共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:探讨细胞外基质金属蛋白酶诱导分子(CD147)在胰腺癌细胞(Panc-1)及胰腺星状细胞(PSCs)的表达。方法:应用QRT—PCR,免疫细胞化学和免疫印迹分析方法检测Panc-1和PSCs细胞中EMMRPIN的表达,应用脱糖基化试剂N—glycosidase F及Endoglycosidase H鉴定CD147糖基化形式。结果:CD147在Panc-1和PSCs细胞质膜及细胞质中高表达,通过脱糖基化法首次鉴定出胰腺癌细胞及胰腺星状细胞中CD147不同的糖基化修饰。结论:CD147的糖基化修饰具有细胞特异性,可能与细胞恶性程度相关。 相似文献
2.
目的:探讨细胞外基质金属蛋白酶诱导分子(CD147)在胰腺癌细胞(Panc-1)及胰腺星状细胞(PSCs)的表达。方法:应用QRT-PCR,免疫细胞化学和免疫印迹分析方法检测Panc-1和PSCs细胞中EMMRPIN的表达,应用脱糖基化试剂N-glycosidase F及Endoglycosidase H鉴定CD147糖基化形式。结果:CD147在Panc-1和PSCs细胞质膜及细胞质中高表达,通过脱糖基化法首次鉴定出胰腺癌细胞及胰腺星状细胞中CD147不同的糖基化修饰。结论:CD147的糖基化修饰具有细胞特异性,可能与细胞恶性程度相关。 相似文献
3.
Kenji Fujiwara Kenoki Ohuchida Kazuhiro Mizumoto Koji Shindo Daiki Eguchi Shingo Kozono Naoki Ikenaga Takao Ohtsuka Shunichi Takahata Shinichi Aishima Masao Tanaka 《PloS one》2012,7(12)
Pancreatic stellate cells (PSCs) play a crucial role in the aggressive behavior of pancreatic cancer. Although heterogeneity of PSCs has been identified, the functional differences remain unclear. We characterized CD271+ PSCs in human pancreatic cancer. Immunohistochemistry for CD271 was performed for 31 normal pancreatic tissues and 105 pancreatic ductal adenocarcinomas (PDACs). We performed flow cytometry and quantitative RT-PCR, and assessed CD271 expression in PSCs isolated from pancreatic tissues and the changes in CD271 expression in PSCs cocultured with cancer cells. We also investigated the pattern of CD271 expression in a SCID mouse xenograft model. In the immunohistochemical analyses, the CD271-high staining rates in pancreatic stroma in normal pancreatic tissues and PDACs were 2/31 (6.5%) and 29/105 (27.6%), respectively (p = 0.0069). In PDACs, CD271+ stromal cells were frequently observed on the edge rather than the center of the tumors. Stromal CD271 high expression was associated with a good prognosis (p = 0.0040). Flow cytometric analyses demonstrated CD271-positive rates in PSCs were 0–2.1%. Quantitative RT-PCR analyses revealed that CD271 mRNA expression was increased in PSCs after coculture with pancreatic cancer cells. However, the level of CD271 mRNA expression subsequently decreased after the transient increase. Furthermore, CD271 mRNA expression was decreased in PSCs migrating toward pancreatic cancer cells through Matrigel. In the xenograft model, CD271+ PSCs were present at tumor margins/periphery and were absent in the tumor core. In conclusion, CD271 was expressed in PSCs around pancreatic tumors, but not in the center of the tumors, and expression decreased after long coculture with pancreatic cancer cells or after movement toward pancreatic cancer cells. These findings suggest that CD271+ PSCs appear at the early stage of pancreatic carcinogenesis and that CD271 expression is significantly correlated with a better prognosis in patients with PDAC. 相似文献
4.
5.
Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166) is a glycoprotein involved in homotypic and heterotypic cell adhesion. ALCAM can be proteolytically cleaved at the cell surface by metalloproteases, which generate shedding of its ectodomain. In various tumors, ALCAM is overexpressed and serves as a valuable prognostic marker of disease progression. Moreover, CD166 has been identified as a putative cancer stem cell marker in particular cancers. Herein, we summarize biochemical aspects of ALCAM, including structure, proteolytic shedding, alternative splicing, and specific ligands, and integrate this information with biological functions of this glycoprotein including cell adhesion, migration and invasion. In addition, we discuss different patterns of ALCAM expression in distinct tumor types and its contribution to tumor progression. Finally, we highlight the role of ALCAM as a cancer stem cell marker and introduce current clinical trials associated with this molecule. Future studies are needed to define the value of shed ALCAM in biofluids or ALCAM isoform expression as prognostic biomarkers in tumor progression. 相似文献
6.
