首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND AND AIMS: Plants from gypsum habitats are classified as gypsophiles and gypsovags. The former include both narrow endemics limited to small gypsum areas and regionally dominant gypsophiles growing in gypsum areas of large regions, whereas gypsovags are plants that can grow both in gypsum and non-gypsum soils. Factors controlling the distribution of gypsum plants are still not fully understood. METHODS: To assess how the different types of gypsum plants deal with the stressful conditions of gypsum substrates, comparisons were made of the leaf chemical composition of four gypsovags, five regionally dominant gypsophiles and four narrow gypsum endemics growing in two massive gypsum areas of the Iberian Peninsula. KEY RESULTS: The chemical composition of gypsovags was clearly different from regionally dominant gypsophiles, while the chemical composition of narrow-gypsophile endemics was more similar to the chemical composition of gypsovags than to that of regionally dominant gypsophiles. Regionally dominant gypsophiles showed higher concentrations of ash, Ca, S, N, Mg P and Na, whereas gypsovags and local gypsophile endemics displayed higher concentrations of C and greater C : N ratios. CONCLUSIONS: Such differences suggest that the three groups of gypsum plants follow diverse ecological strategies. It is suggested that regionally dominant gypsophiles might fit the 'specialist' model, being species specifically adapted to gypsum, whereas both gypsovags and narrow-gypsophile endemics might fit the 'refuge' model, being stress-tolerant species that find refuge on gypsum soils from competition. The analysis of the leaf chemical composition could be a good predictor of the degree of plants specialization to gypsum soils.  相似文献   

2.
The adaptation of plants to particular soil types has long intrigued biologists. Gypsum soils occupy large areas in many regions of the world and host a striking biological diversity, but their vegetation has been much less studied than that developing over serpentine or saline soils. Herein, we review all aspects of plant life on gypsum ecosystems, discuss the main processes driving their structure and functioning, and highlight the main conservation threats that they face. Plant communities in gypsum habitats typically show distinctive bands at very small spatial scales, which are mainly determined by topography. Plants living on gypsum soils can be classified into three categories: (i) wide gypsophiles are specialists that can penetrate the physical soil crust during early life stages and have physiological adjustments to cope with the chemical limitations imposed by gypsum soils; (ii) narrow gypsophiles are refugee plants which successfully deal with the physical soil crust and can tolerate these chemical limitations but do not show specific adaptations for this type of soils; and (iii) gypsovags are non‐specialist gypsum plants that can only thrive in gypsum soils when the physical crust is absent or reduced. Their ability to survive in gypsum soils may also be mediated by below‐ground interactions with soil microorganisms. Gypsophiles and gypsovags show efficient germination at low temperatures, seed and fruit heteromorphism within and among populations, and variation in seed dormancy among plants and populations. In gypsum ecosystems, spatio‐temporal changes in the composition and structure of above‐ground vegetation are closely related to those of the soil seed bank. Biological soil crusts (BSCs) dominated by cyanobacteria, lichens and mosses are conspicuous in gypsum environments worldwide, and are important drivers of ecosystem processes such as carbon and nitrogen cycling, water infiltration and run‐off and soil stability. These organisms are also important determinants of the structure of annual plant communities living on gypsum soils. The short‐distance seed dispersal of gypsophiles is responsible for the high number of very narrow endemisms typically found in gypsum outcrops, and suggests that these species are evolutionarily old taxa due to the time they need to colonize isolated gypsum outcrops by chance. Climate change and habitat fragmentation negatively affect both plants and BSCs in gypsum habitats, and are among the major threats to these ecosystems. Gypsum habitats and specialists offer the chance to advance our knowledge on restrictive soils, and are ideal models not only to test important evolutionary questions such as tolerance to low Ca/Mg proportions in soils, but also to improve the theoretical framework of community ecology and ecosystem functioning.  相似文献   

