首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted to develop a micropropagation protocol for grey mangrove, Avicennia marina (Forsk.)  相似文献   

2.
Factors contributing to dwarfing in the mangrove Avicennia marina   总被引:2,自引:0,他引:2  
Naidoo G 《Annals of botany》2006,97(6):1095-1101
BACKGROUND AND AIMS: In Richards Bay, South Africa, Avicennia marina frequently exhibits a distinct productivity gradient, with tree height decreasing markedly from 6-10 m in the fringe zone to <1.5 m in the dwarf zone which is 120 m inland at a slightly higher elevation. In this investigation, soil physico-chemical conditions between fringe and dwarf A. marina were compared and the constraints imposed by any differences on mangrove ecophysiology and productivity determined. METHODS: Soil and plant samples were analysed for inorganic ions using spectrophotometry. Gas exchange measurements were taken with an infrared gas analyser and chlorophyll fluorescence with a fluorometer. Xylem psi was determined with a pressure chamber and chlorophyll content with a chlorophyll absorbance meter. RESULTS: In the dwarf site, soil salinity, total cations, electrical conductivity and soil concentrations of Na(+), K(+), Ca(2+), Mg(2+), Zn(2+), Mn(2+) and Cu(2+) were significantly higher than those in the fringe zone. Soil water potential and the concentration of soil P, however, were significantly lower in the dwarf site. In the leaves, Na(+) was the predominant ion and its concentration was 24 % higher in dwarf than fringe mangroves. Leaf concentrations of K(+), Ca(2+), Mg(2+), Mn(2+) and P, however, were significantly lower in dwarf mangroves. Photosynthetic performance, measured by gas exchange and chlorophyll fluorescence, was significantly reduced in the dwarf plants. CONCLUSIONS: The results suggest that hydro-edaphic factors contribute to high soil salinities, low water potentials, water stress and ion imbalance within tissues including P deficiency, which in interaction, contribute to dwarfing in Avicennia marina.  相似文献   

3.
4.
5.
Populations of the mangrove Avicennia marina in the Sydney region exist as stands of varying size, reflecting both natural and anthropogenic fragmentation. We hypothesised that, as observed in many terrestrial forests, small stands (<100 plants) would experience lower pollinator densities and altered pollinator behaviour and visitation and, in consequence, would display reduced pollen deposition as compared with large stands (>10,000 plants). Nevertheless, we recognise that such predictions may be overly simplistic because within this region A. marina attracts a diversity of flower visitors, but its only significant pollinator is the exotic honeybee Apis mellifera. Moreover, it is unclear how readily A. mellifera moves among groups of plants within different mangrove stands of varying sizes separated either by water or urban habitat matrix. Our detailed surveys within pairs of large and small stands in two locations support the predictions that pollinator density and pollen deposition are reduced or altered within small stands. Within small stands honeybee abundance and pollen deposition were on average reduced significantly by 84 and 61 %, respectively. Moreover, within small stands there was a non-significant 12 % increase in the mean time that honeybees spent foraging on individual plants and hence potentially depositing self pollen. Taken together, our data indicate that fragmentation affects the performance of A. mellifera as a pollinator of A. marina and reduce pollinator abundance, leading to pollen limitation in small as compared to large stands, which may negatively affect reproductive output.  相似文献   

6.
In order to isolate anti-stress genes from mangrove plants, a cDNA library of Avicennia marina was constructed and screened for anti-stress genes by a functional expression screening with Escherichia coli cells. Several stress-related gene homologues, such as chaperonin-60, clpP protease of the clp/Hsp 100 family of chaperones, ubiquitin, eEF1A, drought-induced AtDi19 gene of Arabidopsis thaliana, and secretory peroxidase, were successfully isolated.  相似文献   

7.
Photosynthetic performance of the highly salt tolerant mangrove, Avicennia marina, was compared at two sites differing insubstrate soil salinities. Carbon dioxide exchange and chlorophyll fluorescence weremonitored at a high salinity site in Durban Bay (35) and at a low salinitysite in Beachwood (< 12). Mean CO2 exchange, conductanceand transpiration were consistently higher at the high salinity site. Carbondioxide response curves indicated that carboxylation efficiency was higherand stomatal limitation lower at the Durban Bay site. PSII quantum yield,electron transport rates (ETR) and intrinsic PSII efficiency(Fv/Fm) were significantly higher at the high salinity site.Quenching analysis indicated a higher degree ofphotoinhibition/photoprotection in leaves at the low salinity site. Predawnand midday leaf water potentials were –1.6 and –3.1 MPa at Beachwood,compared to –2.6 and –3.8 MPa, respectively, at Durban Bay. Leafconcentrations of Na+, K+, Ca2+, Mg2+,Cl- and N were significantly higher at Durban Bay. Photosyntheticperformance is apparently impaired at the low salinity site in Beachwood asa result of K+ and N deficiencies in the leaves.  相似文献   