Enza Lonardo Patrick C. Hermann Maria-Theresa Mueller Stephan Huber Anamaria Balic Irene Miranda-Lorenzo Sladjana Zagorac Sonia Alcala Iker Rodriguez-Arabaolaza Juan Carlos Ramirez Raul Torres-Ruíz Elena Garcia Manuel Hidaldo David Álvaro Cebrián Rainer Heuchel Matthias Löhr Frank Berger Peter Bartenstein Alexandra Aicher Christopher Heeschen 《Cell Stem Cell》2012,10(1):104
7.
J Jiao A Hindoyan S Wang LM Tran AS Goldstein D Lawson D Chen Y Li C Guo B Zhang L Fazli M Gleave ON Witte IP Garraway H Wu 《PloS one》2012,7(8):e42564
New therapies for late stage and castration resistant prostate cancer (CRPC) depend on defining unique properties and pathways of cell sub-populations capable of sustaining the net growth of the cancer. One of the best enrichment schemes for isolating the putative stem/progenitor cell from the murine prostate gland is Lin(-);Sca1(+);CD49f(hi) (LSC(hi)), which results in a more than 10-fold enrichment for in vitro sphere-forming activity. We have shown previously that the LSC(hi) subpopulation is both necessary and sufficient for cancer initiation in the Pten-null prostate cancer model. To further improve this enrichment scheme, we searched for cell surface molecules upregulated upon castration of murine prostate and identified CD166 as a candidate gene. CD166 encodes a cell surface molecule that can further enrich sphere-forming activity of WT LSC(hi) and Pten null LSC(hi). Importantly, CD166 could enrich sphere-forming ability of benign primary human prostate cells in vitro and induce the formation of tubule-like structures in vivo. CD166 expression is upregulated in human prostate cancers, especially CRPC samples. Although genetic deletion of murine CD166 in the Pten null prostate cancer model does not interfere with sphere formation or block prostate cancer progression and CRPC development, the presence of CD166 on prostate stem/progenitors and castration resistant sub-populations suggest that it is a cell surface molecule with the potential for targeted delivery of human prostate cancer therapeutics. 相似文献
8.
Vertebrate heart development requires specification of cardiac precursor cells, migration of cardiac progenitors as well as coordinated cell movements during looping and septation. DM-GRASP/ALCAM/CD166 is a member of the neuronal immunoglobulin domain superfamily of cell adhesion molecules and was recently suggested to be a target gene of non-canonical Wnt signalling. Loss of DM-GRASP function did not affect specification of cardiac progenitor cells. Later during development, expression of cardiac marker genes in the first heart field of Xenopus laevis such as Tbx20 and TnIc was reduced, whereas expression of the second heart field marker genes Isl-1 and BMP-4 was unaffected. Furthermore, loss of DM-GRASP function resulted in defective cell adhesion and cardiac morphogenesis. Additionally, expression of DM-GRASP can rescue the phenotype that results from the loss of non-canonical Wnt11-R signalling suggesting that DM-GRASP and non-canonical Wnt signalling are functionally coupled during cardiac development. 相似文献
9.
目的:观察NDRG2对结肠癌SW620细胞侵袭、转移等生物学行为的影响,探讨其可能的调节机制。方法:用阳离子脂质体转染方法分别转染pcDNA3.1-Ndrg2和SiRNA-Ndrg2于SW620细胞内48h,上调/下调NDRG2的表达;检测NDRG2基因mRNA及蛋白表达水平的变化;通过划痕试验及transwell细胞侵袭试验进一步对上调/下调NDRG2表达水平后的结肠癌细胞迁移和侵袭能力进行分析。结果:pcDNA3.1-Ndrg2转染SW620后,NDRG2的mRNA和蛋白表达水平明显升高,细胞的迁移和侵袭能力下降;SiRNA-Ndrg2转染SW620后,NDRG2的mRNA和蛋白表达水平明显降低,细胞的迁移和侵袭能力上升,差异具有统计学意义(P〈0.05)。结论:NDRG2作为抑癌候选基因能够降低结肠癌细胞转移和侵袭能力。 相似文献
10.
