首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major goal of infectious disease epidemiology is to understand and predict the spread of infections within human populations, with the intention of better informing decisions regarding control and intervention. However, the development of fully mechanistic models of transmission requires a quantitative understanding of social interactions and collective properties of social networks. We performed a cross-sectional study of the social contacts on given days for more than 5000 respondents in England, Scotland and Wales, through postal and online survey methods. The survey was designed to elicit detailed and previously unreported measures of the immediate social network of participants relevant to infection spread. Here, we describe individual-level contact patterns, focusing on the range of heterogeneity observed and discuss the correlations between contact patterns and other socio-demographic factors. We find that the distribution of the number of contacts approximates a power-law distribution, but postulate that total contact time (which has a shorter-tailed distribution) is more epidemiologically relevant. We observe that children, public-sector and healthcare workers have the highest number of total contact hours and are therefore most likely to catch and transmit infectious disease. Our study also quantifies the transitive connections made between an individual''s contacts (or clustering); this is a key structural characteristic of social networks with important implications for disease transmission and control efficacy. Respondents'' networks exhibit high levels of clustering, which varies across social settings and increases with duration, frequency of contact and distance from home. Finally, we discuss the implications of these findings for the transmission and control of pathogens spread through close contact.  相似文献   

2.
Understanding infection dynamics of respiratory diseases requires the identification and quantification of behavioural, social and environmental factors that permit the transmission of these infections between humans. Little empirical information is available about contact patterns within real-world social networks, let alone on differences in these contact networks between populations that differ considerably on a socio-cultural level. Here we compared contact network data that were collected in the Netherlands and Thailand using a similar online respondent-driven method. By asking participants to recruit contact persons we studied network links relevant for the transmission of respiratory infections. We studied correlations between recruiter and recruited contacts to investigate mixing patterns in the observed social network components. In both countries, mixing patterns were assortative by demographic variables and random by total numbers of contacts. However, in Thailand participants reported overall more contacts which resulted in higher effective contact rates. Our findings provide new insights on numbers of contacts and mixing patterns in two different populations. These data could be used to improve parameterisation of mathematical models used to design control strategies. Although the spread of infections through populations depends on more factors, found similarities suggest that spread may be similar in the Netherlands and Thailand.  相似文献   

3.
The spread of pathogens fundamentally depends on the underlying contacts between individuals. Modeling the dynamics of infectious disease spread through contact networks, however, can be challenging due to limited knowledge of how an infectious disease spreads and its transmission rate. We developed a novel statistical tool, INoDS (Identifying contact Networks of infectious Disease Spread) that estimates the transmission rate of an infectious disease outbreak, establishes epidemiological relevance of a contact network in explaining the observed pattern of infectious disease spread and enables model comparison between different contact network hypotheses. We show that our tool is robust to incomplete data and can be easily applied to datasets where infection timings of individuals are unknown. We tested the reliability of INoDS using simulation experiments of disease spread on a synthetic contact network and find that it is robust to incomplete data and is reliable under different settings of network dynamics and disease contagiousness compared with previous approaches. We demonstrate the applicability of our method in two host-pathogen systems: Crithidia bombi in bumblebee colonies and Salmonella in wild Australian sleepy lizard populations. INoDS thus provides a novel and reliable statistical tool for identifying transmission pathways of infectious disease spread. In addition, application of INoDS extends to understanding the spread of novel or emerging infectious disease, an alternative approach to laboratory transmission experiments, and overcoming common data-collection constraints.  相似文献   

4.
Contact patterns in populations fundamentally influence the spread of infectious diseases. Current mathematical methods for epidemiological forecasting on networks largely assume that contacts between individuals are fixed, at least for the duration of an outbreak. In reality, contact patterns may be quite fluid, with individuals frequently making and breaking social or sexual relationships. Here, we develop a mathematical approach to predicting disease transmission on dynamic networks in which each individual has a characteristic behaviour (typical contact number), but the identities of their contacts change in time. We show that dynamic contact patterns shape epidemiological dynamics in ways that cannot be adequately captured in static network models or mass-action models. Our new model interpolates smoothly between static network models and mass-action models using a mixing parameter, thereby providing a bridge between disparate classes of epidemiological models. Using epidemiological and sexual contact data from an Atlanta high school, we demonstrate the application of this method for forecasting and controlling sexually transmitted disease outbreaks.  相似文献   