3.
Depending on their specificity to gypsum, plants can be classified as gypsophiles (gypsum exclusive) and gypsovags (non‐exclusive). The former may further be segregated into wide and narrow gypsophiles, depending on the breadth of their distribution area. Narrow gypsum endemics have a putative similar chemical composition to plants non‐exclusive to gypsum (i.e. gypsovags), which may indicate their similar ecological strategy as stress‐tolerant plant refugees on gypsum. However, this hypothesis awaits testing in different regions of the world. We compared the chemical composition of four narrow gypsum endemics, one widely distributed gypsophile and six gypsovags from Turkey. Further, we explored the plasticity in chemical composition of Turkish gypsovags growing on high‐ and low‐gypsum content soils. Differences were explored with multivariate analyses (RDA) and mixed models (REML). Narrow gypsum endemics segregated from gypsovags in their chemical composition according to RDAs (mainly due to higher K and ash content in the former). Nevertheless, differences were small and disappeared when different nutrients were analysed individually. All the gypsovags studied accumulated more S and ash when growing on high‐gypsum than on low‐gypsum soils. Similar to narrow gypsum endemics from other regions of the world, most local gypsum endemics from Turkey show a similar chemical composition to gypsovags. This may indicate a shared ecological strategy as stress‐tolerant plants not specifically adapted to gypsum. Nevertheless, the narrow gypsum endemic Gypsophila parva showed a chemical composition typical of gypsum specialists, indicating that various strategies are feasible within narrowly distributed gypsophiles.  相似文献   

4.
Patterns in plant–soil biota interactions could be influenced by the spatial distribution of species due to soil conditions or by the functional traits of species. Gypsum environments usually constitute a mosaic of heterogeneous soils where gypsum and nongypsum soils are imbricated at a local scale. A case study of the interactions of plants with arbuscular mycorrhizal fungi (AMF) in gypsum environments can be illustrative of patterns in biotic interactions. We hypothesized that (i) soil characteristics might affect the AMF community and (ii) there are differences between the AMF communities (modules) associated with plants exclusive to gypsum soils (gypsophytes) and those associated with plants that show facultative behavior on gypsum and/or marly-limestone soils (gypsovags). We used indicator species and network analyses to test for differences between the AMF communities harbored in gypsophyte and gypsovag plants. We recorded 46 operational taxonomic units (OTUs) belonging to nine genera of Glomeromycota. The indicator species analysis showed two OTUs preferentially associating with gypsum soils and three OTUs preferentially associating with marly-limestone soils. Modularity analysis revealed that soil type can be a major factor shaping AMF communities, and some AMF groups showed a tendency to interact differently with plants that had distinct ecological strategies (gypsophytes and gypsovags). Characterization of ecological networks can be a valuable tool for ascertaining the potential influence of above- and below-ground biotic interactions (plant-AMF) on plant community composition.  相似文献   

5.
Background and AimsGypsum drylands are widespread worldwide. In these arid ecosystems, the ability of different species to access different water sources during drought is a key determining factor of the composition of plant communities. Gypsum crystallization water could be a relevant source of water for shallow-rooted plants, but the segregation in the use of this source of water among plants remains unexplored. We analysed the principal water sources used by 20 species living in a gypsum hilltop, the effect of rooting depth and gypsum affinity, and the interaction of the plants with the soil beneath them.MethodsWe characterized the water stable isotope composition, δ 2H and δ 18O, of plant xylem water and related it to the free and gypsum crystallization water extracted from different depths throughout the soil profile and the groundwater, in both spring and summer. Bayesian isotope mixing models were used to estimate the contribution of water sources to plant xylem sap.Key ResultsIn spring, all species used free water from the top soil as the main source. In summer, there was segregation in water sources used by different species depending on their rooting depth, but not on their gypsum affinity. Gypsum crystallization water was the main source for most shallow-rooted species, whereas free water from 50 to 100 cm depth was the main source for deep-rooted species. We detected plant–soil interactions in spring, and indirect evidence of possible hydraulic lift by deep-rooted species in summer.ConclusionsPlants coexisting in gypsum communities segregate their hydrological niches according to their rooting depth. Crystallization water of gypsum represents an unaccounted for, vital source for most of the shallow-rooted species growing on gypsum drylands. Thus, crystallization water helps shallow-rooted species to endure arid conditions, which eventually accounts for the maintenance of high biodiversity in these specialized ecosystems.  相似文献   

