共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular dynamic simulation is a practical and powerful technique for analysis of protein structure. Several programs have been
developed to facilitate the mentioned investigation, under them the visual molecular dynamic or VMD is the most frequently used
programs. One of the beneficial properties of the VMD is its ability to be extendable by designing new plug-in. We introduce here a
new facility of the VMD for distance analysis and radius of gyration of biopolymers such as protein and DNA.
Availability
The database is available for free at http://trc.ajums.ac.ir/HomePage.aspx/?TabID/=12618/&Site/=trc.ajums.ac/&Lang/=fa-IR 相似文献2.
There are several software packages for simulating the main types of biopolymers with molecular dynamics methods. However,
work with these packages is rather complicated, especially for experimenters, who are nonexperts in computational structural
biology. We have developed GUI-BioPASED, a web-based GUI for the molecular dynamics software BioPASED. This version provides
for formulating the task as a single executable file, exporting this file to user’s PC, ensuring its execution, and, thereby,
partially automating the task part responsible for the majority of errors. A user-friendly cross-platform interface is created,
which performs data check, reports errors, and hints at possible ways to correct them. BioPASED, a general purpose molecular
dynamics program, and GUI-BioPASED are described along with a typical example of their usage. 相似文献
3.
BIOEQS is a global analysis and simulation program for complex biomolecular interaction data developed during the 1990s. Its continued usefulness derives from the fact that it is based on a numerical solver for complex coupled biological equilibria rather than on closed-form analytical equations for the binding isotherms. Therefore, it is quite versatile, allowing easy testing of multiple binding models and analysis of systems too complex for closed-form solutions. However, a major drawback to a generalized use of this program has been the lack of a graphical user interface (GUI) for setting up the binding models and experimental conditions as well as for visualizing the results. We present here a new GUI for BIOEQS that should be useful in both research and teaching applications. 相似文献
4.
A BASIC microcomputer program to calculate the secondary structure of proteins from their circular dichroism spectrum 总被引:1,自引:0,他引:1
Menendez-Arias Luis; Gomez-Gutierrez Julian; Garcia-Ferrandez Miguel; Garcia-Tejedor Alvaro; Moran Federico 《Bioinformatics (Oxford, England)》1988,4(4):479-482
A BASIC program (CDPROT) has been developed to calculate thesecondary structure of proteins from their far UV circular dichroismspectrum. This implementation can use different reference spectra,calculated either from model polypeptides or proteins of knowntertiary structure. Apart from obtaining the a-helical, ß-structure,ß-turns or random percentages which would generatethe spectrum of best fit with respect to the experimental measures,CDPROT represents on screen both theoretical and experimentalspectra indicating the root-mean-square error. The provisionof additional reference spectra by the user is also considered,and another program (STOREREF) performs the editing in an adequateformat for CDPROT.
Received on March 8, 1988; accepted on June 3, 1988 相似文献
5.
6.
《Epigenetics》2013,8(3):225-229
Recent evidence suggests that DNA methylation changes may underlie numerous complex traits and diseases. The advent of commercial, array-based methods to interrogate DNA methylation has led to a profusion of epigenetic studies in the literature. Array-based methods, such as the popular Illumina GoldenGate and Infinium platforms, estimate the proportion of DNA methylated at single-base resolution for thousands of CpG sites across the genome. These arrays generate enormous amounts of data, but few software resources exist for efficient and flexible analysis of these data. We developed a software package called MethLAB (http://genetics.emory.edu/conneely/MethLAB) using R, an open source statistical language that can be edited to suit the needs of the user. MethLAB features a graphical user interface (GUI) with a menu-driven format designed to efficiently read in and manipulate array-based methylation data in a user-friendly manner. MethLAB tests for association between methylation and relevant phenotypes by fitting a separate linear model for each CpG site. These models can incorporate both continuous and categorical phenotypes and covariates, as well as fixed or random batch or chip effects. MethLAB accounts for multiple testing by controlling the false discovery rate (FDR) at a user-specified level. Standard output includes a spreadsheet-ready text file and an array of publication-quality figures. Considering the growing interest in and availability of DNA methylation data, there is a great need for user-friendly open source analytical tools. With MethLAB, we present a timely resource that will allow users with no programming experience to implement flexible and powerful analyses of DNA methylation data. 相似文献
7.
