共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
植物病原真菌的MAPK基因及其功能 总被引:10,自引:0,他引:10
叙述在植物病原真菌中促分裂原活化蛋白激酶 (Mitogenactivatedproteinkinase,MAPK)基因的种类和特征 ,概括了MAPK基因在植物病原真菌生长发育、胁迫反应和侵染、致病过程中的作用及其研究现状 ,讨论了进行植物病原真菌MAPK基因研究的意义及重点研究的课题 ,并根据最新研究进展 ,提出了植物病原真菌MAPK基因研究的发展前景。 相似文献
3.
Mahendra Damarla Emile Hasan Adel Boueiz Anne Le Hyun Hae Pae Calypso Montouchet Todd Kolb Tiffany Simms Allen Myers Usamah S. Kayyali Matthias Gaestel Xinqi Peng Sekhar P. Reddy Rachel Damico Paul M. Hassoun 《PloS one》2009,4(2)
Mechanical ventilation, a fundamental therapy for acute lung injury, worsens pulmonary vascular permeability by exacting mechanical stress on various components of the respiratory system causing ventilator associated lung injury. We postulated that MK2 activation via p38 MAP kinase induced HSP25 phosphorylation, in response to mechanical stress, leading to actin stress fiber formation and endothelial barrier dysfunction. We sought to determine the role of p38 MAP kinase and its downstream effector MK2 on HSP25 phosphorylation and actin stress fiber formation in ventilator associated lung injury. Wild type and MK2−/− mice received mechanical ventilation with high (20 ml/kg) or low (7 ml/kg) tidal volumes up to 4 hrs, after which lungs were harvested for immunohistochemistry, immunoblotting and lung permeability assays. High tidal volume mechanical ventilation resulted in significant phosphorylation of p38 MAP kinase, MK2, HSP25, actin polymerization, and an increase in pulmonary vascular permeability in wild type mice as compared to spontaneous breathing or low tidal volume mechanical ventilation. However, pretreatment of wild type mice with specific p38 MAP kinase or MK2 inhibitors abrogated HSP25 phosphorylation and actin polymerization, and protected against increased lung permeability. Finally, MK2−/− mice were unable to phosphorylate HSP25 or increase actin polymerization from baseline, and were resistant to increases in lung permeability in response to HVT MV. Our results suggest that p38 MAP kinase and its downstream effector MK2 mediate lung permeability in ventilator associated lung injury by regulating HSP25 phosphorylation and actin cytoskeletal remodeling. 相似文献
4.
Joshua S. Chappie Sharmistha Acharya Ya-Wen Liu Marilyn Leonard Thomas J. Pucadyil Sandra L. Schmid 《Molecular biology of the cell》2009,20(15):3561-3571
Dynamin exhibits a high basal rate of GTP hydrolysis that is enhanced by self-assembly on a lipid template. Dynamin''s GTPase effector domain (GED) is required for this stimulation, though its mechanism of action is poorly understood. Recent structural work has suggested that GED may physically dock with the GTPase domain to exert its stimulatory effects. To examine how these interactions activate dynamin, we engineered a minimal GTPase-GED fusion protein (GG) that reconstitutes dynamin''s basal GTPase activity and utilized it to define the structural framework that mediates GED''s association with the GTPase domain. Chemical cross-linking of GG and mutagenesis of full-length dynamin establishes that the GTPase-GED interface is comprised of the N- and C-terminal helices of the GTPase domain and the C-terminus of GED. We further show that this interface is essential for structural stability in full-length dynamin. Finally, we identify mutations in this interface that disrupt assembly-stimulated GTP hydrolysis and dynamin-catalyzed membrane fission in vitro and impair the late stages of clathrin-mediated endocytosis in vivo. These data suggest that the components of the GTPase-GED interface act as an intramolecular signaling module, which we term the bundle signaling element, that can modulate dynamin function in vitro and in vivo. 相似文献
5.
