首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of the properties for individual hepatitis C virus (HCV) proteins makes it possible to establish their molecular structure and conformation, to localize antigenic and immunogenic determinants, to identify protective epitopes, and to solve applied problems (e.g., design of diagnostic tests, vaccines, and drugs). Linear and conformational epitopes of HCV proteins were localized using the phage display technique, and the peptides exposed on the phages selected with monoclonal antibodies against HCV proteins were tested for immunogenicity. Of the 11 epitopes revealed, three were strongly linear; two depended on the secondary; and one on the tertiary structure of the corresponding protein (conformational epitopes). Amino acid sequences involved in the other epitopes were established. The results can be used to improve the diagnosis of hepatitis C, to study the effect of amino acid substitutions on the antigenic properties of HCV proteins, and to analyze the immune response in patients infected with genotypically different HCV. It was shown with the example of the NS5A epitope that phage particles with epitope-mimicking peptides (mimotopes) induce production of antibodies against the corresponding HCV proteins.  相似文献   

2.
The successful movement of a newly synthesized protein through the endoplasmic reticulum (ER) and associated membranous compartments is dependent on appropriate recognition by complex processing systems. Failure to perceive appropriately processed or modified intermediates in the pathway can initiate a series of cellular signaling events (ER stress or unfolded protein response, UPR) that can lead to cell apoptosis and loss of biomass in culture processes. We have shown that expression of growth arrest and DNA damage gene 153 (GADD153) is associated with recognition of damaged or mis-processed proteins within the secretory processes of CHO and NS0 myeloma cells. To directly characterize the roles of GADD153 in UPR-directed apoptosis, we have generated stable clones of NS0 myeloma cells with elevated (constitutive and inducible) and deleted GADD153 expression. Although GADD153 is a robust indicator of the onset of ER stress or the UPR, GADD153 expression alone is not sufficient to provoke NS0 myeloma apoptosis and it is not required for apoptosis to occur.  相似文献   

3.
Heat shock protein 70 (HSPA) is a molecular chaperone which has been suggested to shuttle human leukocyte antigen (HLA) epitope precursors from the proteasome to the transporter associated with antigen processing. Despite the reported observations that peptides chaperoned by HSPA are an effective source of antigens for cross-priming, little is known about the peptides involved in the process. In this study, we investigated the possible involvement of HSPA in HLA class I or class II antigen presentation and analysed the antigenic potential of the associated peptides. HSPA was purified from CCRF-CEM and K562 cell lines, and using mass spectrometry techniques, we identified 44 different peptides which were co-purified with HSPA. The affinity of the identified peptides to two HSPA isoforms, HSPA1A and HSPA8, was confirmed using a peptide array. Four of the HSPA-associated peptides were matched with 13 previously reported HLA epitopes. Of these 13 peptides, nine were HLA class I and four were HLA class II epitopes. These results demonstrate the association of HSPA with HLA class I and class II epitopes, therefore providing further evidence for the involvement of HSPA in the antigen presentation process.  相似文献   