At present, accuracies of secondary structural prediction scarcely go beyond 70-75%. Secondary structural comparison is carried out among sequence-identified proteins. The results show natural wobble between different secondary structural types is possible in homologous families, and the best prediction accuracy will rarely be 100%. Besides shortcoming of the prediction approaches, secondary structural wobble is found to be responsible for nearly all secondary structural prediction limits. Only average 73.2% of amino acid residue is conserved in secondary structural types. The wobble allows alpha-class/coil and beta-class/coil transitions but not direct alpha-class/beta-class transition. Propensity values representing the statistical occurrence of 20 amino acid residues in secondary structural wobbles are given. 相似文献
8.
The dissemination of biological information has become critically dependent on the Internet and World Wide Web (WWW), which enable distributed access to information in a platform independent manner. The mode of interaction between biologists and on-line information resources, however, has been mostly limited to simple interface technologies such has hypertext links, tables and forms. The introduction of platform-independent runtime environments facilitates the development of more sophisticated WWW-based user interfaces. Until recently, most such interfaces have been tightly coupled to the underlying computation engines, and not separated as reusable components. We believe that many subdisciplines of biology have intuitive and familiar graphical representations of knowledge that can serve as multipurpose user interface elements. We call such graphical idioms “domain graphics”. In order to illustrate the power of such graphics, we have built a reusable interface based on the standard two dimensional (2D) layout of RNA secondary structure. The interface can be used to represent any pre-computed layout of RNA, and takes as a parameters the sets of actions to be performed as a user interacts with the interface. It can provide to any associated application program information about the base, helix, or subsequence selected by the user. We show the versatility of this interface by using it as a special purpose interface to BLAST, Medline and the RNA MFOLD search/compute engines. These demonstrations are available at: ir|url|http://www-smi.stanford.edu/projects/helix/pubs/ gene-combis-96/ 相似文献
9.
Elizabeth C. van Geerestein-Ujah Monique Slijper Rolf Boelens Robert Kaptein 《Journal of biomolecular NMR》1995,6(1):67-78
Summary A novel procedure is presented for the automatic identification of secondary structures in proteins from their corresponding NOE data. The method uses a branch of mathematics known as graph theory to identify prescribed NOE connectivity patterns characteristic of the regular secondary structures. Resonance assignment is achieved by connecting these patterns of secondary structure together, thereby matching the connected spin systems to specific segments of the protein sequence. The method known as SERENDIPITY refers to a set of routines developed in a modular fashion, where each program has one or several well-defined tasks. NOE templates for several secondary structure motifs have been developed and the method has been successfully applied to data obtained from NOESY-type spectra. The present report describes the application of the SERENDIPITY protocol to a 3D NOESY-HMQC spectrum of the 15N-labelled lac repressor headpiece protein. The application demonstrates that, under favourable conditions, fully automated identification of secondary structures and semi-automated assignment are feasible.Abbreviations 2D, 3D
two-, three-dimensional
- NOESY
nuclear Overhauser enhancement spectroscopy
- HMQC
heteronuclear multiple quantum coherence
- SSE
secondary structure element
- SERENDIPITY
SEcondary structuRE ideNtification in multiDImensional ProteIn specTra analYsis
Supplementary Material available from the authors: Two tables containing the total number of mappings resulting from the graph search procedure for simulated and experimental NOE data. 相似文献
10.
Hidden Markov Models (HMMs) are practical tools which provide probabilistic base for protein secondary structure prediction. In these models, usually, only the information of the left hand side of an amino acid is considered. Accordingly, these models seem to be inefficient with respect to long range correlations. In this work we discuss a Segmental Semi Markov Model (SSMM) in which the information of both sides of amino acids are considered. It is assumed and seemed reasonable that the information on both sides of an amino acid can provide a suitable tool for measuring dependencies. We consider these dependencies by dividing them into shorter dependencies. Each of these dependency models can be applied for estimating the probability of segments in structural classes. Several conditional probabilities concerning dependency of an amino acid to the residues appeared on its both sides are considered. Based on these conditional probabilities a weighted model is obtained to calculate the probability of each segment in a structure. This results in 2.27% increase in prediction accuracy in comparison with the ordinary Segmental Semi Markov Models, SSMMs. We also compare the performance of our model with that of the Segmental Semi Markov Model introduced by Schmidler et al. [C.S. Schmidler, J.S. Liu, D.L. Brutlag, Bayesian segmentation of protein secondary structure, J. Comp. Biol. 7(1/2) (2000) 233-248]. The calculations show that the overall prediction accuracy of our model is higher than the SSMM introduced by Schmidler. 相似文献
11.
