共查询到19条相似文献,搜索用时 62 毫秒
1.
The envelope proteins of White spot syndrome virus (WSSV) are very fragile and easy to be destroyed during purification. It was difficult to obtain a large quantity of intact virions by routine sucrose gradient centrifugation. After modifying the sucrose gradient by adding citrate sodium, we can obtain a large quantity of intact virions and nucleocapsids. This purified virions and nucleocapsids were subsequently used for analyzing viral structural proteins and DNA extraction. The result showed that this modified techniaue is very efficient for virus purification. 相似文献
2.
3.
对虾白斑综合征病毒(white spot syndrome virus,WSSV)是一种能够感染虾类并且造成其大面积死亡的环状双链DNA病毒。WSSV有多种分离株,其毒力有所差异。从克氏原螯虾(Procambarus clarkii)中分离得到1株WSSV新分离株WSSV-CN-Pc,其毒力尚不清楚。本研究采用肌肉注射和经口注射的方法,以WSSVTW型作为阳性对照,分别对克氏原螯虾(P.clarkii)和罗氏沼虾(Macrobrachium rosenbergii)进行活体实验。实验结果显示:肌肉注射WSSV-CN-Pc和WSSV-TW的克氏原螯虾均在第6天出现100%的死亡;罗氏沼虾在肌肉注射WSSV-TW后未出现死亡,但在注射WSSV-CN-Pc后的第9天死亡率达100%。经口注射WSSV-CN-Pc和WSSV-TW的克氏原螯虾均在第16天出现100%的死亡;罗氏沼虾经口注射WSSV-CN-Pc后的第19天死亡率为100%,但注射WSSV-TW的实验组并未出现死亡。结果表明,对于克氏原螯虾,WSSV-CN-Pc具有和WSSV-TW相似的毒力,而对罗氏沼虾存在明显的毒力差异。提示克氏原螯虾是WSSV传播途径中的重要因素。 相似文献
4.
对于对虾白斑综合征病毒(white spot syndrome virus,WSSV)全基因组样品,使用限制性内切酶酶切以及荧光绝对定量的方法进行分析,建立了WSSV全基因组快速定性定量的方法。定性实验通过对GenBank中WSSV基因组序列深度分析,选择确定合适的限制性内切酶BamHI对基因组进行酶切,通过比对实际酶切结果和软件模拟酶切结果,以定性待测样品。定量实验使用荧光定量试剂盒,通过建立标准曲线的方法对未知浓度的WSSV基因组样品进行绝对定量。实验结果表明,结合使用酶切分析和荧光定量的方法可以准确、快速、方便、经济地对WSSV基因组样品进行定性定量分析,为进一步深入研究WSSV基因组奠定坚实基础。 相似文献
5.
6.
福州地区对虾白斑病毒的超微结构 总被引:1,自引:0,他引:1
在福州地区分离到一种高致病性的白斑病病毒,该病毒仅存在于细胞质中,完整的病毒粒子有囊膜,一端略圆,一端稍尖,直径约为80-100nm,囊膜与核衣壳之间的间隙约为20-25nm。该病毒在细胞内不形成包含体,但有些可形成封入体。负染观察到的病毒核衣壳呈直杆状,但长度和直径相差较大,最长的病毒超过600nm。这些特征与其它已报道的白斑病病毒有所不同,因此暂将它称为“对虾白斑病病毒福州分离株”。 相似文献
7.
对虾白斑综合征病毒的细胞因子受体基因的分析与表达 总被引:1,自引:1,他引:1
在对虾白斑综合征病毒(White spot syndrome virus,WSSV)的基因组中发现一个具有细胞因子受体特征的开放阅读框,该阅读框全长2022个核苷酸,编码674个氨基酸,蛋白质理论分子量为76kDa.该基因含有真核生物细胞因子gpl30受体特征序列.为了研究该基因的功能,采用PCR方法从病毒基因组中扩增出基因片段,克隆到pGEM-T Easy载体中,经BamH I和Sal I双酶切后插入pET28b表达载体中.重组质粒转化到大肠杆菌BL21中,IPTG诱导后,经SDS-PAGE电泳表明在76kDa处有目的蛋白表达.用冰浴超声波对诱导后的菌液进行处理以获得初步纯化的蛋白,作为抗原人工免疫实验兔子以获得含特异性抗体的抗血清.该基因的表达成功,为其功能的进一步深入研究奠定了基础. 相似文献
8.
在对虾白斑综合征病毒(White spot syndrome virus,WSSV)的基因组中发现一个具有细胞因子受体特征的开放阅读框,该阅读框全长2022个核苷酸,编码674个氨基酸,蛋白质理论分子量为76kDa。该基因含有真核生物细胞因子gp130受体特征序列。为了研究该基因的功能,采用PCR方法从病毒基因组中扩增出基因片段,克隆到pGEM-T Easy载体中,经BamH I和Sal I双酶切后插入pET28b表达载体中。重组质粒转化到大肠杆菌BL21中,IPTG诱导后,经SDS-PAGE电泳表明在。76kDa处有目的蛋白表达。用冰浴超声波对诱导后的菌液进行处理以获得初步纯化的蛋白,作为抗原人工免疫实验兔子以获得含特异性抗体的抗血清。该基因的表达成功,为其功能的进一步深入研究奠定了基础。 相似文献
9.