4.
West Nile virus (WNV) is a major pathogenic flavivirus which causes human neuro-invasive disease, worldwide. Still successful vaccine and therapeutic treatment against WNV infection is not available, which demands the development of more potential WNV vaccines. The present study used immunoinformatics methods viz. Matrix and Artificial Neural Network (ANN) based algorithm to identify the promiscuous and conserve T cell epitopes from entire WNV proteome followed by structure based analysis of identified epitopes. The epitopes were also taken for TAP binding analysis and epitope conservancy analysis. Among 89 identified epitopes, eight epitopes showed high potential and conserve nature but two epitopes viz. capsid 40FVLALLAFF48 and NS2B 9LMFAIVGGL17 were found most promiscuous and having high population coverage in comparison of other identified epitopes and known antigenic positive control epitopes. Further, Autodock 4.2 and NAMD–VMD molecular dynamics simulation were used for docking and molecular dynamics simulation respectively, to validate epitope and allele complex stability. The 3D structure models were generated for epitopes and corresponding HLA allele by Pepstr and Modeller 9.10, respectively. Epitope FVLALLAFF-B*3501 allele and epitope LMFAIVGGL-B*5101 HLA allele complexes have shown best energy minimization and stable complexes during simulation. The study also showed the optimum binding epitopes FVLALLAFF and LMFAIVGGL with cTAP1 (PDB ID: 1JJ7) cavity, as revealed by Autodock 4.2, concluding favored passage through the ER membrane from cytosol to the ER lumen during cytosolic processing. The docking experiment of epitopes FVLALLAFF, LMFAIVGGL with cTAP1 very well show 1 H-bond state with a binding energy of ?1.62 and ?0.23 kcal/mol, respectively. These results show a smooth pass through of the epitope across the channel of cTAP1 via being weakly bonded and released into the ER lumen through the cavity of cTAP1. Overall, identified peptides have potential application in the development of short peptide based vaccines and diagnostic agents for West Nile virus.  相似文献   

5.
Silkworm posterior silkgland is a model for studying intracellular trafficking. Here, using this model, we identify several potential cargo proteins of BmKinesin-1 and focus on one candidate, BmCREC. BmCREC (also known as Bombyx mori DNA supercoiling factor, BmSCF) was previously proposed to supercoil DNA in the nucleus. However, we show here that BmCREC is localized in the ER lumen. Its C-terminal tetrapeptide HDEF is recognized by the KDEL receptor, and subsequently it is retrogradely transported by coat protein I (COPI) vesicles to the ER. Lacking the HDEF tetrapeptide of BmCREC or knocking down COPI subunits results in decreased ER retention and simultaneously increased secretion of BmCREC. Furthermore, we find that BmCREC knockdown markedly disrupts the morphology of the ER and Golgi apparatus and leads to a defect of posterior silkgland tube expansion. Together, our results clarify the ER retention mechanism of BmCREC and reveal that BmCREC is indispensable for maintaining ER/Golgi morphology.  相似文献   

6.
Study of individual hepatitis C (HCV) proteins could help to find a molecular structure and conformation, localization of antigenic and immunogenic determinants, to reveal of protective epitopes. It is necessary for practical medicine - development of diagnostic test-systems, vaccines and therapeutics. Linear and conformation dependent epitopes of HCV proteins was localized in this work and immunogenic properties of phage displayed peptides screened on monoclonal antibodies to HCV proteins have been investigated. Eleven epitopes of four HCV proteins have been studied. Three epitopes was found as linear, two epitopes were dependent on secondary structure of proteins and one epitope was dependent on tertiary structure of NS3 protein. Aminoacid sequences of other determinants have been determined and the distinct localization of these determinants will be continued after discovering of tertiary structure of HCV proteins. It was shown, that phage mimotope 3f4 is immunogenic and could induce specific hu- moral immune response to NS5A HCV protein. The data obtained could be useful for improving of HCV diagnostic test-systems, studying of amino acid substitutions and its influence on antigenic properties of the HCV proteins. The results could help to study an immune response in patients infected with different genotypes of HCV. Phage displayed peptides mimicking the antigenic epitopes of HCV proteins could be applied to development of HCV vaccine.  相似文献   

7.
Yuan XH  Wang YC  Jin WJ  Zhao BB  Chen CF  Yang J  Wang JF  Guo YY  Liu JJ  Zhang D  Gong LL  He YW 《PloS one》2012,7(3):e32938
Human adenoviruses (HAdVs) are the etiologic agent of many human infectious diseases. The existence of at least 54 different serotypes of HAdVs has resulted in difficulties in clinical diagnosis. Acute respiratory tract disease (ARD) caused by some serotypes from B and C species is particularly serious. Hexon, the main coat protein of HAdV, contains the major serotype-specific B cell epitopes; however, few studies have addressed epitope mapping in most HAdV serotypes. In this study, we utilized a novel and rapid method for the modeling of homologous proteins based on the phylogenetic tree of protein families and built three-dimensional (3D) models of hexon proteins in B and C species HAdVs. Based on refined hexon structures, we used reverse evolutionary trace (RET) bioinformatics analysis combined with a specially designed hexon epitope screening algorithm to achieve high-throughput epitope mapping of all 13 hexon proteins in B and C species HAdVs. This study has demonstrated that all of the epitopes from the 13 hexon proteins are located in the proteins' tower regions; however, the exact number, location, and size of the epitopes differ among the HAdV serotypes.  相似文献   