5.
Estimates of contact among children, used for infectious disease transmission models and understanding social patterns, historically rely on self-report logs. Recently, wireless sensor technology has enabled objective measurement of proximal contact and comparison of data from the two methods. These are mostly small-scale studies, and knowledge gaps remain in understanding contact and mixing patterns and also in the advantages and disadvantages of data collection methods. We collected contact data from a middle school, with 7th and 8th grades, for one day using self-report contact logs and wireless sensors. The data were linked for students with unique initials, gender, and grade within the school. This paper presents the results of a comparison of two approaches to characterize school contact networks, wireless proximity sensors and self-report logs. Accounting for incomplete capture and lack of participation, we estimate that “sensor-detectable”, proximal contacts longer than 20 seconds during lunch and class-time occurred at 2 fold higher frequency than “self-reportable” talk/touch contacts. Overall, 55% of estimated talk-touch contacts were also sensor-detectable whereas only 15% of estimated sensor-detectable contacts were also talk-touch. Contacts detected by sensors and also in self-report logs had longer mean duration than contacts detected only by sensors (6.3 vs 2.4 minutes). During both lunch and class-time, sensor-detectable contacts demonstrated substantially less gender and grade assortativity than talk-touch contacts. Hallway contacts, which were ascertainable only by proximity sensors, were characterized by extremely high degree and short duration. We conclude that the use of wireless sensors and self-report logs provide complementary insight on in-school mixing patterns and contact frequency.  相似文献   

6.

Background

For understanding the spread of infectious diseases it is crucial to have knowledge of the patterns of contacts in a population during which the infection can be transmitted. Besides contact rates and mixing between age groups, the way individuals distribute their contacts across different locations may play an important role in determining how infections spread through a population.

Methods and Findings

Representative surveys were performed in eight countries to assess the number of social contacts (talking to another person at close distance either with or without physical contact), using a diary approach in which participants recorded individual contacts. The overall sample size was 7290 respondents. We analyzed the reported numbers of contacts per respondent in six different settings (household, work, school, leisure, transportation and others) to define different contact profiles. The identification of the profiles and classification of respondents according to these profiles was conducted using a two-step cluster analysis algorithm as implemented in SPSS.We identified seven distinct contact profiles: respondents having (1) mixed: contacts predominantly at school, during transportation and leisure time, (2) contacts during leisure time, (3) contacts mainly in the household (large family), (4) contacts at work, (5) contacts solely at school, (6) contacts in other places and finally (7) respondents having a low number of contacts in any setting. Similar contact profiles can be found in all eight European countries which participated in the study. The distributions of respondents across the profiles were similar in all countries. The profiles are dominated by work, school and household contacts. But also contacts during leisure activities play an important role in the daily lives of a large fraction of individuals. A surprisingly large number of individuals has only few contacts in all locations. There was a distinct age-dependence in the distribution of the population across contact profiles.

Conclusions

In contrast with earlier studies that focussed on the contribution of different age groups to the spread of an infectious disease, our results open up the opportunity to analyze how an infection spreads between locations and how locations as work or school are interconnected via household contacts. Mathematical models that take these local contact patterns into account can be used to assess the effect of intervention measures like school closure and cancelling of leisure activities on the spread of influenza.  相似文献   

7.
Given their importance in shaping social networks and determining how information or transmissible diseases propagate in a population, interactions between individuals are the subject of many data collection efforts. To this aim, different methods are commonly used, ranging from diaries and surveys to decentralised infrastructures based on wearable sensors. These methods have each advantages and limitations but are rarely compared in a given setting. Moreover, as surveys targeting friendship relations might suffer less from memory biases than contact diaries, it is interesting to explore how actual contact patterns occurring in day-to-day life compare with friendship relations and with online social links. Here we make progresses in these directions by leveraging data collected in a French high school and concerning (i) face-to-face contacts measured by two concurrent methods, namely wearable sensors and contact diaries, (ii) self-reported friendship surveys, and (iii) online social links. We compare the resulting data sets and find that most short contacts are not reported in diaries while long contacts have a large reporting probability, and that the durations of contacts tend to be overestimated in the diaries. Moreover, measured contacts corresponding to reported friendship can have durations of any length but all long contacts do correspond to a reported friendship. On the contrary, online links that are not also reported in the friendship survey correspond to short face-to-face contacts, highlighting the difference of nature between reported friendships and online links. Diaries and surveys suffer moreover from a low sampling rate, as many students did not fill them, showing that the sensor-based platform had a higher acceptability. We also show that, despite the biases of diaries and surveys, the overall structure of the contact network, as quantified by the mixing patterns between classes, is correctly captured by both networks of self-reported contacts and of friendships, and we investigate the correlations between the number of neighbors of individuals in the three networks. Overall, diaries and surveys tend to yield a correct picture of the global structural organization of the contact network, albeit with much less links, and give access to a sort of backbone of the contact network corresponding to the strongest links, i.e., the contacts of longest cumulative durations.  相似文献   

