首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Island faunas have played central roles in the development of evolutionary biology and ecology. Birds are among the most studied organisms on islands, in part because of their dispersal powers linked to migration. Even so, we lack of information about differences in the movement ecology of island versus mainland populations of birds.

Methodology/Principal Findings

Here we present a new general pattern indicating that large birds with deferred sexual maturity are sedentary on islands, and that they become so even when they are migratory on the mainland. Density-dependent variation in the age at first breeding affects the survivorship of insular populations and this, in turn, affects the movement ecology of large birds. Because density-dependent variation in the age of first breeding is critical to the long-term survival of small isolated populations of long-lived species, migratory forms can successfully colonize islands only if they become sedentary once there. Analyses of the movement ecology of continental and insular populations of 314 species of raptors, 113 species of Ciconiiformes and 136 species of passerines, along with individual-based population simulations confirm this prediction.

Conclusions

This finding has several consequences for speciation, colonization and survival of small isolated population of species with deferred sexual maturity.  相似文献   

2.
Carrete M  Tella JL 《PloS one》2011,6(4):e18859

Background

Urbanization is the most prevailing cause of habitat transformation worldwide, differing from others by its intense levels of human activity. Despite its obvious impact on wildlife, it is still unclear why and how some species are able to adapt to urban settings. One possibility is that fear of humans and vehicles could preclude most species from invading cities. Species entering urban environments might be those that are more tolerant of human disturbance (i.e., tame species). Alternatively or in addition, urban invaders could be a fraction of variable species, with “tame” individuals invading urban habitats and other individuals remaining in rural areas.

Methodology

Using the contemporary urban invasion by birds in a recently established South American city, we tested both hypotheses by relating interspecific differences in invasiveness to their flight initiation distances (i.e., the distances at which birds flee from approaching cars, FID), as well as to their relative brain size (RBS), a correlate of measures of behavioral flexibility.

Principal Findings

Urban invasiveness was not significantly related to species'' average rural FIDs but positively related to their RBS and inter-individual variability in FID. Moreover, FIDs were consistently lower in urban than in rural conspecifics, and the FIDs of urban individuals were within the lower-range distribution of their rural conspecifics. RBS indirectly influenced urban invasion through its positive effect on inter-individual variability in FID.

Conclusions/Significance

Urban invaders do not appear to be individuals from apparently tame species, but rather tame individuals from species with a variable response regarding fear of people. Given the positive relationship between RBS and inter-individual variability in FID, our results suggest that behavioural flexibility should be regarded as a specific trait encompassing variability among individuals. Further research is needed to ascertain the neurophysiological mechanisms underlying the relationship between brain size and inter-individual variability in behavioural traits.  相似文献   

3.

Background

Performance of migrating birds can be affected by a number of intrinsic and extrinsic factors like morphology, meteorological conditions and migration strategies. We compared travel speeds of four raptor species during their crossing of the Sahara desert. Focusing the analyses on this region allows us to compare different species under equivalent conditions in order to disentangle which factors affect migratory performance.

Methodology/Principal Finding

We tracked raptors using GPS satellite transmitters from Sweden, Spain and Italy, and evaluated their migratory performance at both an hourly and a daily scale. Hourly data (flight speed and altitude for intervals of two hours) were analyzed in relation to time of day, species and season, and daily data (distance between roosting sites) in relation to species, season, day length and tailwind support.

Conclusions/Significance

Despite a clear variation in morphology, interspecific differences were generally very small, and did only arise in spring, with long-distance migrants (>5000 km: osprey and Western marsh-harrier) being faster than species that migrate shorter distances (Egyptian vulture and short-toed eagle). Our results suggest that the most important factor explaining hourly variation in flight speed is time of day, while at a daily scale, tailwind support is the most important factor explaining variation in daily distance, raising new questions about the consequences of possible future changes in worldwide wind patterns.  相似文献   

4.

Aim

Recent, rapid population declines in many Afro‐Palaearctic migratory bird species have focussed attention on changing conditions within Africa. However, processes influencing population change can operate throughout the annual cycle and throughout migratory ranges. Here, we explore the evidence for impacts of breeding and non‐breeding conditions on population trends of British breeding birds of varying migratory status and wintering ecology.