6.
植物钙包括游离态的Ca2+和结合态易溶、微溶和难溶于水的钙盐,而难溶于水的钙盐常会形成钙晶体.为了解盐渍化生境中不同生长型植物体内的钙状况,本文对天津市54种植物进行了钙晶体的镜检和钙组分的测定.结果表明: 在盐渍化生境中的54种植物体内,有38种植物体内镜检到较多的钙晶体,其中37种植物体内为以簇晶和方晶为主的草酸钙晶体,只在桑科的无花果叶片中观察到内含碳酸钙晶体的钟乳体.按生长型统计,落叶乔、灌木体内的草酸钙晶体较多,藤本植物体内的草酸钙晶体较少,而草本植物和常绿乔木体内未镜检到草酸钙晶体.同时,从乔木、灌木、藤本到草本,植物体内盐酸溶性钙含量逐渐减少而水溶性钙含量逐渐增多,且草本植物体内的水溶性钙含量显著高于乔木和灌木.在盐渍化生境中,植物体内的钙晶体和钙组分因生长型不同而有所差异,草酸钙在落叶乔、灌木抵御盐分胁迫中发挥着重要作用.  相似文献   

7.
Iberian gypsophile plant communities are considered a priority for conservation by the European Community because of their highly specialized flora in gypsum outcrops in arid and semiarid regions. Despite the ecological importance of these ecosystems, the edaphic factors that constrain plant communities on gypsiferous soils remain unclear. It has been proposed that both the chemical and physical restrictive conditions of gypsum soils determine gypsophily in plants. Here we hypothesize that the rigors of the gypsum soil environment depends on topography, decreasing from flat areas on hilltops to south-oriented slopes and finally to slopes oriented to the north. We also hypothesized that the relaxation of the rigors of the gypsum soil environment with topography affects both to individual plant and community characteristics of gypsophile vegetation: we expect a reduction of gypsophyte abundance, an increase of diversity and the amelioration of facilitative interactions of plant species. We analysed the physical and chemical properties of gypsum soils that have been proposed that determine the rigors of the gypsum soil environment (i.e.: unbalanced ion concentrations and superficial soil crust). The predicted rigor gradient along topographical locations was confirmed and was mainly caused by superficial soil crust. The decreasing rigor gradient was accompanied by a fall in the abundance of gypsophytes. However, when gypsophytes were considered separately, several patterns were observed, indicating distinct tolerance to relaxation of rigor of the gypsum soil conditions and different competition abilities between gypsophytes. Plant species were more clumped, and gypsophile communities presented higher diversity, evenness and richness values where rigor of gypsum soil conditions were maximum (flat hilltop positions). Relaxation of rigor (north-oriented slopes) was characterized by loss of facilitative interaction between species and the dominance of the gypsovag Rosmarinus officinalis L., although richness was still very high, which can be attributed to the coexistence of gypsophytes and gypsovags. We conclude that the rigor of gypsum soil environment gradient with topography is mainly determined by superficial soil crust, and it is a crucial determinant of gypsophile plant communities.  相似文献   

