown by the three 16S rRNA-based methods to be abundant in the bloom community. In surface waters, the Roseobacter, SAR86, and SAR11 lineages together accounted for over 50% of the bacterial rDNA and showed little spatial variability in abundance despite variations in the dominant algal species. Depth profiles indicated that Roseobacter phylotype abundance decreased with depth and was positively correlated with chlorophyll a, DMSP, and total organic sulfur (dimethyl sulfide plus DMSP plus dimethyl sulfoxide) concentrations. Based on these data and previous physiological studies of cultured Roseobacter strains, we hypothesize that this lineage plays a role in cycling organic sulfur compounds produced within the bloom. Three other abundant bacterial phylotypes (representing a cyanobacterium and two members of the α Proteobacteria) were primarily associated with chlorophyll-rich surface waters of the bloom (0 to 50 m), while two others (representing Cytophagales and δ Proteobacteria) were primarily found in deeper waters (200 to 500 m).  相似文献   

8.
The saline springs of Gypsum Hill in the Canadian high Arctic are a rare example of cold springs originating from deep groundwater and rising to the surface through thick permafrost. The heterotrophic bacteria and autotrophic sulfur-oxidizing bacteria (up to 40% of the total microbial community) isolated from the spring waters and sediments were classified into four phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) based on 16S rRNA gene analysis; heterotrophic isolates were primarily psychrotolerant, salt-tolerant, facultative anaerobes. Some of the isolates contained genes for thiosulfate oxidation (soxB) and anoxygenic photosynthesis (pufM), possibly enabling the strains to better compete in these sulfur-rich environments subject to long periods of illumination in the Arctic summer. Although leucine uptake by the spring water microbial community was low, CO(2) uptake was relatively high under dark incubation, reinforcing the idea that primary production by chemoautotrophs is an important process in the springs. The small amounts of hydrocarbons in gases exsolving from the springs (0.38 to 0.51% CH(4)) were compositionally and isotopically consistent with microbial methanogenesis and possible methanotrophy. Anaerobic heterotrophic sulfur oxidation and aerobic autotrophic sulfur oxidation activities were demonstrated in sediment slurries. Overall, our results describe an active microbial community capable of sustainability in an extreme environment that experiences prolonged periods of continuous light or darkness, low temperatures, and moderate salinity, where life seems to rely on chemolithoautotrophy.  相似文献   

9.
Haloarchaea are the dominant microbial flora in hypersaline waters with near-saturating salt levels. The haloarchaeal diversity of an Australian saltern crystallizer pond was examined by use of a library of PCR-amplified 16S rRNA genes and by cultivation. High viable counts (106 CFU/ml) were obtained on solid media. Long incubation times (≥8 weeks) appeared to be more important than the medium composition for maximizing viable counts and diversity. Of 66 isolates examined, all belonged to the family Halobacteriaceae, including members related to species of the genera Haloferax, Halorubrum, and Natronomonas. In addition, isolates belonging to a novel group (the ADL group), previously detected only as 16S rRNA genes in an Antarctic hypersaline lake (Deep Lake), were cultivated for the first time. The 16S rRNA gene library identified the following five main groups: Halorubrum groups 1 and 2 (49%), the SHOW (square haloarchaea of Walsby) group (33%), the ADL group (16%), and the Natronomonas group (2%). There were two significant differences between the organisms detected in cultivation and 16S rRNA sequence results. Firstly, Haloferax spp. were frequently isolated on plates (15% of all isolates) but were not detected in the 16S rRNA sequences. Control experiments indicated that a bias against Haloferax sequences in the generation of the 16S rRNA gene library was unlikely, suggesting that Haloferax spp. readily form colonies, even though they were not a dominant group. Secondly, while the 16S rRNA gene library identified the SHOW group as a major component of the microbial community, no isolates of this group were obtained. This inability to culture members of the SHOW group remains an outstanding problem in studying the ecology of hypersaline environments.  相似文献   