8.
Mangrove (Avicennia marina) communities constitute an importantcomponent of the renewable natural vegetation resources of the coastalzones of the Arabian Gulf south of Kuwait. Attempts to introduce themangrove into the intertidal zones of the coastline of Kuwait are underwaybecause of the expected favorable environmental impact of this plant, andbecause of its moderating influence on the local climate and enhancementof the aesthetic and recreational value of the coastlines and fisheryresources. Propagules were collected from natural stands of mangrove inBahrain and the United Arab Emirates. Silvicultural practices were followedto produce healthy plants after growing of propagules in the greenhouse.Observations indicated that there is a positive correlation betweenpropagule weight and the length of the seedling stem. Outplanting wasdone in two sites in the intertidal zone around the Sulabikhat Bay, Kuwait.Data on plant survival showed that the most suitable level for successfulestablishment of mangrove was around or below the 3-meter contour tidalline. After 7 years of growth, plants reached a mean height of 250 cm,which is close to the height of their parent trees in Bahrain. The U.A.E.stock plants reached 288 cm after 5 years of growth in Kuwait. Plantsflowered and produced viable seeds. The biological feasibility ofestablishing mangrove plantations in the intertidal flats of Kuwait's coastlineswas documented from the field observation of the experimental plantations.Studies to document the environmental impact of the introduction areunderway.  相似文献   

9.
Relationships between growth parameters and root respiration under various conditions of salinity were investigated in seedlings of the grey mangrove Avicennia marina (Forsk.) Vierh. Growth, root/shoot ratios, leaf succulence and osmotic potential of leaves were measured for seedlings grown for 6–8 weeks in 100, 50, 25 and 0% seawater. Oxygen uptake of root segments, from distal to proximal ends of roots, was measured for all treatments. Total growth was maximal in 25% seawater, highest leaf succulence was obtained in 50% seawater, and highest leaf osmotic potential in 100% seawater. Oxygen uptake in distal root segments, as measured both by Clark oxygen electrode and Warburg manometry, showed a stimulation in the presence of salt that closely paralleled growth stimulation. The rates of respiration were highest in 25% seawater. The oxygen uptake was not stimulated by salt per se, since concentrations higher than 25% were associated with a decline in rate of oxygen uptake from the maximum. Values for the respiratory quotient approximated to one in all treatments. Avicennia marina has been reported to exclude from its roots about 90% of the salt in the surrounding medium. It might have been expected that increased concentrations of salt in the growth medium would be associated with a standard salt respiration response in the roots; however, this was not obtained.  相似文献   

10.
Population dynamics of the widespread mangrove Avicennia marina was studied over the complete life-history from zygotes through to adults in southeastern Australia. Zygote survival, propagule dispersal, seedling establishment, seedling recruitment and sapling recruitment were examined by demographic censuses over a range of spatial and temporal scales. Hypotheses about factors regulating survival were tested by manipulative field experiments. Life table statistics for survival and fecundity were used to calculate transition probabilities and their variance for seven stages of life history. These parameters were used as the basis of a stochastic model that predicts population structure after small and large scale perturbations.  相似文献   

11.
Abstract The predispersal mortality of floral buds and fruits in the grey mangrove (Avicennia marina) was examined over a range of populations for 3 years. The average survival of floral buds to anthesis was 34%. Moth larvae (subtribe Phycitina) attack and consume the contents of variable numbers of flower buds, but their activities did not influence bud survival, as experimental exclusion of larvae did not increase the number of buds surviving to anthesis. Fruit mortality is initially high with an average of 21% of floral buds surviving to immature fruit. Subsequent mortality is lower until on average 2.9% of floral buds survive to become viable propagules. Several cohorts of the phycitine moth larvae feed throughout the development of the fruit, and up to 62% of mature fruit show signs of larval attack. Experimental exclusion of moth larvae doubled the survival of fruits. However more than 75% of fruit mortality may be attributed to maternal regulation. Hail storms can also cause fruit mortality. The potential fecundity (number of ovules) of A. marina was measured over a range of age-size classes of trees and the realized fecundity (viable propagules) was estimated from average predispersal mortality. These estimates were subsequently verified in the field. A fecundity schedule was constructed with assumptions on reproductive frequency and reproductive life. The average annual supply of propagules over a lifetime is estimated to be about 247 viable propagules per tree.  相似文献   