Jidong Cheng Tianliang Huang Youfeng Li Yubai Guo Yuzhang Zhu Qingjia Wang Xiaojun Tan Weisheng Chen Yongneng Zhang Weijie Cheng Tetsuya Yamamoto Xubin Jing Jiexiong Huang 《PloS one》2014,9(4)
AMP-activated protein kinase (AMPK) is a central metabolic sensor and plays an important role in regulating glucose, lipid and cholesterol metabolism. Therefore, AMPK is a key therapeutic target in diabetes. Recent pilot studies have suggested that diabetes drugs may reduce the risk of cancer by affecting the AMPK pathway. However, the association between AMPK and the proliferation of hepatocellular carcinoma (HCC) is unknown. In this study, we investigated the relationship between AMPK activity and the proliferation of HCC in cell lines, nude mice and human clinic samples. We first investigated the relationship between AMPK activity and cell proliferation in two HCC cell lines, PLC/PRF/5 and HepG2, by two AMPK activators, 5-aminoimidazole-4-carboxamide-1-h-D-ribofuranoside (AICAR) and metformain. AICAR and metformin treatment significantly inhibited the proliferation of HCC cells and induced cell cycle arrest at G1-S checkpoint. We then observed that metformin abrogated the growth of HCC xenografts in nude mice. The clinical pathology of AMPK activity in HCC, including cell proliferation, differential grade, tumor size and microvessel density, was studied by using 30 clinical tissue samples. In HCC tissue samples, phosphorylated AMPK was expressed mainly in cytoplasm. AMPK activity decreased significantly in HCC in comparison with paracancerous liver tissues (P<0.05). AMPK activity was negatively correlated with the level of Ki-67 (a marker of cell proliferation), differential degradation and tumor size (P<0.05), but not with microvessel density, hemorrhage or necrosis in HCC. Our findings suggest that AMPK activity inhibits the proliferation of HCC and AMPK might be an effective target for prevention and treatment of HCC. 相似文献
6.
Shasha He Fenghua Liu Lei Xu Peng Yin Deyin Li Chen Mei Linshu Jiang Yunfei Ma Jianqin Xu 《PloS one》2016,11(2)
Heat stress is important in the pathogenesis of intestinal epithelial barrier dysfunction. Ferulic acid (FA), a phenolic acid widely found in fruits and vegetables, can scavenge free radicals and activate cell stress responses. This study is aimed at investigating protective effects of FA on heat stress-induced dysfunction of the intestinal epithelial barrier in vitro and in vivo. Intestinal epithelial (IEC-6) cells were pretreated with FA for 4 h and then exposed to heat stress. Heat stress caused decreased transepithelial electrical resistance (TER) and increased permeability to 4-kDa fluorescein isothiocyanate (FITC)-dextran (FD4). Both effects were inhibited by FA in a dose-dependent manner. FA significantly attenuated the decrease in occludin, ZO-1 and E-cadherin expression observed with heat stress. The distortion and redistribution of occludin, ZO-1 and E-cadherin proteins were also effectively prevented by FA pretreatment. Moreover, heat stress diminished electron-dense material detected in tight junctions (TJs), an effect also alleviated by FA in a dose-dependent manner. In an in vivo heat stress model, FA (50 mg/kg) was administered to male Sprague–Dawley rats for 7 consecutive days prior to exposure to heat stress. FA pretreatment significantly attenuated the effects of heat stress on the small intestine, including the increased FD4 permeability, disrupted tight junctions and microvilli structure, and reduced occludin, ZO-1 and E-cadherin expression. Taken together, our results demonstrate that FA pretreatment is potentially protective against heat stress-induced intestinal epithelial barrier dysfunction. 相似文献
7.
Mathias Beig Frank Oellien Linnéa Garoff Sandra Noack R. Luise Krauth-Siegel Paul M. Selzer 《PLoS neglected tropical diseases》2015,9(6)
With the goal to identify novel trypanothione reductase (TR) inhibitors, we performed a combination of in vitro and in silico screening approaches. Starting from a highly diverse compound set of 2,816 compounds, 21 novel TR inhibiting compounds could be identified in the initial in vitro screening campaign against T. cruzi TR. All 21 in vitro hits were used in a subsequent similarity search-based in silico screening on a database containing 200,000 physically available compounds. The similarity search resulted in a data set containing 1,204 potential TR inhibitors, which was subjected to a second in vitro screening campaign leading to 61 additional active compounds. This corresponds to an approximately 10-fold enrichment compared to the initial pure in vitro screening. In total, 82 novel TR inhibitors with activities down to the nM range could be identified proving the validity of our combined in vitro/in silico approach. Moreover, the four most active compounds, showing IC50 values of <1 μM, were selected for determining the inhibitor constant. In first on parasites assays, three compounds inhibited the proliferation of bloodstream T. brucei cell line 449 with EC50 values down to 2 μM. 相似文献
8.