10.
Geothermal environments are a suitable habitat for nitrifying microorganisms. Conventional and molecular techniques indicated that chemolithoautotrophic nitrite-oxidizing bacteria affiliated with the genus Nitrospira are widespread in environments with elevated temperatures up to 55 °C in Asia, Europe, and Australia. However, until now, no thermophilic pure cultures of Nitrospira were available, and the physiology of these bacteria was mostly uncharacterized. Here, we report on the isolation and characterization of a novel thermophilic Nitrospira strain from a microbial mat of the terrestrial geothermal spring Gorjachinsk (pH 8.6; temperature 48 °C) from the Baikal rift zone (Russia). Based on phenotypic properties, chemotaxonomic data, and 16S rRNA gene phylogeny, the isolate was assigned to the genus Nitrospira as a representative of a novel species, for which the name Nitrospira calida is proposed. A highly similar 16S rRNA gene sequence (99.6% similarity) was detected in a Garga spring enrichment grown at 46 °C, whereas three further thermophilic Nitrospira enrichments from the Garga spring and from a Kamchatka Peninsula (Russia) terrestrial hot spring could be clearly distinguished from N. calida (93.6-96.1% 16S rRNA gene sequence similarity). The findings confirmed that Nitrospira drive nitrite oxidation in moderate thermophilic habitats and also indicated an unexpected diversity of heat-adapted Nitrospira in geothermal hot springs.  相似文献   

11.
Microbial degradation of algal biomass following spring phytoplankton blooms has been characterised as a concerted effort among multiple clades of heterotrophic bacteria. Despite their significance to overall carbon turnover, many of these clades have resisted cultivation. One clade known from 16S rRNA gene sequencing surveys at Helgoland in the North Sea, was formerly identified as belonging to the genus Ulvibacter. This clade rapidly responds to algal blooms, transiently making up as much as 20% of the free-living bacterioplankton. Sequence similarity below 95% between the 16S rRNA genes of described Ulvibacter species and those from Helgoland suggest this is a novel genus. Analysis of 40 metagenome assembled genomes (MAGs) derived from samples collected during spring blooms at Helgoland support this conclusion. These MAGs represent three species, only one of which appears to bloom in response to phytoplankton. MAGs with estimated completeness greater than 90% could only be recovered for this abundant species. Additional, less complete, MAGs belonging to all three species were recovered from a mini-metagenome of cells sorted via flow cytometry using the genus specific ULV995 fluorescent rRNA probe. Metabolic reconstruction indicates this highly abundant species most likely degrades proteins and the polysaccharide laminarin. Fluorescence in situ hybridisation showed coccoid cells, with a mean diameter of 0.78 mm, with standard deviation of 0.12 μm. Based on the phylogenetic and genomic characteristics of this clade, we propose the novel candidate genus Candidatus Prosiliicoccus, and for the most abundant and well characterised of the three species the name Candidatus Prosiliicoccus vernus.  相似文献   

12.
We investigated the phylogenetic diversity and metabolic capabilities of members of the phylum Planctomycetes in the anaerobic, sulfide-saturated sediments of a mesophilic spring (Zodletone Spring) in southwestern Oklahoma. Culture-independent analyses of 16S rRNA gene sequences generated using Planctomycetes-biased primer pairs suggested that an extremely diverse community of Planctomycetes is present at the spring. Although sequences that are phylogenetically affiliated with cultured heterotrophic Planctomycetes were identified, the majority of the sequences belonged to several globally distributed, as-yet-uncultured Planctomycetes lineages. Using complex organic media (aqueous extracts of the spring sediments and rumen fluid), we isolated two novel strains that belonged to the Pirellula-Rhodopirellula-Blastopirellula clade within the Planctomycetes. The two strains had identical 16S rRNA gene sequences, and their closest relatives were isolates from Kiel Fjord (Germany), Keauhou Beach (HI), a marine aquarium, and tissues of marine organisms (Aplysina sp. sponges and postlarvae of the giant tiger prawn Penaeus monodon). The closest recognized cultured relative of strain Zi62 was Blastopirellula marina (93.9% sequence similarity). Detailed characterization of strain Zi62 revealed its ability to reduce elemental sulfur to sulfide under anaerobic conditions, as well as its ability to produce acids from sugars; both characteristics may potentially allow strain Zi62 to survive and grow in the anaerobic, sulfide- and sulfur-rich environment at the spring source. Overall, this work indicates that anaerobic metabolic abilities are widely distributed among all major Planctomycetes lineages and suggests carbohydrate fermentation and sulfur reduction as possible mechanisms employed by heterotrophic Planctomycetes for growth and survival under anaerobic conditions.  相似文献   