8.
In this study, the coding region of type O FMDV capsid protein VP1 and a series of codon optimized DNA sequences coding for VP1 amino acid residues 141–160 (epitope1), tandem repeat 200–213 (epitope2 (+2)) and the combination of two epitopes (epitope1–2) was genetically cloned into the prokaryotic expression vector pPROExHTb and pGEX4T-1, respectively. VP1 and the fused epitopes GST-E1, GST-E2 (+2) and GST-E1-2 were successfully solubly expressed in the cytoplasm of Escherichia coli and Western blot analysis demonstrated they retained antigenicity. Indirect VP1-ELISA and epitope ELISAs were subsequently developed to screen a panel of 80 field pig sera using LPB-ELISA as a standard test. For VP1-ELISA and all the epitope ELISAs, there were clear distinctions between the FMDV-positive and the FMDV-negative samples. Cross-reactions with pig sera positive to the viruses of swine vesicular disease virus that produce clinically indistinguishable syndromes in pigs or guinea pig antisera to FMDV strains of type A, C and Asia1 did not occur. The relative sensitivity and specificity for the GST-E1 ELISA, GST-E2 (+2), GST-E1-2 ELISA and VP1-ELISA in comparison with LPB-ELISA were 93.3% and 85.0%, 95.0% and 90%, 100% and 81.8%, 96.6% and 80.9% respectively. This study shows the potential use of the aforementioned epitopes as alternatives to the complex antigens used in current detection for antibody to FMDV structural proteins.  相似文献   

9.
Combinatory antibody library display technologies have been invented and successfully implemented for the selection and engineering of therapeutic antibodies. Precise targeting of important epitopes on the protein of interest is essential for such isolated antibodies to serve as effective modulators of molecular interactions. We developed a strategy to efficiently isolate antibodies against a specific epitope on a target protein from a yeast display antibody library using dengue virus envelope protein domain III as a model target. A domain III mutant protein with a key mutation inside a cross-reactive neutralizing epitope was designed, expressed, and used in the competitive panning of a yeast display naïve antibody library. All the yeast display antibodies that bound to the wild type domain III but not to the mutant were selectively sorted and characterized. Two unique clones were identified and showed cross-reactive binding to envelope protein domain IIIs from different serotypes. Epitope mapping of one of the antibodies confirmed that its epitope overlapped with the intended neutralizing epitope. This novel approach has implications for many areas of research where the isolation of epitope-specific antibodies is desired, such as selecting antibodies against conserved epitope(s) of viral envelope proteins from a library containing high titer, high affinity non-neutralizing antibodies, and targeting unique epitopes on cancer-related proteins.  相似文献   