Doxorubicin (Dox) is one of the most widely used antitumor drugs, but its cumulative cardiotoxicity have been major concerns in cancer therapeutic practice for decades. Recent studies established that metformin (Met), an oral anti-diabetic drug, provides protective effects in Dox-induced cardiotoxicity. Met has been shown to increase fatty acid oxidation, an effect mediated by AMP activated protein kinase (AMPK). Here we delineate the intracellular signaling factors involved in Met mediated protection against Dox-induced cardiotoxicity in the H9c2 cardiomyoblast cell line. Treatment with low dose Met (0.1 mM) increased cell viabilities and Ki-67 expressions while decreasing LDH leakages, ROS generations and [Ca2+]i. The protective effect was reversed by a co-treatment with compound-C, an AMPK specific inhibitor, or by an over expression of a dominant-negative AMPKα cDNA. Inhibition of PKA with H89 or a suppression of Src kinase by a small hairpin siRNA also abrogated the protective effect of the low dose Met. Whereas, with a higher dose of Met (1.0 mM), the protective effects were abolished regardless of the enhanced AMPK, PKA/CREB1 and Src kinase activity. In high dose Met treated cells, expression of platelet-derived growth factor receptor (PDGFR) was significantly suppressed. Furthermore, the protective effect of low dose Met was totally reversed by co-treatment with AG1296, a PDGFR specific antagonist. These data provide in vitro evidence supporting a signaling cascade by which low dose Met exerts protective effects against Dox via sequential involvement of AMPK, PKA/CREB1, Src and PDGFR. Whereas high dose Met reverses the effect by suppressing PDGFR expression. 相似文献
9.
10.
11.
Anna P. Mashkina Dasha Cizkova Ivo Vanicky Alexander A. Boldyrev 《Cellular and molecular neurobiology》2010,30(6):901-907
There is increasing evidence showing that the interplay between neuronal and immune systems may be regulated by neuromediators.
However, little is known about the involvement of glutamatergic system in such neuro-immune relations. In the present study,
we have shown that some intact lymphocytes express N-methyl-d-aspartate activated receptors (NMDA receptors), an important constituent of glutamatergic system. The activation of lymphocytes
with phytohemagglutinin (PHA) induces a time-dependent increase in the amount of NMDA receptor presenting cells, and NMDA
stimulates this process. Immune response of such lymphocytes is suppressed and the amount of cells producing interferon γ
(IFN-γ) in vitro is decreased to the level corresponding to intact (non-activated) cells. Furthermore, lymphocytes in the
region of inflammation, induced by spinal cord injury (SCI), are also NMDA-positive. We suggest that expression of NMDA receptors
in lymphocytes is regulated by central nervous system, which controls the inflammation process. 相似文献
12.
The p21-activated protein kinases (Paks) have been implicated in the regulation of smooth muscle contractility, but the physiologic effects of Pak activation on airway reactivity in vivo are unknown. A mouse model with a genetic deletion of Pak1 (Pak1(-/-)) was used to determine the role of Pak in the response of the airways in vivo to challenge with inhaled or intravenous acetylcholine (ACh). Pulmonary resistance was measured in anesthetized mechanically ventilated Pak1(-/-) and wild type mice. Pak1(-/-) mice exhibited lower airway reactivity to ACh compared with wild type mice. Tracheal segments dissected from Pak1(-/-) mice and studied in vitro also exhibited reduced responsiveness to ACh compared with tracheas from wild type mice. Morphometric assessment and pulmonary function analysis revealed no differences in the structure of the airways or lung parenchyma, suggesting that that the reduced airway responsiveness did not result from structural abnormalities in the lungs or airways due to Pak1 deletion. Inhalation of the small molecule synthetic Pak1 inhibitor, IPA3, also significantly reduced in vivo airway responsiveness to ACh and 5-hydroxytryptamine (5-Ht) in wild type mice. IPA3 inhibited the contractility of isolated human bronchial tissues to ACh, confirming that this inhibitor is also effective in human airway smooth muscle tissue. The results demonstrate that Pak is a critical component of the contractile activation process in airway smooth muscle, and suggest that Pak inhibition could provide a novel strategy for reducing airway hyperresponsiveness. 相似文献
13.