13.
Parker MA 《Molecular ecology》2003,12(9):2447-2455
Assays with seven sets of lineage-specific polymerase chain reaction (PCR) primers in the ribosomal RNA region were performed on 96 isolates of the Bradyrhizobium sp. nodule bacteria from Barro Colorado Island, Panama. The isolates were derived from 10 legume host species in six genera (Centrosema, Desmodium, Dioclea, Inga, Machaerium and Vigna). The PCR assays differentiated 13 composite genotypes, and sequencing of a 5' 23S rRNA region indicated that all but one had a unique sequence. The most common genotype (seen in 44% of the isolates) was associated with all six legume host genera, and had a marker profile and 5' 23S rRNA sequence identical to a Bradyrhizobium lineage associated with several other legume genera in Panama and Costa Rica. Another 46% of the isolates had genotypes found to be associated with two to three legume genera. Bradyrhizobium strains with low host specificity thus appear to be prevalent in this tropical forest. Based on 16S rRNA and 5' 23S rRNA markers, most of the isolates had clear affinities to either B. japonicum or B. elkanii. However, one strain (Cp5-3) with a B. elkanii-type 16S rRNA marker had a 5' 23S rRNA region resembling B. japonicum. A partition homogeneity test indicated that relationships of strain Cp5-3 were significantly discordant for 16S rRNA vs. 23S rRNA sequences, and a runs test detected significant mosaic structure across the rRNA region. Lateral gene transfer events have therefore played a role in the evolution of symbiotic bacteria in this environment.  相似文献   

14.
Multilocus enzyme electrophoresis, partial 23S rRNA sequences, and nearly full-length 16S rRNA sequences all indicated high genetic similarity among root-nodule bacteria associated with Apios americana, Desmodium glutinosum, and Amphicarpaea bracteata, three common herbaceous legumes whose native geographic ranges in eastern North America overlap extensively. A total of 19 distinct multilocus genotypes (electrophoretic types [ETs]) were found among the 35 A. americana and 33 D. glutinosum isolates analyzed. Twelve of these ETs (representing 78% of all isolates) were either identical to ETs previously observed in A. bracteata populations, or differed at only one locus. Within both 23S and 16S rRNA genes, several isolates from A. americana and D. glutinosum were either identical to A. bracteata isolates or showed only single nucleotide differences. Growth rates and nitrogenase activities of A. bracteata plants inoculated with isolates from D. glutinosum were equivalent to levels found with native A. bracteata bacterial isolates, but none of the three A. americana isolates tested had high symbiotic effectiveness on A. bracteata. Phylogenetic analysis of both 23S and 16S rRNA sequences indicated that both A. americana and D. glutinosum harbored rare bacterial genotypes similar to Bradyrhizobium japonicum USDA 110. However, the predominant root nodule bacteria on both legumes were closely related to Bradyrhizobium elkanii.  相似文献   