8.
Calcium (Ca) oxalate crystals occur in many plant species and in most organs and tissues. They generally form within cells although extracellular crystals have been reported. The crystal cells or idioblasts display ultrastructural modifications which are related to crystal precipitation. Crystal formation is usually associated with membranes, chambers, or inclusions found within the cell vacuole(s). Tubules, modified plastids and enlarged nuclei also have been reported in crystal idioblasts. The Ca oxalate crystals consist of either the monohydrate whewellite form, or the dihydrate weddellite form. A number of techniques exist for the identification of calcium oxalate. X-ray diffraction, Raman microprobe analysis and infrared spectroscopy are the most accurate. Many plant crystals assumed to be Ca oxalate have never been positively identified as such. In some instances, crystals have been classified as whewellite or weddellite solely on the basis of their shape. Certain evidence indicates that crystal shape may be independent of hydration form of Ca oxalate and that the vacuole crystal chamber membranes may act to mold crystal shape; however, the actual mechanism controlling shape is unknown. Oxalic acid is formed via several major pathways. In plants, glycolate can be converted to oxalic acid. The oxidation occurs in two steps with glyoxylic acid as an intermediate and glycolic acid oxidase as the enzyme. Glyoxylic acid may be derived from enzymatic cleavage of isocitric acid. Oxaloacetate also can be split to form oxalate and acetate. Another significant precursor of oxalate in plants is L-ascorbic acid. The intermediate steps in the conversion of L-ascorbic acid to oxalate are not well defined. Oxalic acid formation in animals occurs by similar pathways and Ca oxalate crystals may be produced under certain conditions. Various functions have been attributed to plant crystal idioblasts and crystals. There is evidence that oxalate synthesis is related to ionic balance. Plant crystals thus may be a manifestation of an effort to maintain an ionic equilibrium. In many plants oxalate is metabolized very slowly or not at all and is considered to be an end product of metabolism. Plant crystal idioblasts may function as a means of removing the oxalate which may otherwise accumulate in toxic quantities. Idioblast formation is dependent on the availability of both Ca and oxalate. Under Ca stress conditions, however, crystals may be reabsorbed indicating a storage function for the idioblasts for Ca. In addition, it has been suggested that the crystals serve purely as structural supports or as a protective device against foraging animals. The purpose of this review is to present an overview of plant crystal idioblasts and Ca oxalate crystals and to include the most recent literature.  相似文献   

9.
The formation of calcium (Ca) oxalate crystals is considered to be a high-capacity mechanism for regulating Ca in many plants. Ca oxalate precipitation is not a stochastic process, suggesting the involvement of specific biochemical and cellular mechanisms. Microautoradiography of water lettuce (Pistia stratiotes) tissue exposed to 3H-glutamate showed incorporation into developing crystals, indicating potential acidic proteins associated with the crystals. Dissolution of crystals leaves behind a crystal-shaped matrix "ghost" that is capable of precipitation of Ca oxalate in the original crystal morphology. To assess whether this matrix has a protein component, purified crystals were isolated and analyzed for internal protein. Polyacrylamide gel electrophoresis revealed the presence of one major polypeptide of about 55 kD and two minor species of 60 and 63 kD. Amino acid analysis indicates the matrix protein is relatively high in acidic amino acids, a feature consistent with its solubility in formic acid but not at neutral pH. 45Ca-binding assays demonstrated the matrix protein has a strong affinity for Ca. Immunocytochemical localization using antibody raised to the isolated protein showed that the matrix protein is specific to crystal-forming cells. Within the vacuole, the surface and internal structures of two morphologically distinct Ca oxalate crystals, raphide and druse, were labeled by the antimatrix protein serum, as were the surfaces of isolated crystals. These results demonstrate that a specific Ca-binding protein exists as an integral component of Ca oxalate crystals, which holds important implications with respect to regulation of crystal formation.  相似文献   

10.
Abstract: Ca oxalate crystal formation was examined in Pistia stratiotes L. leaves during excess Ca and Ca-deficient conditions. Pistia produces druse crystal idioblasts in the adaxial mesophyll and raphide idioblasts in the abaxial aerenchyma. Raphide crystals were previously found to grow bidirectionally, and here we show that Ca is incorporated along the entire surfaces of developing druse crystals, which are coated with membrane-bound microprojections. Leaves formed on plants grown on 0 Ca medium have fewer and smaller druse crystals than leaves formed under 5 mM Ca ("control") conditions, while raphide crystal formation is completely inhibited. When plants were moved from 0 to 15 mM ("high") Ca, the size and number of crystals in new leaves returned to (druse) or exceeded (raphide) control levels. High Ca also induced formation of druse, but not raphide, crystals in differentiating chlorenchyma cells. When plants were transferred from 15 mM Ca to 0 Ca, young druse crystals were preferentially partially dissolved. Oxalate oxidase, an enzyme that degrades oxalate, increased during Ca deficiency and was localized to the crystal surfaces. The more dynamic nature of druse crystals is not due to hydration form as both crystal types are shown to be monohydrate. Part of the difference may be because raphide idioblasts have developmental constraints that interfere with a more flexible response to changing Ca. These studies demonstrate that excess Ca can be stored as Ca oxalate, the Ca can be remobilized under certain conditions, and different forms of Ca oxalate have different roles in bulk Ca regulation.  相似文献   