Location

Great Britain (England & Scotland).

Methods

Within‐ and between‐species variation in population trends is quantified for 46 bird species with differing migration strategies.

Results

Between 1994 and 2007, rates of population change in Scotland and England differed significantly for 19 resident and 15 long‐distance migrant species, but were similar for 12 short‐distance migrant species. Of the six long‐distance migrant species that winter in the arid zone of Africa, five are increasing in abundance throughout Britain. In contrast, the seven species wintering in the humid zone of Africa are all declining in England, but five of these are increasing in Scotland. Consequently, populations of both arid and humid zone species are increasing significantly faster in Scotland than England, and only the English breeding populations of species wintering in the humid zone are declining.

Main conclusions

Population declines in long‐distance migrants, especially those wintering in the humid zone, but not residents or short‐distance migrants suggest an influence of non‐breeding season conditions on population trends. However, the consistently less favourable population trends in England than Scotland of long‐distance migrant and resident species strongly suggest that variation in the quality of breeding grounds is influencing recent population changes. The declines in humid zone species in England, but not Scotland, may result from poorer breeding conditions in England exacerbating the impacts of non‐breeding conditions or the costs associated with a longer migration, while better conditions in Scotland may be buffering these impacts.
  相似文献   

5.

Background

To assess population persistence of species living in heterogeneous landscapes, the effects of habitat on reproduction and survival have to be investigated.

Methodology/Principal Findings

We used a matrix population model to estimate habitat-specific population growth rates for a population of northern wheatears Oenanthe oenanthe breeding in farmland consisting of a mosaic of distinct habitat (land use) types. Based on extensive long-term data on reproduction and survival, habitats characterised by tall field layers (spring- and autumn-sown crop fields, ungrazed grasslands) displayed negative stochastic population growth rates (log λs: −0.332, −0.429, −0.168, respectively), that were markedly lower than growth rates of habitats characterised by permanently short field layers (pastures grazed by cattle or horses, and farmyards, log λs: −0.056, +0.081, −0.059). Although habitats differed with respect to reproductive performance, differences in habitat-specific population growth were largely due to differences in adult and first-year survival rates, as shown by a life table response experiment (LTRE).

Conclusions/Significance

Our results show that estimation of survival rates is important for realistic assessments of habitat quality. Results also indicate that grazed grasslands and farmyards may act as source habitats, whereas crop fields and ungrazed grasslands with tall field layers may act as sink habitats. We suggest that the strong decline of northern wheatears in Swedish farmland may be linked to the corresponding observed loss of high quality breeding habitat, i.e. grazed semi-natural grasslands.  相似文献   

6.

Background

Elucidating geographic locations from where migratory birds are recruited into adult breeding populations is a fundamental but largely elusive goal in conservation biology. This is especially true for species that breed in remote northern areas where field-based demographic assessments are logistically challenging.

Methodology/Findings

Here we used hydrogen isotopes (δD) to determine natal origins of migrating hatch-year lesser scaup (Aythya affinis) harvested by hunters in the United States from all North American flyways during the hunting seasons of 1999–2000 (n = 412) and 2000–2001 (n = 455). We combined geospatial, observational, and analytical data sources, including known scaup breeding range, δD values of feathers from juveniles at natal sites, models of δD for growing-season precipitation, and scaup band-recovery data to generate probabilistic natal origin landscapes for individual scaup. We then used Monte Carlo integration to model assignment uncertainty from among individual δD variance estimates from birds of known molt origin and also from band-return data summarized at the flyway level. We compared the distribution of scaup natal origin with the distribution of breeding population counts obtained from systematic long-term surveys.

Conclusions/Significance

Our analysis revealed that the proportion of young scaup produced in the northern (above 60°N) versus the southern boreal and Prairie-Parkland region was inversely related to the proportions of breeding adults using these regions, suggesting that despite having a higher relative abundance of breeding adults, the northern boreal region was less productive for scaup recruitment into the harvest than more southern biomes. Our approach for evaluating population declines of migratory birds (particularly game birds) synthesizes all available distributional data and exploits the advantages of intrinsic isotopic markers that link individuals to geography.  相似文献   

7.