Marie-Pierre Dehouck† Pascale Jolliet-Riant‡ Françoise Brée‡ Jean-Charles Fruchart Roméo Cecchelli† Jean-Paul Tillement‡ 《Journal of neurochemistry》1992,58(5):1790-1797
To assess the drug transport across the blood-brain barrier (BBB), we compared the maximal brain extraction values at time 0 [E(0) values] obtained using either in vitro or in vivo methods. The in vitro BBB model consisted of a coculture of brain capillary endothelial cells growing on one side of a filter and astrocytes on the other. The in vivo model used intracarotid injection in anesthetized rats. Eleven compounds were tested. They were selected because they exhibit quantitatively different brain extraction rates: very low for inulin and sucrose, low for oxicam-related nonsteroidal antiinflammatory drugs and diclofenac, and high for propranolol and diazepam. As these compounds are apparently transferred by a passive diffusion mechanism, two others, glucose and leucine, were added that cross the BBB by a known carrier-mediated process. The in vivo and in vitro E(0) values showed a strong correlation as indicated by the Spearman's correlation coefficient (r = 0.88, p less than 0.01). The relative ease with which such cocultures can be produced in large quantities could facilitate the screening of new centrally acting drugs. 相似文献
14.
Frederick K. Racke Maureen Baird Rolf F. Barth Tianyao Huo Weilian Yang Nilendu Gupta Michael Weldon Heather Rutledge 《PloS one》2012,7(12)
Thrombopoiesis following severe bone marrow injury frequently is delayed, thereby resulting in life-threatening thrombocytopenia for which there are limited treatment options. The reasons for these delays in recovery are not well understood. Protein kinase C (PKC) agonists promote megakaryocyte differentiation in leukemia cell lines and primary cells. However, little is known about the megakaryopoietic effects of PKC agonists on primary CD34+ cells grown in culture or in vivo. Here we present evidence that the novel PKC isoform-selective agonist 3,20 ingenol dibenzoate (IDB) potently stimulates early megakaryopoiesis of human CD34+ cells. In contrast, broad spectrum PKC agonists failed to do so. In vivo, a single intraperitoneal injection of IDB selectively increased platelets in mice without affecting hemoglobin or white counts. Finally, IDB strongly mitigated radiation-induced thrombocytopenia, even when administered 24 hours after irradiation. Our data demonstrate that novel PKC isoform agonists such as IDB may represent a unique therapeutic strategy for accelerating the recovery of platelet counts following severe marrow injury. 相似文献
15.
Piero Giansanti Matthew P. Stokes Jeffrey C. Silva Arjen Scholten Albert J. R. Heck 《Molecular & cellular proteomics : MCP》2013,12(11):3350-3359
In the past decade, mass-spectrometry-based methods have emerged for the quantitative profiling of dynamic changes in protein phosphorylation, allowing the behavior of thousands of phosphorylation sites to be monitored in a single experiment. However, when one is interested in specific signaling pathways, such shotgun methodologies are not ideal because they lack selectivity and are not cost and time efficient with respect to instrument and data analysis time.Here we evaluate and explore a peptide-centric antibody generated to selectively enrich peptides containing the cAMP-dependent protein kinase (PKA) consensus motif. This targeted phosphoproteomic strategy is used to profile temporal quantitative changes of potential PKA substrates in Jurkat T lymphocytes upon prostaglandin E2 (PGE2) stimulation, which increases intracellular cAMP, activating PKA. Our method combines ultra-high-specificity motif-based immunoaffinity purification with cost-efficient stable isotope dimethyl labeling. We identified 655 phosphopeptides, of which 642 (i.e. 98%) contained the consensus motif [R/K][R/K/X]X[pS/pT]. When our data were compared with a large-scale Jurkat T-lymphocyte phosphoproteomics dataset containing more than 10,500 phosphosites, a minimal overlap of 0.2% was observed. This stresses the need for such targeted analyses when the interest is in a particular kinase.Our data provide a resource of likely substrates of PKA, and potentially some substrates of closely related kinases. Network analysis revealed that about half of the observed substrates have been implicated in cAMP-induced signaling. Still, the other half of the here-identified substrates have been less well characterized, representing a valuable resource for future research.The identification and quantification of protein phosphorylation under system perturbations is an integral part of systems biology (1, 2). The combination of phosphopeptide enrichment (3–6), stable isotope labeling, and high-resolution mass spectrometry (MS) methods (7–9) has become the method of choice for the identification of novel phosphorylation sites and for the quantitation of temporal dynamics within signaling networks (10, 11), allowing the behavior of thousands of phosphorylation sites to be studied in a single experiment (10, 12, 13). Nowadays, one of the most commonly adopted high-throughput phosphoproteomics strategies utilizes two consecutive separation steps: (i) an initial fractionation to reduce the sample complexity, and (ii) a phosphopeptide-specific affinity purification. Such techniques include strong cation exchange fractionation under acidic conditions (3), followed by a chelation-based method with the use of metal ions (i.e. immobilized metal ion affinity chromatography (4), metal oxide affinity chromatography (10, 14), or Ti4+ immobilized metal ion affinity chromatography (6)). Alternatives to strong cation exchange for the first sample fractionation step have also been reported, including the use of