目的:观察NDRG2对结肠癌SW620细胞侵袭、转移等生物学行为的影响,探讨其可能的调节机制。方法:用阳离子脂质体转染方法分别转染pcDNA3.1-Ndrg2和SiRNA-Ndrg2于SW620细胞内48h,上调/下调NDRG2的表达;检测NDRG2基因mRNA及蛋白表达水平的变化;通过划痕试验及transwell细胞侵袭试验进一步对上调/下调NDRG2表达水平后的结肠癌细胞迁移和侵袭能力进行分析。结果:pcDNA3.1-Ndrg2转染SW620后,NDRG2的mRNA和蛋白表达水平明显升高,细胞的迁移和侵袭能力下降;SiRNA-Ndrg2转染SW620后,NDRG2的mRNA和蛋白表达水平明显降低,细胞的迁移和侵袭能力上升,差异具有统计学意义(P<0.05)。结论:NDRG2作为抑癌候选基因能够降低结肠癌细胞转移和侵袭能力。 相似文献
11.
R.A. Hooker B.R. Chitteti P.H. Egan Y-H. Cheng E.R. Himes T. Meijome E.F. Srour R.K. Fuchs M.A. Kacena 《Journal of musculoskeletal & neuronal interactions》2015,15(1):83-94
Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166), is expressed on osteoblasts (OB) and hematopoietic stem cells (HSC) residing in the hematopoietic niche, and may have important regulatory roles in bone formation. Because HSC numbers are reduced 77% in CD166-/- mice, we hypothesized that changes in bone phenotype and consequently the endosteal niche may partially be responsible for this alteration. Therefore, we investigated bone phenotype and OB function in CD166-/- mice. Although osteoclastic measures were not affected by loss of CD166, CD166-/- mice exhibited a modest increase in trabecular bone fraction (42%), and increases in osteoid deposition (72%), OB number (60%), and bone formation rate (152%). Cortical bone geometry was altered in CD166-/- mice resulting in up to 81% and 49% increases in stiffness and ultimate force, respectively. CD166-/- OB displayed elevated alkaline phosphatase (ALP) activity and mineralization, and increased mRNA expression of Fra 1, ALP, and osteocalcin. Overall, CD166-/- mice displayed modestly elevated trabecular bone volume fraction with increased OB numbers and deposition of osteoid, and increased OB differentiation in vitro, possibly suggesting more mature OB are secreting more osteoid. This may explain the decline in HSC number in vivo because immature OB are mainly responsible for hematopoiesis enhancing activity. 相似文献
12.
Murakami Y Hirata H Miyamoto Y Nagahashi A Sawa Y Jakt M Asahara T Kawamata S 《Mechanisms of development》2007,124(11-12):830-839
It is known that the adhesion molecule ALCAM (CD166) mediates metastasis of malignant cells and organogenesis in embryos. We show here that embryonic day 8.5 (E8.5) murine yolk sac cells express ALCAM protein and that ALCAM expression can be used to define endothelial and cardiac precursors from hematopoietic precursors in E8.5 yolk sacs. ALCAM high+ cells exclusively give rise to endothelial and cardiac cells in matrigel assays but generate no hematopoietic colonies in methylcellulose assays. ALCAM low+ and ALCAM- populations predominantly give rise to hematopoietic cells in methylcellulose, but do not generate any cell clusters in matrigel. The ALCAM high+ population contains both Flk-1+ and Flk-1- cells. The former population exclusively contains endothelial cells whereas the latter give rise to cardiac cells when cultured on OP9 stromal cells. We also show that cardiac lineage marker genes such as Nkx-2.5, and the endothelial marker VE-cadherin are expressed in the ALCAM high+ fraction, whereas the hematopoietic marker GATA1 and Runx1 are expressed in the ALCAM low+/- fraction. However, we did not detect expression of the cardiac structural protein cTn-T in cells from yolk sac cells until these had had been differentiated on OP9 for 5 days. Altogether, these results indicate that cells retaining a potential to differentiate to the cardiac lineage are present in E8.5 yolk sacs and can be isolated as ALCAM high+, Flk-1- cells. Our report provides novel insights into the origin and differentiation process of cardiac cells in the formation of the circulatory system. 相似文献
13.