Background

Climate change is affecting many physical and biological processes worldwide. Anticipating its effects at the level of populations and species is imperative, especially for organisms of conservation or management concern. Previous studies have focused on estimating future species distributions and extinction probabilities directly from current climatic conditions within their geographical ranges. However, relationships between climate and population parameters may be so complex that to make these high-level predictions we need first to understand the underlying biological processes driving population size, as well as their individual response to climatic alterations. Therefore, the objective of this study is to investigate the influence that climate change may have on species population dynamics through altering breeding season.

Methodology/Principal Findings

We used a mechanistic model based on drivers of rabbit reproductive physiology together with demographic simulations to show how future climate-driven changes in breeding season result in contrasting rabbit population trends across Europe. In the Iberian Peninsula, where rabbits are a native species of high ecological and economic value, breeding seasons will shorten and become more variable leading to population declines, higher extinction risk, and lower resilience to perturbations. Whereas towards north-eastern countries, rabbit numbers are expected to increase through longer and more stable reproductive periods, which augment the probability of new rabbit invasions in those areas.

Conclusions/Significance

Our study reveals the type of mechanisms through which climate will cause alterations at the species level and emphasizes the need to focus on them in order to better foresee large-scale complex population trends. This is especially important in species like the European rabbit whose future responses may aggravate even further its dual keystone/pest problematic. Moreover, this approach allows us to predict not only distribution shifts but also future population status and growth, and to identify the demographic parameters on which to focus to mitigate global change effects.  相似文献   

8.

Background

The adaptive transition between behavioral strategies, such as the shift from migratoriness to sedentariness, remains an outstanding question in evolutionary ecology. Density-dependent variation in the age of first breeding has been proposed as a feasible mechanism through which long-lived migratory birds with deferred sexual maturity should become sedentary to persist on islands. Although this pattern seems to hold for most raptors and herons, a few exceptions have been identified. One of these exceptions is the Eleonora’s falcon, a long-distance migratory bird, which shows one of the most peculiar adaptations in the timing of reproduction and food requirements among raptors.

Methodology/Principal Findings

Here, we compiled data concerning demography, banding recoveries and satellite tracking of Eleonora’s falcons to discuss likely explanations for the exceptional behavior of this insular long-distance migratory species.

Conclusions/Significance

New data reveal that Eleonora’s falcons do return to the natal colonies in their first year and young birds are able to breed. However, in contrast to previous hypothesis, the highly specialized strategy of this and other ecologically similar species, as well as the virtual lack of food during winter at breeding areas prevent them from becoming sedentary on islands. Although the ultimate mechanisms underlying the process of sedentarization remain poorly understood, the evidence provided reveal the existence of important trade-offs associated with ecological specialization that may become particularly relevant in the present context of global change.  相似文献   

9.

Background

The ability to connect breeding, stopover and wintering locations of populations of migratory birds greatly enhances our understanding of the phenomenon of migration and improves our chances of effectively conserving these species. Among Palearctic-Afrotropical migratory species, aerial insectivores like the house martin (Delichon urbicum) are sensitive to factors influencing the availability of flying insects, and have declined in recent decades. The strict aerial behaviour of martins severely limits ring recoveries on wintering grounds and so there is a dearth of information on where European breeding populations over-winter in Africa, and the relative effects of population regulation on breeding vs. wintering grounds. We used a newly developed multi-isotope (δ 2H, δ 13C, δ 15N) feather isoscape for Africa together with inferences from summarized ring return data based on longitude, to assign winter origins to birds captured at a breeding colony in The Netherlands.

Principal Findings

Based on isotopic analyses of winter-grown martin feathers, we used a likelihood-based assignment approach to describe potential wintering locations where molt occurred of individual house martins from a Dutch colony by assigning them to four potential isotopically distinct clusters in Africa. We found the overwhelming majority of Dutch martins were assigned to a geographical cluster associated with West Africa.