electrostatic repulsion liquid chromatography (15, 16), which is well suited for the identification of multiply phosphorylated peptides, or hydrophilic interaction chromatography (17).Although the number of detected phosphorylated peptides is nowadays impressive, these kinds of methodologies are still inclined to identify/quantify the more abundant phosphoproteins present in a sample. For example, phosphotyrosine peptides are underrepresented because of their relatively lower abundance.In order to analyze key signaling events that may occur on less abundant phosphoproteins, more targeted approaches, focused on a specific pathway or a specific post-translational modification, are thus still essential. Studies examining post-translational modifications are often based on immunoaffinity purification at the protein or peptide level using dedicated antibodies. Recent examples include the selective enrichment of acetylated lysines (18) and phosphorylated tyrosines (19, 20). More recently, the first specific methods targeting serine/threonine phosphorylation motifs using immune-affinity assays have emerged (21, 22). The advantages of targeted approaches are their potentially higher sensitivity and more specific throughput with, as a consequence, relatively faster and easier data interpretation, which make them attractive for many systems biology applications.Immunoaffinity enrichment can be applied at both the protein and the peptide level, and both have been explored to study protein tyrosine phosphorylation (23). The first one results mainly in information on total protein phosphorylation levels. The detection of the actual phosphoresidue might be hampered by the high content of unmodified peptides derived from the immune-purified phosphoprotein and its binding partners. Immunoprecipitation at the peptide level (20, 24, 25), in contrast, leads to improved phosphosite characterization, with the identification of hundreds of sites, albeit with the loss (generally) of information regarding total protein expression.To profile the dynamic regulation of phosphorylation events via mass spectrometry, stable isotope labeling is often implemented, either with the use of amino acids in cell culture (10) or via chemical peptide labeling of the proteolytic digests (26, 27). To identify low-abundant signaling events, phosphoprotein/phosphopeptide immunoprecipitation is typically performed on several milligrams of material because of the substoichiometric abundance of post-translational modifications. This may hamper the use of expensive isotope-labeling reagents such as iTRAQ or tandem mass tag reagents, given the large amount of chemicals needed. Boersema et al. (28) introduced an alternative sensitive and accurate triplex labeling approach using inexpensive reagents (i.e. formaldehyde) that is much less limited in terms of the sample type or amount. We combined this latter stable-isotope dimethyl labeling approach (27–29) with highly specific antibodies raised against a set of cAMP-dependent protein kinase (PKA) phosphorylated substrates as based on the current literature (11, 30–34). It is generally accepted that PKA phosphorylates sites with the reasonably stringent consensus motif [R/K][R/K/X]X[pS/pT]. It should be noted that this consensus motif resembles somewhat the motifs of other AGC kinases (e.g. Akt, PKG, PKC).The basicity of the PKA motifs may hamper their analysis via MS-based proteomics, especially when trypsin is used as a protease, as the peptides may become too small to be sequenced. The use of trypsin is also unfavorable in the approach presented here when attempting to immunoprecipitate peptides bearing the PKA motif. Therefore, we decided to use Lys-C in order to keep the (dominant (RRX[pS/pT])) phosphorylated motif intact. To enhance identification, we applied decision-tree MS/MS technology (9), which makes use of HCD and ETD for more efficient fragmentation, higher mass accuracy in tandem MS mode, and less background noise (35).We applied this method to screen the response of Jurkat T cells to prostaglandin E2 (PGE2) treatment. PGE2 is a potent inflammatory mediator that plays an important role in several immune-regulatory actions (36). It is produced by many different cell types, including tumor cells, where carcinogenesis is associated with chronic inflammatory responses (37). PGE2 signaling in T cells is initiated by its binding to the G protein–coupled receptors EP1, -2, -3, and -4. Signaling pathways that are initiated by PGE2 are for the most part under control of the second messenger cyclic adenosine monophosphate (cAMP),1 which is generated from ATP by adenylyl cyclase when PGE2 binds to EP2 or EP4 receptors. One of the primary targets of cAMP is PKA—cAMP binding releases the catalytic subunit activating the kinase. In the current study, we efficiently enriched close to 650 phosphopeptides containing the [R/K][R/K/X]X[pS/pT] consensus motif. Almost all these sites were absent in a recently reported comprehensive phosphoproteomics dataset of Jurkat T cells (12), compiled using shotgun strong cation exchange–immobilized metal ion affinity chromatography analysis and containing ∼10,500 phosphorylation sites, illustrative of the complementarity and selectivity of our approach. The qualitative and quantitative data presented here provide a wide-ranging and credible resource of likely PKA substrates. Network analysis confirmed several established cAMP-dependent signaling nodes in our dataset, although most identified potential PKA substrates are “novel” (i.e. not previously reported and/or linked to PKA). Therefore, the dataset presented here can be considered as a comprehensive and reliable resource for future research into cAMP-related signaling. 相似文献
16.