O. Ohlenschläger R. Ramachandran J. Flemming K.-H. Gührs B. Schlott L.R. Brown 《Journal of biomolecular NMR》1997,9(3):273-286
Staphylokinase (Sak) is a 15.5 kDa protein secreted by several strains of Staphylococcusaureus. Due to its ability to convert plasminogen, the inactive proenzyme of the fibrinolyticsystem, into plasmin, Sak is presently undergoing clinical trials for blood clot lysis in thetreatment of thrombovascular disorders. With a view to developing a better understanding ofthe mode of action of Sak, we have initiated a structural investigation of Sak viamultidimensional heteronuclear NMR spectroscopy employing uniformly 15N- and 15N,13C-labelled Sak. Sequence-specific resonance assignments have been made employing 15N-editedTOCSY and NOE experiments and from HNCACB, CBCA(CO)NH, HBHA(CBCACO)NHand CC(CO)NH sets of experiments. From an analysis of the chemical shifts,3JHNH scalar coupling constants, NOEs and HN exchange data, the secondary structural elements of Sakhave been characterized. 相似文献
12.
The effects of the quaternary agent meproadifen on ACh-activated channel currents were studied on myoballs cultured from hind limb muscles of neonatal rats. Meproadifen (0.02-0.1 microM) combined with ACh (0.1-0.3 microM) in the patch pipette caused an increase, followed by a decrease, in the frequency of channel openings. At concentrations greater than 0.2 microM the initial phase was not detected and a rapid and marked reduction in the opening frequency was observed. Meproadifen (up to 2.5 microM) produced no change in the duration or conductance of the open state of ACh-activated channels. In addition, this agent induced the appearance of events with a marked increase in the 'noise' during the opening phase. The lack of effect under inside-out patch conditions suggested that meproadifen binds to a site located at the external portion of the nicotinic macromolecule and has no access to it through the cell membrane. This study indicated that non-competitive antagonists such as meproadifen can facilitate receptor activation and desensitization. 相似文献
13.
Background
The majority of residues in protein structures are involved in the formation of α-helices and β-strands. These distinctive secondary structure patterns can be used to represent a protein for visual inspection and in vector-based protein structure comparison. Success of such structural comparison methods depends crucially on the accurate identification and delineation of secondary structure elements. 相似文献14.
The structures of membrane proteins are generally solved using samples dissolved in micelles, bicelles, or occasionally phospholipid bilayers using X-ray diffraction or magnetic resonance. Because these are less than perfect mimics of true biological membranes, the structures are often confirmed by evaluating the effects of mutations on the properties of the protein in their native cellular environments. Low-resolution structures are also sometimes generated from the results of site-directed mutagenesis when other structural data are incomplete or not available. Here, we describe a rapid and automated approach to determine structures from data on site-directed mutants for the special case of homo-oligomeric helical bundles. The method uses as input an experimental profile of the effects of mutations on some property of the protein. This profile is then interpreted by assuming that positions that have large effects on structure/function when mutated project toward the center of the oligomeric bundle. Model bundles are generated, and correlation analysis is used to score which structures have inter-subunit Cβ distances between adjoining monomers that best correlate with the experimental profile. These structures are then clustered and refined using energy-based minimization methods. For a set of 10 homo-oligomeric TM protein structures ranging from dimers to pentamers, we show that our method predicts structures to within 1-2 Å backbone RMSD relative to X-ray and NMR structures. This level of agreement approaches the precision of NMR structures solved in different membrane mimetics. 相似文献
15.