Conclusions/Significance

The existence of strong isotopic gradients and patterns in African foodwebs that support migratory wildlife allows for the spatial assignment of tissues grown there. The assignment of Dutch house martins to wintering grounds primarily in West Africa was in strong agreement with independent and indirect methods used to infer winter origins of this species based on the association between the Normalized Difference Vegetation Index (NDVI) in Africa and population patterns in Italy and the United Kingdom. These confirmatory data-sets underscore the importance of suitable habitats in West Africa to the conservation of migratory aerial insectivores and other species.  相似文献   

10.

Background

Quantifying changes in forest bird diversity is an essential task for developing effective conservation actions. When subtle changes in diversity accumulate over time, annual comparisons may offer an incomplete perspective of changes in diversity. In this case, progressive change, the comparison of changes in diversity from a baseline condition, may offer greater insight because changes in diversity are assessed over longer periods of times. Our objectives were to determine how forest bird diversity has changed over time and whether those changes were associated with forest disturbance.

Methodology/Principal Findings

We used North American Breeding Bird Survey data, a time series of Landsat images classified with respect to land cover change, and mixed-effects models to associate changes in forest bird community structure with forest disturbance, latitude, and longitude in the conterminous United States for the years 1985 to 2006. We document a significant divergence from the baseline structure for all birds of similar migratory habit and nest location, and all forest birds as a group from 1985 to 2006. Unexpectedly, decreases in progressive similarity resulted from small changes in richness (<1 species per route for the 22-year study period) and modest losses in abundance (−28.7–−10.2 individuals per route) that varied by migratory habit and nest location. Forest disturbance increased progressive similarity for Neotropical migrants, permanent residents, ground nesting, and cavity nesting species. We also documented highest progressive similarity in the eastern United States.

Conclusions/Significance

Contemporary forest bird community structure is changing rapidly over a relatively short period of time (e.g., ∼22 years). Forest disturbance and forest regeneration are primary factors associated with contemporary forest bird community structure, longitude and latitude are secondary factors, and forest loss is a tertiary factor. Importantly, these findings suggest some regions of the United States may already fall below the habitat amount threshold where fragmentation effects become important predictors of forest bird community structure.  相似文献   

11.

Aim

Despite the complexity of population dynamics, most studies concerning current changes in bird populations reduce the trajectory of population change to a linear trend. This may hide more complex patterns reflecting responses of bird populations to changing anthropogenic pressures. Here, we address this complexity by means of multivariate analysis and attribute different components of bird population dynamics to different potential drivers.

Location

Czech Republic.

Methods

We used data on population trajectories (1982–2019) of 111 common breeding bird species, decomposed them into independent components by means of the principal component analysis (PCA), and related these components to multiple potential drivers comprising climate, land use change and species' life histories.

Results

The first two ordination axes explained substantial proportion of variability of population dynamics (42.0 and 12.5% of variation in PC1 and PC2 respectively). The first axis captured linear population trend. Species with increasing populations were characterized mostly by long lifespan and warmer climatic niches. The effect of habitat was less pronounced but still significant, with negative trends being typical for farmland birds, while positive trends characterized birds of deciduous forests. The second axis captured the contrast between hump-shaped and U-shaped population trajectories and was even more strongly associated with species traits. Species migrating longer distances and species with narrower temperature niches revealed hump-shaped population trends, so that their populations mostly increased before 2000 and then declined. These patterns are supported by the trends of total abundances of respective ecological groups.

Main Conclusion

Although habitat transformation apparently drives population trajectories in some species groups, climate change and associated species traits represent crucial drivers of complex population dynamics of central European birds. Decomposing population dynamics into separate components brings unique insights into non-trivial patterns of population change and their drivers, and may potentially indicate changes in the regime of anthropogenic effects on biodiversity.  相似文献   

12.

Background

The Gulf coastal ecosystems in Florida are foci of the highest species richness of imperiled shoreline dependent birds in the USA. However environmental processes that affect their macroecological patterns, like occupancy and abundance, are not well unraveled. In Florida the Snowy Plover (Charadrius alexandrinus nivosus) is resident along northern and western white sandy estuarine/ocean beaches and is considered a state-threatened species.