8.
9.
Contact network epidemiology is an approach to modeling the spread of infectious diseases that explicitly considers patterns of person-to-person contacts within a community. Contacts can be asymmetric, with a person more likely to infect one of their contacts than to become infected by that contact. This is true for some sexually transmitted diseases that are more easily caught by women than men during heterosexual encounters; and for severe infectious diseases that cause an average person to seek medical attention and thereby potentially infect health care workers (HCWs) who would not, in turn, have an opportunity to infect that average person. Here we use methods from percolation theory to develop a mathematical framework for predicting disease transmission through semi-directed contact networks in which some contacts are undirected-the probability of transmission is symmetric between individuals-and others are directed-transmission is possible only in one direction. We find that the probability of an epidemic and the expected fraction of a population infected during an epidemic can be different in semi-directed networks, in contrast to the routine assumption that these two quantities are equal. We furthermore demonstrate that these methods more accurately predict the vulnerability of HCWs and the efficacy of various hospital-based containment strategies during outbreaks of severe respiratory diseases.  相似文献   

10.
Mathematical models have played a key role in understanding the spread of directly-transmissible infectious diseases such as Coronavirus Disease 2019 (COVID-19), as well as the effectiveness of public health responses. As the risk of contracting directly-transmitted infections depends on who interacts with whom, mathematical models often use contact matrices to characterise the spread of infectious pathogens. These contact matrices are usually generated from diary-based contact surveys. However, the majority of places in the world do not have representative empirical contact studies, so synthetic contact matrices have been constructed using more widely available setting-specific survey data on household, school, classroom, and workplace composition combined with empirical data on contact patterns in Europe. In 2017, the largest set of synthetic contact matrices to date were published for 152 geographical locations. In this study, we update these matrices with the most recent data and extend our analysis to 177 geographical locations. Due to the observed geographic differences within countries, we also quantify contact patterns in rural and urban settings where data is available. Further, we compare both the 2017 and 2020 synthetic matrices to out-of-sample empirically-constructed contact matrices, and explore the effects of using both the empirical and synthetic contact matrices when modelling physical distancing interventions for the COVID-19 pandemic. We found that the synthetic contact matrices show qualitative similarities to the contact patterns in the empirically-constructed contact matrices. Models parameterised with the empirical and synthetic matrices generated similar findings with few differences observed in age groups where the empirical matrices have missing or aggregated age groups. This finding means that synthetic contact matrices may be used in modelling outbreaks in settings for which empirical studies have yet to be conducted.  相似文献   

11.
Students attending schools play an important role in the transmission of influenza. In this study, we present a social network analysis of contacts among 1,828 students in eight different schools in urban and suburban areas in and near Pittsburgh, Pennsylvania, United States of America, including elementary, elementary-middle, middle, and high schools. We collected social contact information of students who wore wireless sensor devices that regularly recorded other devices if they are within a distance of 3 meters. We analyzed these networks to identify patterns of proximal student interactions in different classes and grades, to describe community structure within the schools, and to assess the impact of the physical environment of schools on proximal contacts. In the elementary and middle schools, we observed a high number of intra-grade and intra-classroom contacts and a relatively low number of inter-grade contacts. However, in high schools, contact networks were well connected and mixed across grades. High modularity of lower grades suggests that assumptions of homogeneous mixing in epidemic models may be inappropriate; whereas lower modularity in high schools suggests that homogenous mixing assumptions may be more acceptable in these settings. The results suggest that interventions targeting subsets of classrooms may work better in elementary schools than high schools. Our work presents quantitative measures of age-specific, school-based contacts that can be used as the basis for constructing models of the transmission of infections in schools.  相似文献   

12.
The spread of infectious diseases fundamentally depends on the pattern of contacts between individuals. Although studies of contact networks have shown that heterogeneity in the number of contacts and the duration of contacts can have far-reaching epidemiological consequences, models often assume that contacts are chosen at random and thereby ignore the sociological, temporal and/or spatial clustering of contacts. Here we investigate the simultaneous effects of heterogeneous and clustered contact patterns on epidemic dynamics. To model population structure, we generalize the configuration model which has a tunable degree distribution (number of contacts per node) and level of clustering (number of three cliques). To model epidemic dynamics for this class of random graph, we derive a tractable, low-dimensional system of ordinary differential equations that accounts for the effects of network structure on the course of the epidemic. We find that the interaction between clustering and the degree distribution is complex. Clustering always slows an epidemic, but simultaneously increasing clustering and the variance of the degree distribution can increase final epidemic size. We also show that bond percolation-based approximations can be highly biased if one incorrectly assumes that infectious periods are homogeneous, and the magnitude of this bias increases with the amount of clustering in the network. We apply this approach to model the high clustering of contacts within households, using contact parameters estimated from survey data of social interactions, and we identify conditions under which network models that do not account for household structure will be biased.  相似文献   