Downregulation of TRAF2 Mediates NIK-Induced Pancreatic Cancer Cell Proliferation and Tumorigenicity
Background
Increased levels of NF-κB are hallmarks of pancreatic ductal adenocarcinoma (PDAC) and both classical and alternative NF-κB activation pathways have been implicated.Methodology/Principal Findings
Here we show that activation of the alternative pathway is a source for the high basal NF-κB activity in PDAC cell lines. Increased activity of the p52/RelB NF-κB complex is mediated through stabilization and activation of NF-κB-inducing kinase (NIK). We identify proteasomal downregulation of TNF receptor-associated factor 2 (TRAF2) as a mechanism by which levels of active NIK are increased in PDAC cell lines. Such upregulation of NIK expression and activity levels relays to increased proliferation and anchorage-independent growth, but not migration or survival of PDAC cells.Conclusions/Significance
Rapid growth is one characteristic of pancreatic cancer. Our data indicates that the TRAF2/NIK/NF-κB2 pathway regulates PDAC cell tumorigenicity and could be a valuable target for therapy of this cancer. 相似文献14.
Torben Redmer Yvonne Welte Diana Behrens Iduna Fichtner Dorothea Przybilla Wasco Wruck Marie-Laure Yaspo Hans Lehrach Reinhold Sch?fer Christian R. A. Regenbrecht 《PloS one》2014,9(5)
Background
Large-scale genomic analyses of patient cohorts have revealed extensive heterogeneity between individual tumors, contributing to treatment failure and drug resistance. In malignant melanoma, heterogeneity is thought to arise as a consequence of the differentiation of melanoma-initiating cells that are defined by cell-surface markers like CD271 or CD133.Results
Here we confirmed that the nerve growth factor receptor (CD271) is a crucial determinant of tumorigenicity, stem-like properties, heterogeneity and plasticity in melanoma cells. Stable shRNA mediated knock-down of CD271 in patient-derived melanoma cells abrogated their tumor-initiating and colony-forming capacity. A genome-wide expression profiling and gene-set enrichment analysis revealed novel connections of CD271 with melanoma-associated genes like CD133 and points to a neural crest stem cell (NCSC) signature lost upon CD271 knock-down. In a meta-analysis we have determined a shared set of 271 differentially regulated genes, linking CD271 to SOX10, a marker that specifies the neural crest. To dissect the connection of CD271 and CD133 we have analyzed 10 patient-derived melanoma-cell strains for cell-surface expression of both markers compared to established cell lines MeWo and A375. We found CD271+ cells in the majority of cell strains analyzed as well as in a set of 16 different patient-derived melanoma metastases. Strikingly, only 2/12 cell strains harbored a CD133+ sub-set that in addition comprised a fraction of cells of a CD271+/CD133+ phenotype. Those cells were found in the label-retaining fraction and in vitro deduced from CD271+ but not CD271 knock-down cells.Conclusions
Our present study provides a deeper insight into the regulation of melanoma cell properties and points CD271 out as a regulator of several melanoma-associated genes. Further, our data strongly suggest that CD271 is a crucial determinant of stem-like properties of melanoma cells like colony-formation and tumorigenicity. 相似文献15.