Amita Kapoor Majid Iqbal Sophie Petropoulos Hay Lam Ho William Gibb Stephen G. Matthews 《PloS one》2013,8(2)
Background and Purpose
Retention of substances from systemic circulation in the brain and testes are limited due to high levels of P-glycoprotein (P-gp) in the luminal membranes of brain and testes capillary endothelial cells. From a clinical perspective, P-gp rapidly extrudes lipophilic therapeutic agents, which then fail to reach efficacious levels. Recent studies have demonstrated that acute administration of selective serotonin reuptake inhibitors (SSRI) can affect P-gp function, in vitro and in vivo. However, little is known concerning the time-course of these effects or the effects of different SSRI in vivo.Experimental Approach
The P-gp substrate, tritiated digoxin ([3H] digoxin), was co-administered with fluoxetine or sertraline to determine if either compound increased drug accumulation within the brains and testes of mice due to inhibition of P-gp activity. We undertook parallel studies in endothelial cells derived from brain microvessels to determine the dose-response and time-course of effects.Key Results
In vitro, sertraline resulted in rapid and potent inhibition of P-gp function in brain endothelial cells, as determined by cellular calcein accumulation. In vivo, a biphasic effect was demonstrated. Brain accumulation of [3H] digoxin was increased 5 minutes after treatment with sertraline, but by 60 minutes after sertraline treatment, brain accumulation of digoxin was reduced compared to control. By 240 minutes after sertraline treatment brain digoxin accumulation was elevated compared to control. A similar pattern of results was obtained in the testes. There was no significant effect of fluoxetine on P-gp function, in vitro or in vivo.Conclusions and Implications
Acute sertraline administration can modulate P-gp activity in the blood-brain barrier and blood-testes barrier. This clearly has implications for the ability of therapeutic agents that are P-gp substrates, to enter the brain when co-administered with SSRI. 相似文献17.
P. M. Iuvone A. L. Rauch P. B. Marshburn D. B. Glass N. H. Neff 《Journal of neurochemistry》1982,39(6):1632-1640
Abstract: Tyrosine hydroxylase in rat retina is activated in vivo as a consequence of photic stimulation. Tyrosine hydroxylase in crude extracts of dark-adapted retinas is activated in vitro by incubation under conditions that stimulate protein phosphorylation by cyclic AMP-dependent protein kinase. Comparison of the activations of the enzyme by photic stimulation in vivo and protein phosphorylation in vitro demonstrated several similarities. Both treatments decreased the apparent K m of the enzyme for the synthetic pterin cofactor 6MPH4 . Both treatments also produced the same change in the relationships of tyrosine hydroxylase activity to assay pH. When retinal extracts containing tyrosine hydroxylase activated either in vivo by photic stimulation or in vitro by protein phosphorylation were incubated at 25°C, the enzyme was inactivated in a time-dependent manner. The inactivation of the enzyme following both activation in vivo and activation in vitro was partially inhibited by sodium pyrophosphate, an inhibitor of phosphoprotein phosphatase. In addition to these similarities, the activation of tyrosine hydroxylase in vivo by photic stimulation was not additive to the activation in vitro by protein phosphorylation. These data indicate that the mechanism for the activation of tyrosine hydroxylase that occurs as a consequence of light-induced increases of neuronal activity is similar to the mechanism for activation of the enzyme in vitro by protein phosphorylation. This observation suggests that the activation of retinal tyrosine hydroxylase in vivo may be mediated by phosphorylation of tyrosine hydroxylase or some effector molecule associated with the enzyme. 相似文献
18.