12.
Fungi are important actors in ecological processes and trophic webs in mangroves. Although saprophytic fungi occurring in the intertidal part of mangrove have been well studied, little is known about the diversity and structure of the fungal communities in this ecosystem or about the importance of functional groups like pathogens and mutualists. Using tag-encoded 454 pyrosequencing of the ITS1, ITS2, nu-ssu-V5 and nu-ssu-V7 regions, we studied and compared the fungal communities found on the marine and aerial parts of Avicennia marina and Rhizophora stylosa trees in a mangrove in New Caledonia. A total of 209,544 reads were analysed, corresponding to several thousand molecular operational taxonomic units (OTU). There is a marked zonation in the species distribution, with most of the OTU being found specifically in one of the microhabitat studied. Ascomycetes are the dominant phylum (82%), Basidiomycetes are very rare (3%), and 15% of the sequences correspond to unknown taxa. Our results indicate that host specificity is a key factor in the distribution of the highly diverse fungal communities, in both the aerial and intertidal parts of the trees. This study also validates the usefulness of multiple markers in tag-encoded pyrosequencing to consolidate and refine the assessment of the taxonomic diversity.  相似文献   

13.
Background and Aims Halophytic eudicots are characterized by enhanced growth under saline conditions. This study combines physiological and anatomical analyses to identify processes underlying growth responses of the mangrove Avicennia marina to salinities ranging from fresh- to seawater conditions.Methods Following pre-exhaustion of cotyledonary reserves under optimal conditions (i.e. 50 % seawater), seedlings of A. marina were grown hydroponically in dilutions of seawater amended with nutrients. Whole-plant growth characteristics were analysed in relation to dry mass accumulation and its allocation to different plant parts. Gas exchange characteristics and stable carbon isotopic composition of leaves were measured to evaluate water use in relation to carbon gain. Stem and leaf hydraulic anatomy were measured in relation to plant water use and growth.Key Results Avicennia marina seedlings failed to grow in 0–5 % seawater, whereas maximal growth occurred in 50–75 % seawater. Relative growth rates were affected by changes in leaf area ratio (LAR) and net assimilation rate (NAR) along the salinity gradient, with NAR generally being more important. Gas exchange characteristics followed the same trends as plant growth, with assimilation rates and stomatal conductance being greatest in leaves grown in 50–75 % seawater. However, water use efficiency was maintained nearly constant across all salinities, consistent with carbon isotopic signatures. Anatomical studies revealed variation in rates of development and composition of hydraulic tissues that were consistent with salinity-dependent patterns in water use and growth, including a structural explanation for low stomatal conductance and growth under low salinity.Conclusions The results identified stem and leaf transport systems as central to understanding the integrated growth responses to variation in salinity from fresh- to seawater conditions. Avicennia marina was revealed as an obligate halophyte, requiring saline conditions for development of the transport systems needed to sustain water use and carbon gain.  相似文献   

14.
15.
Glycinebetaine synthesis from [methyl-14C]choline and [1,2-14C]ethanolamine in leaf disks of Avicennia marina, was increased by salt stress (250 and 500 mM NaCl). After 18 h incubation with [methyl-14C]choline, phosphocholine and CO(2) were found to be heavily labelled. Phosphocholine contained 39% of the total radioactivity taken up by non-salinised (control) leaf disks and 15% of the total for salinised leaf disks stressed with 500 mM NaCl. Eighteen and 49% of the radioactivity absorbed by control and salinised disks, respectively, were released as CO(2). Metabolic studies of [1,2-14C]ethanolamine revealed that the radioactivity taken up by the leaf disks was recovered as the following compounds after 18 h: phosphorylated compounds (mainly phosphoethanolamine, phosphodimethylethanolamine and phosphocholine) (40-50%); choline (1-2%); glycinebetaine (3-5%); lipids (20-28%); CO(2) (6-10%). Unlike glycinebetaine, incorporation into phosphorylated compounds and lipids were reduced by salt stress. Incorporation of [methyl-14C]S-adenosyl-L-methionine (SAM) into choline, phosphocholine and glycinebetaine in leaf disks was stimulated by salt stress. In vitro activities of adenosine kinase and adenosine nucleosidase, which are implicated in stimulating the SAM regeneration cycle, increased after the leaf disks were incubated with 250 and 500 mM NaCl for 18 h. Changes in metabolism involving choline and glycinebetaine due to salt stress are discussed.  相似文献   