10.
Receptor heteromerization is a mechanism used by G protein-coupled receptors to diversify their properties and function. We previously demonstrated that these interactions occur through salt bridge formation between epitopes of the involved receptors. Recent studies claim that calmodulin (CaM) binds to an Arg-rich epitope located in the amino-terminus of the dopamine D(2) receptor third intracellular loop. This is the same epitope involved in adenosine A(2A)-D(2) receptor heteromerization, through Coulombic interaction between the Arg residues and a phosphorylated serine (pS) located in the medial segment of the C-terminus of the A(2A) receptor. Mass spectrometric analysis indicates that an electrostatic interaction involving the D(2) receptor Arg-rich epitope and several CaM acidic epitopes are mainly responsible for the D(2) receptor-CaM binding. CaM could also form multiple noncovalent complexes by means of electrostatic interactions with an epitope localized in the proximal segment of the C-terminus of the A(2A) receptor. Ca(2+) disrupted the binding of CaM to the D(2) but not to the A(2A) receptor epitope, and CaM disrupted the electrostatic interactions between the D(2) receptor epitope and the more distal A(2A) receptor epitope. A model is introduced with the possible functional implications of A(2A)-D(2)-CaM interactions. These in vitro findings imply a possible regulatory role for CaM in receptor heteromers formation.  相似文献   

11.
The distribution and morphology of the endoplasmic reticulum (ER) in mammalian cells depend on both dynamic and static interactions of ER membrane proteins with microtubules (MTs). Cytoskeleton-linking membrane protein (CLIMP)-63 is exclusively localized in sheet-like ER membranes, typical structures of the rough ER, and plays a pivotal role in the static interaction with MTs. Our previous study showed that the 42-kDa ER-residing form of syntaxin 5 (Syn5L) regulates ER structure through the interactions with both CLIMP-63 and MTs. Here, we extend our previous study and show that the valosin-containing protein/p97-interacting membrane protein (VIMP)/SelS is also a member of the family of proteins that shape the ER by interacting with MTs. Depletion of VIMP causes the spreading of the ER to the cell periphery and affects an MT-dependent process on the ER. Although VIMP can interact with CLIMP-63 and Syn5L, it does not interact with MT-binding ER proteins (such as Reep1) that shape the tubular smooth ER, suggesting that different sets of MT-binding ER proteins are used to organize different ER subdomains.  相似文献   

12.
Bone morphogenetic proteins (BMPs) and other members of the TGF-beta superfamily are secreted signalling proteins determining the development, maintenance and regeneration of tissues and organs. These dimeric proteins bind, via multiple epitopes, two types of signalling receptor chains and numerous extracellular modulator proteins that stringently control their activity. Crystal structures of free ligands and of complexes with type I and type II receptor extracellular domains and with the modulator protein Noggin reveal structural epitopes that determine the affinity and specificity of the interactions. Modelling of a ternary complex BMP/(BMPR-IA(EC))2 / (ActR-II(EC))2 suggests a mechanism of receptor activation that does not rely on direct contacts between extracellular domains of the receptors. Mutational and interaction analyses indicate that the large hydrophobic core of the interface of BMP-2 (wrist epitope) with the type I receptor does not provide a hydrophobic hot spot for binding. Instead, main chain amide and carbonyl groups that are completely buried in the contact region represent major binding determinants. The affinity between ligand and receptor chains is probably strongly increased by two-fold interactions of the dimeric ligand and receptor chains that exist as homodimers in the membrane (avidity effects). BMP muteins with disrupted epitopes for receptor chains or modulator proteins provide clues for drug design and development.  相似文献   

13.
14.
Quality control of endoplasmic reticulum proteins involves the identification and engagement of misfolded proteins, dislocation of the misfolded protein across the endoplasmic reticulum (ER) membrane, and ubiquitin-mediated targeting to the proteasome for degradation. Ancient ubiquitous protein 1 (AUP1) physically associates with the mammalian HRD1-SEL1L complex, and AUP1 depletion impairs degradation of misfolded ER proteins. One of the functions of AUP1 in ER quality control is to recruit the soluble E2 ubiquitin-conjugating enzyme UBE2G2. We further show that the CUE domain of AUP1 regulates polyubiquitylation and facilitates the interaction of AUP1 with the HRD1 complex and with dislocation substrates. AUP1 localizes both to the ER and to lipid droplets. The AUP1 expression level affects the abundance of cellular lipid droplets and as such represents the first protein with lipid droplet regulatory activity to be linked to ER quality control. These findings indicate a possible connection between ER protein quality control and lipid droplets.  相似文献   