Shinya Matsuda Kyohei Kominato Shizuyo Koide-Yoshida Kenji Miyamoto Kinuka Isshiki Akihiko Tsuji Keizo Yuasa 《The Journal of biological chemistry》2014,289(26):18387-18400
PCTAIRE kinase 3 (PCTK3)/cyclin-dependent kinase 18 (CDK18) is an uncharacterized member of the CDK family because its activator(s) remains unidentified. Here we describe the mechanisms of catalytic activation of PCTK3 by cyclin A2 and cAMP-dependent protein kinase (PKA). Using a pulldown experiment with HEK293T cells, cyclin A2 and cyclin E1 were identified as proteins that interacted with PCTK3. An in vitro kinase assay using retinoblastoma protein as the substrate showed that PCTK3 was specifically activated by cyclin A2 but not by cyclin E1, although its activity was lower than that of CDK2. Furthermore, immunocytochemistry analysis showed that PCTK3 colocalized with cyclin A2 in the cytoplasm and regulated cyclin A2 stability. Amino acid sequence analysis revealed that PCTK3 contained four putative PKA phosphorylation sites. In vitro and in vivo kinase assays showed that PCTK3 was phosphorylated by PKA at Ser12, Ser66, and Ser109 and that PCTK3 activity significantly increased via phosphorylation at Ser12 by PKA even in the absence of cyclin A2. In the presence of cyclin A2, PCTK3 activity was comparable to CDK2 activity. We also found that PCTK3 knockdown in HEK293T cells induced polymerized actin accumulation in peripheral areas and cofilin phosphorylation. Taken together, our results provide the first evidence for the mechanisms of catalytic activation of PCTK3 by cyclin A2 and PKA and a physiological function of PCTK3. 相似文献
19.
Role of Mitogen Activated Protein Kinase and Maturation Promoting Factor During the Achievement of Meiotic Competency in Mammalian Oocytes 下载免费PDF全文
Meenakshi Tiwari Anumegha Gupta Alka Sharma Shilpa Prasad Ashutosh N. Pandey Pramod K. Yadav Ajai K. Pandey Tulsidas G. Shrivastav Shail K. Chaube 《Journal of cellular biochemistry》2018,119(1):123-129
20.
TORU SHOJI HEE-YOUNG PARK NICOLE JALBERT JAG BHAWAN H. RANDOLPH BYERS 《Pigment cell & melanoma research》1998,11(1):18-23
Protein kinase C (PKC) is a multigene family of at least 12 isoforms involved in the transduction of extracellular signals. We investigated whether PKC-α, a major isoform known to be relatively abundant in brain tissue, is increased in human melanocytes relative to keratinocytes in vitro and in situ. Immunohistochemical staining for PKC-α in frozen neonatal human foreskin exhibited intermittent 2–3+ staining along the basal cell layer consistent with melanocytes, and 0–1+ staining of keratinocytes (on a scale of 0–3). Microscopic densitometry of the intermittent cellular staining was at least 3-fold greater than that of adjacent keratinocyte cell cytoplasm. Sequential frozen sections revealed similar intermittent cell staining with PKC-α and Mel-5 (tyrosinase related protein-1), known to specifically react with melanocytes. Northern blot analysis with a specific cDNA probe for PKC-α showed strong PKC-α mRNA expression in cultured melanocytes, whereas PKC-α mRNA in cultured non-stratifying keratinocytes was expressed at low levels. Western blot analysis revealed a prominent PKC-α band at approximately 80 kDa in melanocytes as opposed to a weak band in keratinocytes. Densitometry of the northern and western blots revealed that melanocytes had at least 10-fold more PKC-α mRNA and approximately 6-fold more PKC-α protein expression than keratinocytes. Total PKC activity measured in vitro revealed that melanocytes had 5-fold more activity than keratinocytes. The marked difference in melanocyte and keratinocyte expression of PKC-α provides further evidence for cell type specificity in the balance of PKC-α expression and may implicate differential PKC isoform signaling pathways in neuro-ectodermally derived cells. 相似文献