Methodology/Principal Findings

Here we show that favorable nesting areas along the Florida Gulf coastline are located in regions impacted relatively more frequently by tropical cyclones. The odds of Snowy Plover nesting in these areas during the spring following a tropical cyclone impact are seven times higher compared to the odds during the spring following a season without a cyclone. The only intensity of a tropical cyclone does not appear to be a significant factor affecting breeding populations.

Conclusions/Significance

Nevertheless a future climate scenario featuring fewer, but more extreme cyclones could result in a decrease in the breeding Snowy Plover population and its breeding range. This is because the spatio-temporal frequency of cyclone events was found to significantly affect nest abundance. Due to the similar geographic range and habitat suitability, and no decrease in nest abundance of other shorebirds in Florida after the cyclone season, our results suggest a common bioclimatic feedback between shorebird abundance and tropical cyclones in breeding areas which are affected by cyclones.  相似文献   

13.

Background

The trade-off between current and residual reproductive values is central to life history theory, although the possible mechanisms underlying this trade-off are largely unknown. The ‘molt constraint’ hypothesis suggests that molt and plumage functionality are compromised by the preceding breeding event, yet this candidate mechanism remains insufficiently explored.

Methodology/Principal Findings

The seasonal change in photoperiod was manipulated to accelerate the molt rate. This treatment simulates the case of naturally late-breeding birds. House sparrows Passer domesticus experiencing accelerated molt developed shorter flight feathers with more fault bars and body feathers with supposedly lower insulation capacity (i.e. shorter, smaller, with a higher barbule density and fewer plumulaceous barbs). However, the wing, tail and primary feather lengths were shorter in fast-molting birds if they had an inferior body condition, which has been largely overlooked in previous studies. The rachis width of flight feathers was not affected by the treatment, but it was still condition-dependent.

Conclusions/Significance

This study shows that sedentary birds might face evolutionary costs because of the molt rate–feather quality conflict. This is the first study to experimentally demonstrate that (1) molt rate affects several aspects of body feathers as well as flight feathers and (2) the costly effects of rapid molt are condition-specific. We conclude that molt rate and its association with feather quality might be a major mediator of life history trade-offs. Our findings also suggest a novel advantage of early breeding, i.e. the facilitation of slower molt and the condition-dependent regulation of feather growth.  相似文献   

14.

Background

Many avian species soar and glide over land. Evidence from large birds (m b>0.9 kg) suggests that soaring-gliding is considerably cheaper in terms of energy than flapping flight, and costs about two to three times the basal metabolic rate (BMR). Yet, soaring-gliding is considered unfavorable for small birds because migration speed in small birds during soaring-gliding is believed to be lower than that of flapping flight. Nevertheless, several small bird species routinely soar and glide.

Methodology/Principal Findings

To estimate the energetic cost of soaring-gliding flight in small birds, we measured heart beat frequencies of free-ranging migrating European bee-eaters (Merops apiaster, m b∼55 g) using radio telemetry, and established the relationship between heart beat frequency and metabolic rate (by indirect calorimetry) in the laboratory. Heart beat frequency during sustained soaring-gliding was 2.2 to 2.5 times lower than during flapping flight, but similar to, and not significantly different from, that measured in resting birds. We estimated that soaring-gliding metabolic rate of European bee-eaters is about twice their basal metabolic rate (BMR), which is similar to the value estimated in the black-browed albatross Thalassarche (previously Diomedea) melanophrys, m b∼4 kg). We found that soaring-gliding migration speed is not significantly different from flapping migration speed.

Conclusions/Significance

We found no evidence that soaring-gliding speed is slower than flapping flight in bee-eaters, contradicting earlier estimates that implied a migration speed penalty for using soaring-gliding rather than flapping flight. Moreover, we suggest that small birds soar and glide during migration, breeding, dispersal, and other stages in their annual cycle because it may entail a low energy cost of transport. We propose that the energy cost of soaring-gliding may be proportional to BMR regardless of bird size, as theoretically deduced by earlier studies.  相似文献   

15.

Background

Wild birds are an important but to some extent under-studied reservoir for emerging pathogens. We used unbiased sequencing methods for virus discovery in shorebird samples from the Delaware Bay, USA; an important feeding ground for thousands of migratory birds.