11.
In order to develop Ca isotopes as a tracer for biogeochemical Ca cycling in terrestrial environments and for Ca utilisation in plants, stable calcium isotope ratios were measured in various species of alpine plants, including woody species, grasses and herbs. Analysis of plant parts (root, stem, leaf and flower samples) provided information on Ca isotope fractionation within plants and seasonal sampling of leaves revealed temporal variation in leaf Ca isotopic composition. There was significant Ca isotope fractionation between soil and root tissue $\Updelta^{44/42}\hbox{Ca}_{\rm root-soil} \approx -0.40\,\permille$ in all investigated species, whereas Ca isotope fractionation between roots and leaves was species dependent. Samples of leaf tissue collected throughout the growing season also highlighted species differences: Ca isotope ratios increased with leaf age in woody species but remained constant in herbs and grasses. The Ca isotope fractionation between roots and soils can be explained by a preferential binding of light Ca isotopes to root adsorption sites. The observed differences in whole plant Ca isotopic compositions both within and between species may be attributed to several potential factors including root cation exchange capacity, the presence of a woody stem, the presence of Ca oxalate, and the levels of mycorrhizal infection. Thus, the impact of plants on the Ca biogeochemical cycle in soils, and ultimately the Ca isotope signature of the weathering flux from terrestrial environments, will depend on the species present and the stage of vegetation succession.  相似文献   

12.
Abstract. Semiarid gypsum karstlands in north central Mexico are characterized by a mosaic of shrubland and endemic gypsophile grassland community types. Proximal physical factors affecting community patterns on a local scale were investigated at an undisturbed site south of Matehuala, San Luis Potosi. Soil surface characteristics associated with depth of calcareous alluvium overlying gypsum base material were strongly correlated with distribution of desert shrub and endemic grass species. Muhlenbergia purpusii was dominant on bare gypsum soils with indurated crusts, while Bouteloua chasei was dominant where a thin veneer of alluvium permitted development of a cryptogamic crust. A high-diversity mixed shrub-succulent community occupied gypsum overlain by 5 - 20 cm of alluvium, whereas Larrea tridentata was the principal species on gypsum overlain by > 20 cm of alluvium. Open sink walls were occupied mostly by species of the Muhlenbergia grassland, while closed sinks supported more mesophytic mixed shrubland vegetation. Physical factors operating mostly at the establishment stage are probably more important in mediating local species patterns on gypsum than factors associated with mineral nutrition. Gypsum material was much less fertile than alluvial material but did not exclude widely distributed species unless exposed at the surface.  相似文献   

13.
  • Most aluminium (Al)‐accumulating species are found on soils with high Al saturation and low Ca availability (Ca poor). Callisthene fasciculata Mart. (Vochysiaceae), however, is an Al‐accumulating tree restricted to Ca‐rich soils with low Al saturation in the Brazilian Cerrado savanna. Here we tested its calcicole behaviour, and the possible role of organic acids in detoxification of Al during the early stages of plant development.
  • We assessed growth, dry mass, nutrients, Al and organic acids in seedlings grown for 50 days on two contrasting Cerrado soils; one with high Ca concentrations and low Al saturation and the other with low Ca availability and high Al saturation.
  • Relative to plants on Ca‐rich soil, plants on Ca‐poor soil had necrotic spots and bronzing of leaves. Roots and shoots contained reduced concentrations of P and Cu, but higher concentrations of Fe, Al and citrate. Despite lower concentrations in the soil, Ca and Mg increased in shoots. Shoot concentrations of oxalate were also higher.
  • We confirmed C. fasciculata as an Al‐accumulating species with calcicole behaviour. The increased concentrations of organic acids in plants with higher Al accumulation suggest that high availability of soluble Al does not prevent occurrence of this species on soils with high Al saturation. Instead, the absence of C. fasciculata from Ca‐poor soils is probably due to imbalances in tissue Fe, Cu and Zn imposed by this soil type.
  相似文献   