15.
M G Hfle 《Applied microbiology》1992,58(10):3387-3394
A set of freshwater mesocosms (1.7 m3 each) was inoculated with large amounts of Escherichia coli, Pseudomonas putida, and their culture medium to substantially disturb the natural microbial community. To monitor microbial community dynamics, low-molecular-weight RNA (5S rRNA and tRNA) obtained directly from bacterioplankton was analyzed by using high-resolution electrophoresis. The introduced bacteria showed no significant effect on the community structure of the natural bacterial assemblage and its dynamics for 16 days. In contrast, the addition of culture medium resulted within 2 days in a reduction of community diversity due to dominance of a single 5S rRNA band from an indigenous bacterium. Partial sequencing of several 5S rRNAs demonstrated the molecular homogeneity of most of the abundant bands and enabled the identification of corresponding bacterial isolates and/or species. The dominating bacterium (around 54% of the total 5S rRNA) in the nutrient-amended mesocosms could be identified by partial sequencing as a member of the Aeromonas hydrophila complex. Another bloom of heterotrophic bacteria belonging to the Cytophaga johnsonae complex was detected in the nutrient-amended mesocosms after 13 days. The dominance of this C. johnsonae-like bacterium could even be seen in the environmental tRNAs of the bacterioplankton, where its specific tRNAs prevailed from day 13 onward. This event was also independent of the introduced nonindigenous bacteria because it occurred at the same time in all nutrient-amended mesocosms. By contrast, in the unamended experiments, a different small 5S rRNA could by observed from day 10 onward with less pronounced dominance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A set of freshwater mesocosms (1.7 m3 each) was inoculated with large amounts of Escherichia coli, Pseudomonas putida, and their culture medium to substantially disturb the natural microbial community. To monitor microbial community dynamics, low-molecular-weight RNA (5S rRNA and tRNA) obtained directly from bacterioplankton was analyzed by using high-resolution electrophoresis. The introduced bacteria showed no significant effect on the community structure of the natural bacterial assemblage and its dynamics for 16 days. In contrast, the addition of culture medium resulted within 2 days in a reduction of community diversity due to dominance of a single 5S rRNA band from an indigenous bacterium. Partial sequencing of several 5S rRNAs demonstrated the molecular homogeneity of most of the abundant bands and enabled the identification of corresponding bacterial isolates and/or species. The dominating bacterium (around 54% of the total 5S rRNA) in the nutrient-amended mesocosms could be identified by partial sequencing as a member of the Aeromonas hydrophila complex. Another bloom of heterotrophic bacteria belonging to the Cytophaga johnsonae complex was detected in the nutrient-amended mesocosms after 13 days. The dominance of this C. johnsonae-like bacterium could even be seen in the environmental tRNAs of the bacterioplankton, where its specific tRNAs prevailed from day 13 onward. This event was also independent of the introduced nonindigenous bacteria because it occurred at the same time in all nutrient-amended mesocosms. By contrast, in the unamended experiments, a different small 5S rRNA could by observed from day 10 onward with less pronounced dominance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Using 16S rRNA gene sequence analyses we investigated the bacterial diversity of winter bacterioplankton of two eutrophic Siberian reservoirs. These reservoirs show similarity in phytoplankton community composition in spring and autumn but tend to differ in summer in exhibiting cyanobacterial bloom. Forty-eight unique partial 16S RNA gene sequences retrieved from two libraries were mostly affiliated with the class Actinobacteria, b subdivision of the class Proteobacteria, and the phylum Cytophaga-Flavobacterium-Bacteroides. The clone library of the pond exhibiting summer cyanobacterial bloom showed more diversity in sequence composition. A significant number of bacterial 16S rRNA gene clones were closely related to freshwater bacteria previously found in different aquatic ecosystems. This finding confirms the assumption that some bacterial clades are globally distributed.  相似文献   