Erica Proctor Meghna Waghray Cheong Jun Lee David G. Heidt Malica Yalamanchili Chenwei Li Filip Bednar Diane M. Simeone 《PloS one》2013,8(2)
Background
Bmi1 is an integral component of the Polycomb Repressive Complex 1 (PRC1) and is involved in the pathogenesis of multiple cancers. It also plays a key role in the functioning of endogenous stem cells and cancer stem cells. Previous work implicated a role for cancer stem cells in the pathogenesis of pancreatic cancer. We hypothesized that Bmi1 plays an integral role in enhancing pancreatic tumorigenicity and the function of cancer stem cells in pancreatic ductal adenocarcinoma.Methods
We measured endogenous Bmi1 levels in primary human pancreatic ductal adenocarcinomas, pancreatic intraepithelial neoplasias (PanINs) and normal pancreas by immunohistochemistry and Western blotting. The function of Bmi1 in pancreatic cancer was assessed by alteration of Bmi1 expression in several cell model systems by measuring cell proliferation, cell apoptosis, in vitro invasion, chemotherapy resistance, and in vivo growth and metastasis in an orthotopic model of pancreatic cancer. We also assessed the cancer stem cell frequency, tumorsphere formation, and in vivo growth of human pancreatic cancer xenografts after Bmi1 silencing.Results
Bmi1 was overexpressed in human PanINs, pancreatic cancers, and in several pancreatic cancer cell lines. Overexpression of Bmi1 in MiaPaCa2 cells resulted in increased proliferation, in vitro invasion, larger in vivo tumors, more metastases, and gemcitabine resistance while opposite results were seen when Bmi1 was silenced in Panc-1 cells. Bmi1 was overexpressed in the cancer stem cell compartment of primary human pancreatic cancer xenografts. Pancreatic tumorspheres also demonstrated high levels of Bmi1. Silencing of Bmi1 inhibited secondary and tertiary tumorsphere formation, decreased primary pancreatic xenograft growth, and lowered the proportion of cancer stem cells in the xenograft tissue.Conclusions
Our results implicate Bmi1 in the invasiveness and growth of pancreatic cancer and demonstrate its key role in the regulation of pancreatic cancer stem cells. 相似文献16.
Activated leukocyte cell adhesion molecule (CD166/ALCAM): developmental and mechanistic aspects of cell clustering and cell migration 总被引:9,自引:0,他引:9
Swart GW 《European journal of cell biology》2002,81(6):313-321
Activated leukocyte cell adhesion molecule (ALCAM/CD166) is a member of the immunoglobulin superfamily and belongs to a recent subgroup with five extracellular immunoglobulin-like domains (VVC2C2C2). ALCAM mediates both heterophilic (ALCAM-CD6) and homophilic (ALCAM-ALCAM) cell-cell interactions. While expressed in a wide variety of tissues, ALCAM is usually restricted to subsets of cells involved in dynamic growth and/or migration, including neural development, branching organ development, hematopoiesis, immune response and tumor progression. Recent structure-function analyses of ALCAM hint at how its cytoskeletal anchoring and the integrity of the extracellular immunoglobulin-like domains may regulate complex cellular properties in regard to cell adhesion, growth and migration. Accumulating evidence suggests that ALCAM expression may reflect the onset of a cellular program for homeostatic control of growth saturation, which induces either growth arrest or cell migration when the upper limits are exceeded. 相似文献
17.
Merete Thune Wiiger Hege B. Gehrken Øystein Fodstad Gunhild M. Mælandsmo Yvonne Andersson 《Cancer immunology, immunotherapy : CII》2010,59(11):1665-1674
Screening a phage-display single-chain antibody library for binding to the breast cancer cell line PM-1 an antibody, scFv173,
recognising activated leukocyte cell adhesion molecule (ALCAM, CD166) was isolated and its binding profile was characterized.
Positive ALCAM immunohistochemical staining of frozen human tumour sections was observed. No ALCAM staining was observed in
the majority of tested normal human tissues (nine of ten). Flow cytometry analyses revealed binding to 22 of 26 cancer cell
lines of various origins and no binding to normal blood and bone marrow cells. Antibody binding inhibited invasion of the
breast cancer cell line MDA-MB-231 by 50% in an in vitro Matrigel-coated membrane invasion assay. Reduced growth of tumours
in nude mice was observed in an in vivo model in which the mice were injected subcutaneously with colorectal carcinoma HCT
116 cells and treated with scFv173 when compared to control. In summary, we have characterized a novel fully human scFv antibody
recognising ALCAM on cancer cells and in tumour tissues that reduces cancer cell invasion and tumour growth in accordance
with the hypothesised role for ALCAM in cell growth and migration control. 相似文献
18.
连帅彬戴宪华 《现代生物医学进展》2012,12(12):2391-2396
衰老和癌症一直是生物医学研究的热点,诱发衰老和癌症的原因很多,为了攻克衰老与癌症的难题,科学家们对多功能干细胞进行大量的研究,但是发现多功能干细胞也具有致瘤特性。本文从DNA稳定性的角度出发,综合最新的研究成果,对当前生物医学领域的研究热点进行了系统的综述,主要包括DNA损伤与修复机制,造成衰老的因素,癌症的特性,以及胚胎干细胞与多功能干细胞的肿瘤特性等。 相似文献
19.