14.
W. L. Lindsay 《Plant and Soil》1991,130(1-2):27-34
The solubility of Fe in soils is largely controlled by Fe oxides; ferrihydrite, amorphous ferric hydroxide, and soil-Fe are generally believed to exert the major control. Fe(III) hydrolysis species constitute the major Fe species in solution. Other inorganic Fe complexes are present, but their concentrations are much less than the hydrolysis species. Organic complexes of Fe including those of organic acids like citrate, oxalate, and malate contribute slightly to increased Fe solubility in acid soils, but not in alkaline soils.The most important influence that organic matter has on the solubilization of Fe is through reduction. Respiration of organic matter creates reduction microsites in soil where Fe2+ concentrations increase above those of the Fe(III) hydrolysis species. Fluctuating redox conditions in these microsites are conducive to the formation of a mixed valency ferrosic hydroxide. This metastable precipitate maintains an elevated level of soluble inorganic Fe for prolonged periods and increases Fe availability to plants. The release of reducing agents and acids next to roots, as well as the production of siderophores by microorganisms within the rhizosphere, contribute to the solubilization and increased availability of Fe to plants.  相似文献   

15.
薛苹苹  高玉葆  何兴东 《生态学报》2013,33(5):1475-1481
为探索同一物种在不同生态区域钙组分特征的差异,选择我国北方沙地重要建群种油蒿(Artemisia ordosica)为研究对象,采集了内蒙古杭锦旗、乌审旗、阿拉善左旗以及宁夏盐池县和陕西榆林市榆阳区不同沙地类型、不同生长阶段的油蒿样品,利用连续组分法测定分析了油蒿的钙组分特征.结果表明,在油蒿的不同器官中,叶水溶性钙和醋酸溶性钙均显著高于枝和根,叶与根盐酸溶性钙均显著高于枝.在不同生态区域,降水量较多的地区油蒿体内水溶性钙含量较多,降水量较少的地区油蒿体内盐酸溶性钙含量较高.分析得知,降水条件较好的地区较高的水溶性钙主要体现在油蒿的叶中,而降水条件较差的地区较高的盐酸溶性钙主要体现在油蒿的叶和根中.油蒿在不同生长阶段钙组分没有显著差异,但不同类型沙地上油蒿的钙组分却有显著差异.可见,不同生态区域的油蒿,生境条件越好体内水溶性钙含量越高,生境条件越差体内盐酸溶性钙含量越高.  相似文献   

16.
Alleviation of soil acidity in Ultisol and Oxisol for corn growth   总被引:1,自引:0,他引:1  
Malaysian Ultisols and Oxisols are characterized by low pH, high soil solution Al concentration and Ca and/or Mg deficiencies, which are limiting to corn growth. An experiment was conducted to determine the changes in solid and soil solution phase properties of a representative Ultisol and Oxisol following applications of ground magnesium limestone (GML), gypsum and their combinations, and their effects on corn growth. A plot of pAl against lime potential (pH-1/2 pCa) showed that the points were mostly positioned between the theoretical lines for kaolinite-quartz and gibbsite equilibrium, reflecting the kaolinitic-oxidic mineralogy of the Ultisol and Oxisol. Gypsum application increased Al concentration in the soil solutions of the Ultisol, but had no significant effect on that of the Oxisol. The increase in Al concentration in the Ultisol was due to an increase in ionic strength. Gypsum application increased soil solution pH of the Oxisol due to release of OH as a result of ligand exchange between SO4 and OH ions on the oxides of Fe and/or Al. Exchangeable Al in both soils was reduced by gypsum application. The reduction was associated with solid phase immobilization through alunite formation; the soil solutions of soil samples treated with 2 and 4 t gypsum ha−1 were supersaturated with respect to alunite. Application of GML at 2 t ha−1 together with 1–2t gypsum ha−1 gave high top weight of corn. Relative top weight of corn was positively correlated with a soil solution Mg and Ca/Al concentration ratio, but negatively correlated with soil solution Al concentration. Foliar Al corn was positively correlated with soil solution Al concentration. Soil solution Al and Mg concentrations, and Ca/Al concentration ratio can be used as indices of soil acidity in Ultisols and Oxisols. ei]{gnB E}{fnClothier}  相似文献   