16.
17.
This study was undertaken in summer on fully expanded leaves of Avicennia marina trees in the Beachwood Mangroves Nature Reserve, Durban,South Africa. Data sets were obtained over 5–7 days of relatively dry conditions and over two periods of 5 days during which the swamp was continuously inundated with dilute seawater (< 150 mol m−3NaCl). Gas exchange responses were strongly influenced by photosynthetic photon flux density (PPFD), leaf temperature and leaf to air vapour pressure deficit (Δw). Carbon dioxide exchange was saturated at a PPFD of about 800 μmol m−2 s−1. Maximal CO2 exchange rates ranged from 8.5 to 9.9 μmol m−2 s−1 with no differences between drained and waterlogged conditions. Under drained conditions, leaf conductance,transpiration and internal CO2 concentrations were generally lower, and water use efficiencies higher, than during waterlogging. Continuous waterlogging for 5 days had no adverse effect on CO2 exchange. Xylem water potentials ranged from −1.32to −3.53 MPa during drained and from −1.02 to −2.65 Mpa during waterlogged conditions. These results are discussed in relation to anatomical and metabolic adaptations of A. marina to waterlogging stress. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
 Drought effects on leaf photosynthesis of A. germinans growing under two contrasting salinities were studied in a Venezuelan fringe mangrove. During both wet and dry seasons, severe chronic-photoinhibition at predawn was not observed but strong down regulation occurred at midday during both seasons. Carbon assimilation rates (A, μmol CO2 m−2 s−1) declined during the dry season from 11.9±1.8 to 7.0±1.5 and from 9.6±2.0 to 4.7±2.5 in plants from low and high salinity sites, respectively. Changes in carbon assimilation per unit of chlorophyll (A/Chl, mmol CO2 mol−1 Chl) were from 31.6±4.7 to 20.5±4.3 and from 21.9±4.7 to 15.2±8.2 in the low and high salinity plants, respectively. Therefore, neither changes in Chl nor seasonal differences in photoprotective down regulation could account fully for the decrease in leaf photosynthesis during drought. A reduction in CO2 diffusion due to lowered stomatal conductance was not large enough to explain such a dramatic effect of drought on leaf photosynthesis. Stomatal response could be mitigated by the capability of A. germinans for osmotic adjustment under high salinity and/or drought. However, this intracellular salt accumulation may reduce carbon assimilation capacity further by decreasing the metabolism of leaf cells, increasing dark respiration and/or photorespiration. Received: 10 June 1998 / Accepted: 5 October 1998  相似文献   

19.
This study investigated the characteristics of exudates from mangrove plant Avicennia marina seedling roots under 0, 200 and 600?mM NaCl treatments and their complexation behavior with trace metals using excitation emission matrix (EEM) fluorescence spectrometry. Two fulvic-like fluorescence peaks, namely peak A (Em = 440?nm, Ex = 250?nm, UV fulvic-like compounds) and peak B (Em = 440?nm, Ex = 340?nm, visible fulvic-like compounds) were identified. The fluorescence intensities of peak A and peak B were enhanced by increasing salinity. Furthermore, the fluorescence of both peaks could be quenched by the ions of copper (Cu2+), manganese (Mn2+) and cadmium (Cd2+). Conditional stability constant (logKa) exhibited that binding capacity of both peak A and peak B with trace metals are Cu2+?>?Mn2+?>?Cd2+ in the range from 2.21 to 4.01. Besides, Hill coefficient (n) >1 for Cu2+ but n?<?1 for Mn2+ and Cd2+. The results of high n and high logKa for Cu2+ rather than Mn2+ and Cd2+ indicate that the fulvic-like compounds in root exudates of A. marina have maximum potential for Cu2+ complexation compared to Mn2+ and Cd2+, suggesting the fulvic acids in root exudates of A. marina have strong complexation with Cu2+ rather than Mn2+ and Cd2+.  相似文献   

20.
Field observations of seedlings and saplings of Avicennia marina showed patterns that correlated with salinity, light and sediment. Models that account for these observations were subsequently tested in a series of field experiments. Establishment varied within an estuary under controlled conditions but was not related to salinity or sediment type. Seedling survival was uniform over 3 years regardless of position in estuary and sediment type. Seedling densities and survival under canopies or in canopy gaps were not significantly different. However, seedling growth and density of saplings were greater in canopy gaps. Experiments involving manipulations of canopies showed no differences in seedling survival under canopies or in light gaps, but addition of slow-release fertilizer enhanced growth and survival in canopy gaps and under canopies. Long-term comparison of areas denuded of a canopy and with sediment disturbance showed enhanced establishment and survival when compared with areas with canopy gaps but with undisturbed sediments. Overall there appears to be no restriction to establishment of propagules within mangrove stands other than the supply of propagules and tidal or wave action. In contrast, recruitment to the sapling stage appears to be restricted by light and sediment resources. We suggest that propagules need to establish in a regeneration niche for seedling recruitment to the sapling stage. This differs from the view that seedlings in the under-storey are analogous to a seed pool in the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号