Toshihiro Okamoto Satoshi Iwata Hiroto Yamazaki Ryo Hatano Eriko Komiya Nam H. Dang Kei Ohnuma Chikao Morimoto 《PloS one》2014,9(1)
CD26/dipeptidyl peptidase IV is a cell surface glycoprotein which consists of multiple functional domains beside its ectopeptidase site. A growing body of evidence indicates that elevated expression of CD26 correlates with disease aggressiveness and invasive potential of selected malignancies. To further explore the molecular mechanisms involved in this clinical behavior, our current work focused on the interaction between CD26 and CD9, which were recently identified as novel markers for cancer stem cells in malignant mesothelioma. We found that CD26 and CD9 co-modulated and co-precipitated with each other in the malignant mesothelioma cell lines ACC-MESO1 and MSTO-211H. SiRNA study revealed that depletion of CD26 led to increased CD9 expression, while depletion of CD9 resulted in increased CD26 expression. Consistent with these findings was the fact that gene transfer of CD26 into CD26-negative MSTO-211H cells reduced CD9 expression. Cell invasion assay showed that overexpression of CD26 or gene depletion of CD9 led to enhanced invasiveness, while CD26 gene depletion resulted in reduced invasive potential. Furthermore, our work suggested that this enhanced invasiveness may be partly mediated by α5β1 integrin, since co-precipitation studies demonstrated an association between CD26 and α5β1 integrin. Finally, gene depletion of CD9 resulted in elevated protein levels and tyrosine phosphorylation of FAK and Cas-L, which are downstream of β1 integrin, while depletion of CD26 led to a reduction in the levels of these molecules. Collectively, our findings suggest that CD26 potentiates tumor cell invasion through its interaction with α5β1 integrin, and CD9 negatively regulates tumor cell invasion by reducing the level of CD26-α5β1 integrin complex through an inverse correlation between CD9 and CD26 expression. Our results also suggest that CD26 and CD9 serve as potential biomarkers as well as promising molecular targets for novel therapeutic approaches in malignant mesothelioma and other malignancies. 相似文献
20.
Alexei V. Salnikov Li Liu Mitja Platen Jury Gladkich Olga Salnikova Eduard Ryschich Jürgen Mattern Gerhard Moldenhauer Jens Werner Peter Schemmer Markus W. Büchler Ingrid Herr 《PloS one》2012,7(9)
Tumor hypoxia induces epithelial-mesenchymal transition (EMT), which induces invasion and metastasis, and is linked to cancer stem cells (CSCs). Whether EMT generates CSCs de novo, enhances migration of existing CSCs or both is unclear. We examined patient tissue of pancreatic ductal adenocarcinoma (PDA) along with carcinomas of breast, lung, kidney, prostate and ovary. For in vitro studies, five established PDA cell lines classified as less (CSClow) and highly aggressive CSC-like cells (CSChigh) were examined by single and double immunofluorescence microscopy, wound-, transwell-, and time-lapse microscopy. HIF-1α and Slug, as well as HIF-2α and CD133 were co-expressed pointing to a putative co-existence of hypoxia, EMT and CSCs in vivo. CSChigh cells exhibited high basal expression of the mesenchymal Vimentin protein but low or absent expression of the epithelial marker E-cadherin, with the opposite result in CSClow cells. Hypoxia triggered altering of cell morphology from an epithelial to a mesenchymal phenotype, which was more pronounced in CSChigh cells. Concomitantly, E-cadherin expression was reduced and expression of Vimentin, Slug, Twist2 and Zeb1 enhanced. While hypoxia caused migration in all cell lines, velocity along with the percentage of migrating, polarized and pseudopodia-forming cells was significantly higher in CSChigh cells. These data indicate that hypoxia-induced EMT occurs in PDA and several other tumor entities. However although hypoxia-induced EMT signaling occurs in all tumor cell populations, only the stem-like cells acquire high migratory potential and thus may be responsible for invasion and metastasis. 相似文献