17.
In this study, we linked Ca speciation with isotope composition in plants. To do this, we performed leachate experiments to access the soluble Ca, structurally bound Ca and insoluble Ca (i.e., water and weak acid resistant) within beech tree organs (Fagus sylvatica L.). Ca isotopic measurements were combined with infrared spectroscopy and calcium oxalate biomineralization identification. The results from our study indicate that bark and leaves are the most enriched in monohydrated calcium oxalate crystals (whewellite), which are observable in parenchyma and sclerenchyma tissues, whereas roots and wood are enriched in structurally bound Ca. Our leaching experiments also show decreasing δ44/40Ca isotopic signatures in the order of soluble Ca > structurally bound Ca > insoluble Ca. This finding implies that because leaves degrade faster than wooden organs and because Ca linked to pectate decomposes faster than Ca linked to oxalate crystals, differential Ca isotopic signatures are expected to be observed during litter degradation.  相似文献   

18.
Evaluation of Restoration Techniques for the Succulent Karoo, South Africa   总被引:1,自引:0,他引:1  
Abstract Possible constraints on the passive recovery of bare areas in the Karoo, a semiarid region in South Africa, include inadequate supply of seed, availability of suitable microsites for plant establishment, altered soil properties, and the truncation of key soil biotic processes. Here we investigate the possibility of initiating the restoration of bare areas by soil surface treatments with gypsum (CaSO4) and/or organic mulch. We also apply an exogenous seed source to test the hypothesis that seed availability limits autogenic recovery. Both gypsum and mulch improved rain water infiltration, gypsum more so than mulch, and both treatments resulted in significantly higher numbers of reseeded seedlings compared with controls. Gypsum also improved the survival of the cohorts of seedlings of the larger seeded Tripteris sinuata. Tripteris showed the highest number of seedlings (maximum count of 150 seedlings/1,000 viable seeds sown) and surviving plants of the three reseeded species, which included two small‐seeded species, Ruschia spinosa and Chaetobromus dregeanus. Throughout the study period significantly higher plant volumes of naturally seeded annuals and perennials were recorded in the gypsum and/or mulch treatments compared with the controls. Germination and emergence of reseeded and naturally seeded plants appears to be determined by the availability of cool season (autumn to spring ) soil moisture, whereas follow‐up rainfall during this time is important for plant survival. Mulching of bare areas in the Succulent Karoo has the potential to re‐create vegetated areas that will further capture and conserve water, soil, and nutrients. Gypsum also showed positive results but might not be a cost‐effective option because of transport costs to these remote arid areas.  相似文献   

19.
Light-induced Ca2+ release from the Ca2+ complex of Nitr-5 altered the FTIR spectra of sarcoplasmic reticulum vesicles and purified Ca(2+)-ATPase preparations. The principal changes seen in difference spectra obtained after and before illumination in the presence of Nitr-5.Ca2+ consisted of an increase in absorbance at 1663 and 1676 cm-1 and a decrease in absorbance at 1653 cm-1. The light-induced changes in FTIR spectra were prevented by vanadate or EGTA, indicating that they were associated with the formation of Ca2E1 enzyme intermediate. Other light-induced changes in the FTIR spectra at 1600-1250 cm-1 were not clearly related to the sarcoplasmic reticulum, and were attributed to photolysis of Nitr-5. The difference absorbance bands are narrow, suggesting that they originate from changes in side chain vibrations, although some changes in secondary structures may also contribute.  相似文献   

20.
This study presents a survey of the species of the Araceae where extracellular production of calcium oxalate crystals has been observed and discusses the patterns of production of the crystals in different genera. For all Araceae studied using SEM, the oxalate crystals exuding on the epidermal surface correspond to extended aggregate/druses or crystal sand and the oxalate crystals mixed with pollen correspond to raphides or styloids (prismatic crystals). The type of crystals associated with pollen varies among genera. However, the presence of crystals associated with pollen is a specific rather than a generic characteristic. Our results show that the presence of raphides mixed with pollen seems to be a widespread phenomenon in the aroid family.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 146 , 181–190.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号