The gaits of the adult SWISS mice during treadmill locomotion at velocities ranging from 15 to 85 cm s–1 have been analysed using a high-speed video camera combined with cinefluoroscopic equipment. The sequences of locomotion were analysed to determine the various space and time parameters of limb kinematics. We found that velocity adjustments are accounted for differently by the stride frequency and the stride length if the animal showed a symmetrical or an asymmetrical gait. In symmetrical gaits, the increase of velocity is provided by an equal increase in the stride length and the stride frequency. In asymmetrical gaits, the increase in velocity is mainly assured by an increase in the stride frequency in velocities ranging from 15 to 29 cm s–1. Above 68 cm s–1, velocity increase is achieved by stride length increase. In velocities ranging from 29 to 68 cm s–1, the contribution of both variables is equal as in symmetrical gaits. Both stance time and swing time shortening contributed to the increase of the stride frequency in both gaits, though with a major contribution from stance time decrease. The pattern of locomotion obtained in a normal mouse should be used as a template for studying locomotor control deficits after lesions or in different mutations affecting the nervous system. 相似文献
16.
Alessandro Pintar Meike Hensmann Kornelia Jumel Maureen Pitkeathly Stephen E. Harding Iain D. Campbell 《European biophysics journal : EBJ》1996,24(6):371-380
The SH2 domain from Fyn tyrosine kinase, corresponding to residues 155–270 of the human enzyme, was expressed as a GST-fusion protein in a pGEX-E. coli system. After thrombin cleavage and removal of GST, the protein was studied by heteronuclear NMR. Two different phosphotyrosyl-peptides were synthesized and added to the SH2 domain. One peptide corresponded to the regulatory C-terminal tail region of Fyn. Sequence-specific assignment of NMR spectra was achieved using a combination of1H-15N-correlated 2D HSQC,15N-edited 3D TOCSY-HMQC, and15N-edited 3D NOESY-HMQC spectra. By analysis of the -proton chemical shifts and NOE intensities, the positions of secondary structural elements were determined and found to correspond closely to that seen in the crystal structure of the, homologous, Src-SH2 domain.To investigate the internal dynamics of the protein backbone, T1 and T2 relaxation parameters were measured on the free protein, as well as on both peptide complexes. Analytical ultracentrifugation and dynamic light scattering were employed to measure the effect of concentration and peptide-binding on self-association. The results suggest that, at NMR-sample concentrations, the free protein is present in at least dimeric form. Phosphopeptide binding and lower concentration significantly, but not completely, shift the equilibrium towards monomers. The possible role of this protein association in the regulation of the Src-family tyrosine kinases is discussed.Abbreviations SH
Src homology
- GST
glutathione-S-transferase
- IPTG
isopropyl--D-galactopyranoside
- DTT
dithiothreitol
- PMSF
phenyl-methyl-sulphonyl-fluoride
- TBS
50 mM Tris, 150 mM NaCl, 5 mM DTT, pH 8.0
- MWCO
molecular weight cut off
- NMR
nuclear magnetic resonance
- HSQC
heteronuclear single-quantum correlation
- NOESY
nuclear Overhauser effect spectroscopy 相似文献
17.
Summary A simple technique for identifying protein secondary structures through the analysis of backbone 13C chemical shifts is described. It is based on the Chemical-Shift Index [Wishart et al. (1992) Biochemistry, 31, 1647–1651] which was originally developed for the analysis of 1H chemical shifts. By extending the Chemical-Shift Index to include 13C, 13C and carbonyl 13C chemical shifts, it is now possible to use four independent chemical-shift measurements to identify and locate protein secondary structures. It is shown that by combining both 1H and 13C chemical-shift indices to produce a consensus estimate of secondary structure, it is possible to achieve a predictive accuracy in excess of 92%. This suggests that the secondary structure of peptides and proteins can be accurately obtained from 1H and 13C chemical shifts, without recourse to NOE measurements.Supplementary material is available in the form of a 10-page table (Table S1) describing the exact location of secondary structures in all 20 proteins as determined using the methods described in this paper. Requests for Table S1 should be directed to the authors. 相似文献
18.