15.
Japanese encephalitis virus (JEV) non-structural protein 1 (NS1) contributes to virus replication and elicits protective immune responses during infection. JEV NS1-specific antibody responses could be a target in the differential diagnosis of different flavivirus infections. However, the epitopes on JEV NS1 are poorly characterized. The present study describes the full mapping of linear B-cell epitopes in JEV NS1. We generated eleven NS1-specific monoclonal antibodies from mice immunized with recombinant NS1. For epitope mapping of monoclonal antibodies, a set of 51 partially-overlapping peptides covering the entire NS1 protein were expressed with a GST-tag and then screened using monoclonal antibodies. Through enzyme-linked immunosorbent assay (ELISA), five linear epitope-containing peptides were identified. By sequentially removing amino acid residues from the carboxy and amino terminal of peptides, the minimal units of the five linear epitopes were identified and confirmed using monoclonal antibodies. Five linear epitopes are located in amino acids residues 5AIDITRK11, 72RDELNVL78, 251KSKHNRREGY260, 269DENGIVLD276, and 341DETTLVRS348. Furthermore, it was found that the epitopes are highly conserved among JEV strains through sequence alignment. Notably, none of the homologous regions on NS1 proteins from other flaviviruses reacted with the MAbs when they were tested for cross-reactivity, and all five epitope peptides were not recognized by sera against West Nile virus or Dengue virus. These novel virus-specific linear B-cell epitopes of JEV NS1 would benefit the development of new vaccines and diagnostic assays.  相似文献   

16.
The protein-disulfide isomerase (PDI) family member anterior gradient 2 (AGR2) is reportedly overexpressed in numerous cancers and plays a role in cancer development. However, to date the molecular functions of AGR2 remain to be characterized. Herein we have identified AGR2 as bound to newly synthesized cargo proteins using a proteomics analysis of endoplasmic reticulum (ER) membrane-bound ribosomes. Nascent protein chains that translocate into the ER associate with specific ER luminal proteins, which in turn ensures proper folding and posttranslational modifications. Using both imaging and biochemical approaches, we confirmed that AGR2 localizes to the lumen of the ER and indirectly associates with ER membrane-bound ribosomes through nascent protein chains. We showed that AGR2 expression is controlled by the unfolded protein response and is in turn is involved in the maintenance of ER homeostasis. Remarkably, we have demonstrated that siRNA-mediated knockdown of AGR2 significantly alters the expression of components of the ER-associated degradation machinery and reduces the ability of cells to cope with acute ER stress, properties that might be relevant to the role of AGR2 in cancer development.  相似文献   

17.
Identification of novel antigens is essential for developing new diagnostic tests and vaccines. We used DIGE to compare protein expression in amastigote and promastigote forms of Leishmania chagasi. Nine hundred amastigote and promastigote spots were visualized. Five amastigote-specific, 25 promastigote-specific, and 10 proteins shared by the two parasite stages were identified. Furthermore, 41 proteins were identified in the Western blot employing 2-DE and sera from infected dogs. From these proteins, 3 and 38 were reactive with IgM and total IgG, respectively. The proteins recognized by total IgG presented different patterns in terms of their recognition by IgG1 and/or IgG2 isotypes. All the proteins selected by Western blot were mapped for B-cell epitopes. One hundred and eighty peptides were submitted to SPOT synthesis and immunoassay. A total of 25 peptides were shown of interest for serodiagnosis to visceral leishmaniasis. In addition, all proteins identified in this study were mapped for T cell epitopes by using the NetCTL software, and candidates for vaccine development were selected. Therefore, a large-scale screening of L. chagasi proteome was performed to identify new B and T cell epitopes with potential use for developing diagnostic tests and vaccines.  相似文献   