18.
The microbial populations in no-till agricultural soil and casts of the earthworm Lumbricus rubellus were examined by culturing and molecular methods. Clone libraries of the 16S rRNA genes were prepared from DNA isolated directly from the soil and earthworm casts. Although no single phylum dominated the soil library of 95 clones, the largest numbers of clones were from Acidobacteria (14%), Cytophagales (13%), Chloroflexi (8%), and gamma-Proteobacteria (8%). While the cast clone library of 102 clones was similar to the soil library, the abundances of several taxa were different. Representatives of the Pseudomonas genus as well as the Actinobacteria and Firmicutes increased in number, and one group of unclassified organisms found in the soil library was absent in the cast library. Likewise, soil and cast archaeal 16S rRNA gene libraries were similar, although the abundances of some groups were different. Two hundred and thirty aerobic bacteria were also isolated on general heterotrophic media from casts, burrows, and soil. The cast isolates were both phenotypically and genotypically different from the soil isolates. The cast isolates were more likely to reduce nitrate, grow on acetate and Casamino Acids, and utilize fewer sugars than the soil isolates. On the basis of their ribotypes, the cast isolates were dominated by Aeromonas spp. (28%), which were not found in the soil isolates, and other gamma-Proteobacteria (49%). In contrast, the soil isolates were mostly Actinobacteria (53%), Firmicutes (16%), and gamma-Proteobacteria (19%). Isolates obtained from the sides of earthworm burrows were not different from the soil isolates. Diversity indices for the collections of isolates as well as rRNA gene libraries indicated that the species richness and evenness were decreased in the casts from their levels in the soil. These results were consistent with a model where a large portion of the microbial population in soil passes through the gastrointestinal tract of the earthworm unchanged while representatives of some phyla increase in abundance.  相似文献   

19.
Urmia Lake is one of the most permanent hypersaline lakes in the world which is threatened by hypersalinity and serious dryness. In spite of its importance no paper has been published regarding bacterial community of this lake. Accordingly, the present study aimed to investigate the halophilic bacteria in the aforementioned lake. In so doing, thirty seven strains were isolated on six different culture media. The isolated strains were characterized using phenotypic and genotypic methods. Growth of the strains occurred at 2535 degrees C, pH 6-9 and 7 to 20% (w/v) NaCl indicating that most of the isolates were moderately halophiles. Catalase, oxidase and urease activities were found to be positive for the majority of the isolates. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolated bacteria belonged to two major taxa: Gammaproteobacteria (92%, including Salicola [46%], Pseudomonas [13.5%], Marinobacter [ 11%], Idiomarina [11%], and Halomonas [8%]) and Firmicutes (8%, including Bacillus [5%] and Halobacillus [3%]). In addition, a novel bacterium whose 16S rRNA gene sequence showed almost 98% sequence identity with the taxonomically troubled DSM 3050T, Halovibrio denitrificans HGD 3T and Halospina denitrificans HGD 1-3T, each, was isolated. 16S rRNA gene similarity levels along with phenotypic characteristics suggest that some of the isolated strains could be regarded as potential type strain for novel species, on which further studies are recommended.  相似文献   

20.
AIMS: To characterize the bacterial composition of mallard duck faeces and determine if novel bacterial species are present that could be utilized as potential indicators of avian faecal contamination. METHODS AND RESULTS: Combined samples of fresh faeces from four ducks were serially diluted and plated onto six different media selected to allow the growth of a range of organisms at 42 degrees C under three atmospheric conditions: aerobic, microaerophilic and anaerobic. Forty-seven morphologically dissimilar isolates were purified and partial sequencing of the16S rRNA indicated at least 31 bacterial species. Twenty of these could be identified to the species level including pathogenic species of Bacillus, Campylobacter, Clostridium and Streptococcus. Other species identified included: Enterococcus, Escherichia, Megamonas, Cellulosimicrobium, Neisseria, Staphylococcus and Veillonella. Potentially novel species, which could represent bacteria specific to avian fauna included Bacillus, Corynebacterium, Macrococcus and Peptostreptococcus, while four isolates had <97% similarity to known bacterial species in the available databases. CONCLUSION: A survey of the natural microflora of the mallard duck and its hybrid with the grey duck identified both bacteria that are potentially human pathogenic and putative novel bacteria species as determined by 16S rRNA sequencing. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides further evidence that duck faeces is a potential human health hazard, and has identified bacteria potentially useful for distinguishing duck faeces from other faecal sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号