13.
Although mixing patterns are thought to be important determinants of the spread of airborne infectious diseases, to our knowledge, there have been no attempts to directly quantify them for humans. We report on a preliminary study to identify such mixing patterns. A sample of 92 adults were asked to detail the individuals with whom they had conversed over the period of one, randomly assigned, day. Sixty-five (71%) completed the questionnaire, providing their age, the age of their contacts and the social context in which the contacts took place. The data were analysed using multilevel modelling. The study identified, and allowed the quantification of, contact patterns within this sample that may be of epidemiological significance. For example, the degree of assortativeness of mixing with respect to age was dependent not only on the age of participants but the number of contacts made. Estimates of the relative magnitude of contact rates between different social settings were made, with implications for outbreak potential. Simple questionnaire modifications are suggested which would yield information on the structure and dynamics of social networks and the intensity of contacts. Surveys of this nature may enable the quantification of who acquires infection from whom and from where.  相似文献   

14.
We present a comprehensive approach to using electronic medical records (EMR) for constructing contact networks of healthcare workers in a hospital. This approach is applied at the University of Iowa Hospitals and Clinics (UIHC) – a 3.2 million square foot facility with 700 beds and about 8,000 healthcare workers – by obtaining 19.8 million EMR data points, spread over more than 21 months. We use these data to construct 9,000 different healthcare worker contact networks, which serve as proxies for patterns of actual healthcare worker contacts. Unlike earlier approaches, our methods are based on large-scale data and do not make any a priori assumptions about edges (contacts) between healthcare workers, degree distributions of healthcare workers, their assignment to wards, etc. Preliminary validation using data gathered from a 10-day long deployment of a wireless sensor network in the Medical Intensive Care Unit suggests that EMR logins can serve as realistic proxies for hospital-wide healthcare worker movement and contact patterns. Despite spatial and job-related constraints on healthcare worker movement and interactions, analysis reveals a strong structural similarity between the healthcare worker contact networks we generate and social networks that arise in other (e.g., online) settings. Furthermore, our analysis shows that disease can spread much more rapidly within the constructed contact networks as compared to random networks of similar size and density. Using the generated contact networks, we evaluate several alternate vaccination policies and conclude that a simple policy that vaccinates the most mobile healthcare workers first, is robust and quite effective relative to a random vaccination policy.  相似文献   

15.
Abstract: Establishment and spread of infectious diseases are controlled by the frequency of contacts among hosts. Although managers can estimate transmission coefficients from the relationship between disease prevalence and age or time, they may wish to quantify or compare contact rates before a disease is established or while it is at very low prevalence. Our objectives were to quantify direct and indirect contacts rates among white-tailed deer (Odocoileus virginianus) and to compare these measures of contact rate with simpler measures of joint space use. We deployed Global Positioning System (GPS) collars on 23 deer near Carbondale, Illinois, USA, from 2002 to 2005. We used location data from the GPS collars to measure pairwise rates of direct and indirect contact, based on a range of proximity criteria and time lags, as well as volume of intersection (VI) of kernel utilization distributions. We analyzed contact rates at a given distance criterion and time lag using mixed-model logistic regression. Direct contact rates increased with increasing VI and were higher in autumn—spring than in summer. After accounting for VI, the estimated odds of direct contact during autumn—spring periods were 5.0–22.1-fold greater (depending on the proximity criterion) for pairs of deer in the same social group than for between-group pairs, but for direct contacts during summer the within:between-group odds ratio did not differ significantly from 1. Indirect contact rates also increased with VI, but the effects of both season and pair-type were much smaller than for direct contacts and differed little as the time lag increased from 1–30 days. These results indicate that simple measures of joint space use are insufficient indices of direct contact because group membership can substantially increase contacts at a given level of joint space use. With indirect transmission, however, group membership had a much smaller influence after accounting for VI. Relationships between contact rates and season, VI, and pair-type were generally robust to changes in the proximity criterion defining a contact, and patterns of indirect contacts were affected little by the choice of time lag from 1–30 days. The use of GPS collars provides a framework for testing hypotheses about the form of contact networks among large mammals and comparing potential direct and indirect contact rates across gradients of ecological factors, such as population density or landscape configuration.  相似文献   