18.
Persistent outbreaks of Nipah virus (NiV) with severe case fatality throw a major challenge on researchers to develop a drug or vaccine to combat the disease. With little knowledge of its molecular mechanisms, we utilized the proteome data of NiV to evaluate the potency of three major proteins (phosphoprotein, polymerase, and nucleocapsid protein) in the RNA-dependent RNA polymerase complex to count as a possible candidate for epitope-based vaccine design. Profound computational analysis was used on the above proteins individually to explore the T-cell immune properties like antigenicity, immunogenicity, binding to major histocompatibility complex class I and class II alleles, conservancy, toxicity, and population coverage. Based on these predictions the peptide ‘ELRSELIGY’ of phosphoprotein and ‘YPLLWSFAM’ of nulceocapsid protein were identified as the best-predicted T-cell epitopes and molecular docking with human leukocyte antigen-C (HLA-C*12:03) molecule was effectuated followed by validation with molecular dynamics simulation. The B-cell epitope predictions suggest that the sequence positions 421 to 471 in phosphoprotein, 606 to 640 in polymerase and 496 to 517 in nucleocapsid protein are the best-predicted regions for B-cell immune response. However, the further experimental circumstance is required to test and validate the efficacy of the subunit peptide for potential candidacy against NiV.  相似文献   

19.
Extracellular matrix (ECM) remodeling regulates angiogenesis. However, the precise mechanisms by which structural changes in ECM proteins contribute to angiogenesis are not fully understood. Integrins are molecules with the ability to detect compositional and structural changes within the ECM and integrate this information into a network of signaling circuits that coordinate context-dependent cell behavior. The role of integrin αvβ3 in angiogenesis is complex, as evidence exists for both positive and negative functions. The precise downstream signaling events initiated by αvβ3 may depend on the molecular characteristics of its ligands. Here, we identified an RGD-containing cryptic collagen epitope that is generated in vivo. Surprisingly, rather than inhibiting αvβ3 signaling, this collagen epitope promoted αvβ3 activation and stimulated angiogenesis and inflammation. An antibody directed to this RGDKGE epitope but not other RGD collagen epitopes inhibited angiogenesis and inflammation in vivo. The selective ability of this RGD epitope to promote angiogenesis and inflammation depends in part on its flanking KGE motif. Interestingly, a subset of macrophages may represent a physiologically relevant source of this collagen epitope. Here, we define an endothelial cell mechano-signaling pathway in which a cryptic collagen epitope activates αvβ3 leading to an Src and p38 MAPK-dependent cascade that leads to nuclear accumulation of Yes-associated protein (YAP) and stimulation of endothelial cell growth. Collectively, our findings not only provide evidence for a novel mechano-signaling pathway, but also define a possible therapeutic strategy to control αvβ3 signaling by targeting a pro-angiogenic and inflammatory ligand of αvβ3 rather than the receptor itself.  相似文献   

20.
Dengue virus is a major international public health concern, and there is a lack of available effective vaccines. Virus-specific epitopes could help in developing epitope peptide vaccine. Previously, a neutralizing monoclonal antibody (mAb) 4F5 against nonstructural protein 3 (NS3) of dengue virus 2 (DV2) was developed in our lab. In this work, the B cell epitope recognized by mAb 4F5 was identified using the phage-displayed peptide library. The results of the binding assay and competitive inhibition assay indicated that the peptides, residues 460–469 (U460-469 RVGRNPKNEN) of DV2 NS3 protein, were the B cell epitopes recognized by mAb 4F5. Furthermore, the epitope peptides and a control peptide were synthesized and then immunized female BALB/c mice. ELISA analysis showed that immunization with synthesized epitope peptide elicited a high level of antibody in mice, and immunofluorescent staining showed that the antisera from fusion epitope-immunized mice also responded to DV2 NS3 protein, which further characterized the specific response of the present epitope peptide. Therefore, the present work revealed the specificity of the newly identified epitope (U460-469) of DV2 NS3 protein, which may shed light on dengue virus (DV) vaccine design, DV pathogenesis study, and even DV diagnostic reagent development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号