Findings

Analysis of shorebird fecal samples indicated the presence of a novel astrovirus and coronavirus. A sanderling sample yielded sequences with distant homology to avian nephritis virus 1, an astrovirus associated with acute nephritis in poultry. A ruddy turnstone sample yielded sequences with homology to deltacoronaviruses.

Conclusions

Our findings highlight shorebirds as a virus reservoir and the need to closely monitor wild bird populations for the emergence of novel virus variants.  相似文献   

16.

Background

Qinghai Lake in central China has been at the center of debate on whether wild birds play a role in circulation of highly pathogenic avian influenza virus H5N1. In 2005, an unprecedented epizootic at Qinghai Lake killed more than 6000 migratory birds including over 3000 bar-headed geese (Anser indicus). H5N1 subsequently spread to Europe and Africa, and in following years has re-emerged in wild birds along the Central Asia flyway several times.

Methodology/Principal Findings

To better understand the potential involvement of wild birds in the spread of H5N1, we studied the movements of bar-headed geese marked with GPS satellite transmitters at Qinghai Lake in relation to virus outbreaks and disease risk factors. We discovered a previously undocumented migratory pathway between Qinghai Lake and the Lhasa Valley of Tibet where 93% of the 29 marked geese overwintered. From 2003–2009, sixteen outbreaks in poultry or wild birds were confirmed on the Qinghai-Tibet Plateau, and the majority were located within the migratory pathway of the geese. Spatial and temporal concordance between goose movements and three potential H5N1 virus sources (poultry farms, a captive bar-headed goose facility, and H5N1 outbreak locations) indicated ample opportunities existed for virus spillover and infection of migratory geese on the wintering grounds. Their potential as a vector of H5N1 was supported by rapid migration movements of some geese and genetic relatedness of H5N1 virus isolated from geese in Tibet and Qinghai Lake.

Conclusions/Significance

This is the first study to compare phylogenetics of the virus with spatial ecology of its host, and the combined results suggest that wild birds play a role in the spread of H5N1 in this region. However, the strength of the evidence would be improved with additional sequences from both poultry and wild birds on the Qinghai-Tibet Plateau where H5N1 has a clear stronghold.  相似文献   

17.

Background

Sooty (Puffinus griseus) and short-tailed (P. tenuirostris) shearwaters are abundant seabirds that range widely across global oceans. Understanding the foraging ecology of these species in the Southern Ocean is important for monitoring and ecosystem conservation and management.

Methodology/Principal Findings

Tracking data from sooty and short-tailed shearwaters from three regions of New Zealand and Australia were combined with at-sea observations of shearwaters in the Southern Ocean, physical oceanography, near-surface copepod distributions, pelagic trawl data, and synoptic near-surface winds. Shearwaters from all three regions foraged in the Polar Front zone, and showed particular overlap in the region around 140°E. Short-tailed shearwaters from South Australia also foraged in Antarctic waters south of the Polar Front. The spatial distribution of shearwater foraging effort in the Polar Front zone was matched by patterns in large-scale upwelling, primary production, and abundances of copepods and myctophid fish. Oceanic winds were found to be broad determinants of foraging distribution, and of the flight paths taken by the birds on long foraging trips to Antarctic waters.

Conclusions/Significance

The shearwaters displayed foraging site fidelity and overlap of foraging habitat between species and populations that may enhance their utility as indicators of Southern Ocean ecosystems. The results highlight the importance of upwellings due to interactions of the Antarctic Circumpolar Current with large-scale bottom topography, and the corresponding localised increases in the productivity of the Polar Front ecosystem.  相似文献   

18.

Objective

To conduct a meta-analysis assessing the prevalence and trends of the abdominal aortic aneurysms (AAA) epidemic in general population.

Method

Studies that reported prevalence rates of AAA from the general population were identified through MEDLINE, EMBASE, Web of Science, and reference lists for the period between 1988 and 2013. Studies were included if they reported prevalence rates of AAA in general population from the community. In stratified analyses possible sources of bias, including areas difference, age, gender and diameter of aneurysms were examined. Publication bias was assessed with Egger''s test method.