Secondary structures of proteins have been predicted using neural networks from their Fourier transform infrared spectra. To improve the generalization ability of the neural networks, the training data set has been artificially increased by linear interpolation. The leave-one-out approach has been used to demonstrate the applicability of the method. Bayesian regularization has been used to train the neural networks and the predictions have been further improved by the maximum-likelihood estimation method. The networks have been tested and standard error of prediction (SEP) of 4.19% for alpha helix, 3.49% for beta sheet, and 3.15% for turns have been achieved. The results indicate that there is a significant decrease in the SEP for each type of structure parameter compared to previous works. 相似文献
19.
Mark E. Snow 《Proteins》1993,15(2):183-190
A novel scheme for the parameterization of a type of “potential energy” function for protein molecules is introduced. The function is parameterized based on the known conformations of previously determined protein structures and their sequence similarity to a molecule whose conformation is to be calculated. Once parameterized, minima of the potential energy function can be located using a version of simulated annealing which has been previously shown to locate global and near-global minima with the given functional form. As a test problem, the potential was parameterized based on the known structures of the rubredoxins from Desulfovibrio vulgaris, Desulfovibrio desulfuricans, and Clostridium pasteurianum, which vary from 45 to 54 amino acids in length, and the sequence alignments of these molecules with the rubredoxin sequence from Desulfovibrio gigas. Since the Desulfovibrio gigas rubredeoxin conformation has also been determined, it is possible to check the accuracy of the results. Ten simulated-annealing runs from random starting conformations were performed. Seven of the 10 resultant conformations have an all-Cα rms deviation from the crystallographically determined conformation of less than 1.7 Å. For five of the structures, the rms deviation is less than 0.8 Å. Four of the structures have conformations which are virtually identical to each other except for the position of the carboxy-terminal residue. This is also the conformation which is achieved if the determined crystal structure is minimized with the same potential. The all-Cα rms difference between the crystal and minimized crystal structures is 0.6 Å. It is further observed that the “energies” of the structures according to the potential function exhibit a strong correlation with rms deviation from the native structure. The conformations of the individual model structures and the computational aspects of the modeling procedure are discussed. © 1993 Wiley-Liss, Inc. 相似文献
20.
A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane 总被引:6,自引:1,他引:6
Chlamydiae are obligate intracellular pathogens that spend their entire growth phase sequestered in a membrane-bound vacuole called an inclusion. A set of chlamydial proteins, labelled Inc proteins, has been identified in the inclusion membrane (IM). The predicted IncA, IncB and IncC amino acid sequences share very limited similarity, but a common hydrophobicity motif is present within each Inc protein. In an effort to identify a relatively complete catalogue of Chlamydia trachomatis proteins present in the IM of infected cells, we have screened the genome for open reading frames encoding this structural motif. Hydropathy plot analysis was used to screen each translated open reading frame in the C. trachomatis genome database. Forty-six candidate IM proteins (C-lncs) that satisfied the criteria of containing a bilobed hydrophobic domain of at least 50 amino acids were identified. The genome of Chlamydia pneumoniae encodes a larger collection of C-lnc proteins, and only approximately half of the C-lncs are encoded within both genomes. In order to confirm the hydropathy plot screening method as a valid predictor of C-lncs, antisera and/or monoclonal antibodies were prepared against six of the C. trachomatis C-lncs. Immunofluorescence microscopy of C. trachomatis-infected cells probed with these antibodies showed that five out of six C-lncs are present in the chlamydial IM. Antisera were also produced against C. pneumoniae p186, a protein sharing identity with Chlamydia psittaci lncA and carrying a similar bilobed hydrophobic domain. These antisera labelled the inclusion membrane in C. pneumoniae infected cells, confirming that proteins sharing the unique secondary structural characteristic also localize to the inclusion membrane of C. pneumoniae. Sera from patients with high-titre antibodies to C. trachomatis were examined for reactivity with each tested C-lnc protein. Three out of six tested C-lncs were recognized by a majority of these patient sera. Collectively, these studies identify and characterize novel proteins localized to the chlamydial IM and demonstrate the existence of a potential secondary structural targeting motif for localization of chlamydial proteins to this unique intracellular environment. 相似文献