16.
The contact structure between hosts shapes disease spread. Most network-based models used in epidemiology tend to ignore heterogeneity in the weighting of contacts between two individuals. However, this assumption is known to be at odds with the data for many networks (e.g. sexual contact networks) and to have a critical influence on epidemics'' behavior. One of the reasons why models usually ignore heterogeneity in transmission is that we currently lack tools to analyze weighted networks, such that most studies rely on numerical simulations. Here, we present a novel framework to estimate key epidemiological variables, such as the rate of early epidemic expansion () and the basic reproductive ratio (), from joint probability distributions of number of partners (contacts) and number of interaction events through which contacts are weighted. These distributions are much easier to infer than the exact shape of the network, which makes the approach widely applicable. The framework also allows for a derivation of the full time course of epidemic prevalence and contact behaviour, which we validate with numerical simulations on networks. Overall, incorporating more realistic contact networks into epidemiological models can improve our understanding of the emergence and spread of infectious diseases.  相似文献   

17.
One of network epidemiology''s central assumptions is that the contact structure over which infectious diseases propagate can be represented as a static network. However, contacts are highly dynamic, changing at many time scales. In this paper, we investigate conceptually simple methods to construct static graphs for network epidemiology from temporal contact data. We evaluate these methods on empirical and synthetic model data. For almost all our cases, the network representation that captures most relevant information is a so-called exponential-threshold network. In these, each contact contributes with a weight decreasing exponentially with time, and there is an edge between a pair of vertices if the weight between them exceeds a threshold. Networks of aggregated contacts over an optimally chosen time window perform almost as good as the exponential-threshold networks. On the other hand, networks of accumulated contacts over the entire sampling time, and networks of concurrent partnerships, perform worse. We discuss these observations in the context of the temporal and topological structure of the data sets.  相似文献   

18.
Recent studies of infectious diseases have attempted to construct more realistic parameters of interpersonal contact patterns from diary-approach surveys. To ensure that such diary-based contact patterns provide accurate baseline data for policy implementation in densely populated Taiwan, we collected contact diaries from a national sample, using 3-stage systematic probability sampling and rigorous in-person interviews. A representative sample of 1,943 contact diaries recorded a total of 24,265 wide-range, face-to-face interpersonal contacts during a 24-hour period. Nearly 70% of the contacts occurred outside of respondents'' households. The most active age group was schoolchildren (ages 5–14), who averaged around 16–18 daily contacts, about 2–3 times as many as the least active age groups. We show how such parameters of contact patterns help modify a sophisticated national simulation system that has been used for years to model the spread of pandemic diseases in Taiwan. Based on such actual and representative data that enable researchers to infer findings to the whole population, our analyses aim to facilitate implementing more appropriate and effective strategies for controlling an emerging or pandemic disease infection.  相似文献   

19.
A dense population, global connectivity and frequent human–animal interaction give southern China an important role in the spread and emergence of infectious disease. However, patterns of person-to-person contact relevant to the spread of directly transmitted infections such as influenza remain poorly quantified in the region. We conducted a household-based survey of travel and contact patterns among urban and rural populations of Guangdong, China. We measured the character and distance from home of social encounters made by 1821 individuals. Most individuals reported 5–10 h of contact with around 10 individuals each day; however, both distributions have long tails. The distribution of distance from home at which contacts were made is similar: most were within a kilometre of the participant''s home, while some occurred further than 500 km away. Compared with younger individuals, older individuals made fewer contacts which tended to be closer to home. There was strong assortativity in age-based contact rates. We found no difference between the total number or duration of contacts between urban and rural participants, but urban participants tended to make contacts closer to home. These results can improve mathematical models of infectious disease emergence, spread and control in southern China and throughout the region.  相似文献   

20.
Network theory and SARS: predicting outbreak diversity   总被引:2,自引:0,他引:2  
Many infectious diseases spread through populations via the networks formed by physical contacts among individuals. The patterns of these contacts tend to be highly heterogeneous. Traditional "compartmental" modeling in epidemiology, however, assumes that population groups are fully mixed, that is, every individual has an equal chance of spreading the disease to every other. Applications of compartmental models to Severe Acute Respiratory Syndrome (SARS) resulted in estimates of the fundamental quantity called the basic reproductive number R0--the number of new cases of SARS resulting from a single initial case--above one, implying that, without public health intervention, most outbreaks should spark large-scale epidemics. Here we compare these predictions to the early epidemiology of SARS. We apply the methods of contact network epidemiology to illustrate that for a single value of R0, any two outbreaks, even in the same setting, may have very different epidemiological outcomes. We offer quantitative insight into the heterogeneity of SARS outbreaks worldwide, and illustrate the utility of this approach for assessing public health strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号