Results

56 studies were identified. The overall pooled prevalence of AAA was 4.8% (4.3%, 5.3%). Stratified analyses showed the following results, areas difference: America 2.2% (2.2%, 2.2%), Europe 2.5% (2.4%, 2.5%), Australia 6.7% (6.5%, 7.0%), Asia 0.5% (0.3%, 0.7%); gender difference: male 6.0% (5.3%, 6.7%), female 1.6% (1.2%, 1.9%); age difference: 55–64years 1.3% (1.2%, 1.5%), 65–74 years 2.8% (2.7%, 2.9%), 75–84 years1.2%(1.1%, 1.3%), ≥85years0.6% (0.4%, 0.7%); aortic diameters difference: 30–39 mm, 3.3% (2.8%, 3.9%), 40–49 mm,0.7% (0.4%,1.0%), ≥50 mm, 0.4% (0.3%, 0.5%). The prevalence of AAA has decreased in Europe from 1988 to 2013. Hypertension, smoking, coronary artery disease, dyslipidemia, respiratory disease, cerebrovascular disease, claudication and renal insufficiency were risk factors for AAA in Europe.

Conclusion

AAA is common in general population. The prevalence of AAA is higher in Australia than America and Europe. The pooled prevalence in western countries is higher than the Asia. Future research requires a larger database on the epidemiology of AAA in general population.  相似文献   

19.

Background

The spread of agriculture into Europe and the ancestry of the first European farmers have been subjects of debate and controversy among geneticists, archaeologists, linguists and anthropologists. Debates have centred on the extent to which the transition was associated with the active migration of people as opposed to the diffusion of cultural practices. Recent studies have shown that patterns of human cranial shape variation can be employed as a reliable proxy for the neutral genetic relationships of human populations.

Methodology/Principal Findings

Here, we employ measurements of Mesolithic (hunter-gatherers) and Neolithic (farmers) crania from Southwest Asia and Europe to test several alternative population dispersal and hunter-farmer gene-flow models. We base our alternative hypothetical models on a null evolutionary model of isolation-by-geographic and temporal distance. Partial Mantel tests were used to assess the congruence between craniometric distance and each of the geographic model matrices, while controlling for temporal distance. Our results demonstrate that the craniometric data fit a model of continuous dispersal of people (and their genes) from Southwest Asia to Europe significantly better than a null model of cultural diffusion.

Conclusions/Significance

Therefore, this study does not support the assertion that farming in Europe solely involved the adoption of technologies and ideas from Southwest Asia by indigenous Mesolithic hunter-gatherers. Moreover, the results highlight the utility of craniometric data for assessing patterns of past population dispersal and gene flow.  相似文献   

20.

Background

Genomic selection (GS) using estimated breeding values (GS-EBV) based on dense marker data is a promising approach for genetic improvement. A simulation study was undertaken to illustrate the opportunities offered by GS for designing breeding programs. It consisted of a selection program for a sex-limited trait in layer chickens, which was developed by deterministic predictions under different scenarios. Later, one of the possible schemes was implemented in a real population of layer chicken.

Methods

In the simulation, the aim was to double the response to selection per year by reducing the generation interval by 50 %, while maintaining the same rate of inbreeding per year. We found that GS with retraining could achieve the set objectives while requiring 75 % fewer reared birds and 82 % fewer phenotyped birds per year. A multi-trait GS scenario was subsequently implemented in a real population of brown egg laying hens. The population was split into two sub-lines, one was submitted to conventional phenotypic selection, and one was selected based on genomic prediction. At the end of the 3-year experiment, the two sub-lines were compared for multiple performance traits that are relevant for commercial egg production.

Results

Birds that were selected based on genomic prediction outperformed those that were submitted to conventional selection for most of the 16 traits that were included in the index used for selection. However, although the two programs were designed to achieve the same rate of inbreeding per year, the realized inbreeding per year assessed from pedigree was higher in the genomic selected line than in the conventionally selected line.

Conclusions

The results demonstrate that GS is a promising alternative to conventional breeding for genetic improvement of layer chickens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号