对虾白斑综合征病毒(White spot syndromevirus,WSSV)是对虾养殖的主要病原之一,它是目前发现的基因组最大的动物病毒,为环状双链DNA病毒[1,2],全基因组序列分析结果显示,对虾白斑综合征病毒和其他杆状病毒相差甚远,最新病毒分类报告已将该病毒划归新建立的线头病毒科(Nima-viridae)白斑病毒属(Whispovirus)[3,4]。目前Gen-Bank公布有3个版本的WSSV全序列[1,2],其基因组大小的测定结果相差较大。不同的WSSV毒株可能在形态结构、理化性质上无法区分,但病毒基因组限制酶切片段长度多态性(RFLP)可以将之区分开来,Marks等[6,7]通过计… 相似文献
10.
从噬菌体展示抗体文库筛选对虾白斑综合征病毒的单链抗体 总被引:1,自引:0,他引:1
对虾白斑综合征是一种严重危害对虾养殖业的病毒性疾病.由于目前对其病原体对虾白斑综合征病毒(WSSV)的研究不够深入,所以对WSSV的有效防治仍然是一大难题.为此,用完整的对虾白斑综合征病毒粒子作为靶抗原固相包被,淘选噬菌体展示单链抗体文库,得到两个能够与WSSV结合的单链抗体:E2和H4.单链抗体H4能够结合病毒并抑制病毒对原代培养的对虾淋巴细胞的感染,这些结果表明此单链抗体具有开发为诊断试剂盒和抗病毒药物的潜力. 相似文献
11.
Jiravanichpaisal P Sricharoen S Söderhäll I Söderhäll K 《Fish & shellfish immunology》2006,20(5):718-727
WSSV particles were detected in separated granular cells (GCs) and semigranular cells (SGCs) by in situ hybridisation from WSSV-infected crayfish and the prevalence of WSSV-infected GCs was 5%, whereas it was 22% in SGCs. This indicates that SGCs are more susceptible to WSSV and that this virus replicated more rapidly in SGCs than in GCs and as a result the number of SGCs gradually decreased from the blood circulation. The effect of haemocyte lysate supernatant (HLS), containing the degranulation factor (peroxinectin), phorbol 12-myristate 13-acetate (PMA), the Ca(2+) ionophore A23187 on GCs from WSSV-infected and sham-injected crayfish was studied. The results showed that the percentage of degranulated GCs of WSSV-infected crayfish treated with HLS or PMA was significantly lower than that in the control, whereas no significant difference was observed when treated with the Ca(2+) ionophore. It was previously shown that peroxinectin and PMA have a degranulation effect via intracellular signalling involving protein kinase C (PKC), whereas the Ca(2+) ionophore uses an alternative pathway. HLS treatment of GCs and SGCs from WSSV-infected crayfish results in three different morphological types: non-spread, spread and degranulated cells. The non-spread cell group from both GCs and SGCs after treatment with HLS had more WSSV positive cells than degranulated cells, when detected by in situ hybridisation. Taken together, it is reasonable to speculate that the PKC pathway might be affected during WSSV infection. Another interesting phenomenon was that GCs from non-infected crayfish exhibited melanisation, when incubated in L-15 medium, while no melanisation was found in GCs of WSSV-infected crayfish. However, the phenoloxidase activities of both sham- and WSSV-injected crayfish in HLS were the same as well as proPO expression as detected by RT-PCR. This suggests that the WSSV inhibits the proPO system upstream of phenoloxidase or simply consumes the native substrate for the enzyme so that no activity is shown. The percentage of apoptotic haemocytes in WSSV-infected crayfish was very low, but it was significantly higher than that in the sham-injected crayfish on day 3 or 5 post-infection. The TEM observation in haematopoietic cells (hpt cells) suggests that WSSV infect specific cell types in haematopoietic tissue and non-granular hpt cells seem more favourable to WSSV infection. 相似文献
12.
To test the possibility that shrimp pond rotifer resting eggs and hatched rotifers could transmit white spot syndrome virus (WSSV) to crayfish (Procambarus clarkii), we injected crayfish with rotifer and resting egg inocula that were WSSV-positive only by dot-blot analysis of PCR products. No crayfish became WSSV-positive after challenge with the resting egg inoculum. However, 1/15 crayfish became WSSV-positive after challenge with the rotifer inoculum. The results demonstrated that rotifers constitute a potential risk for WSSV transmission to crayfish and other cultivated crustaceans. However, the actual quantitative risk of transmission in an aquaculture setting depends on many variables that remain untested. 相似文献
13.
Magbanua FO Natividad KT Migo VP Alfafara CG de la Peña FO Miranda RO Albaladejo JD Nadala EC Loh PC Mahilum-Tapay L 《Diseases of aquatic organisms》2000,42(1):77-82
The prevalence and geographic distribution of white spot syndrome virus (WSSV) infection among cultured penaeid shrimp in the Philippines was determined from January to May, 1999, using PCR (polymerase chain reaction) protocol and Western blot assays. A total of 71 samples consisting of 18 post-larvae (PL) and 53 juvenile/adult shrimp samples (56 to 150 days-of-culture, DOC) were screened for WSSV. Of the 71 samples tested, 51 (72%) were found positive for WSSV by PCR: 61% (31/51) after 1-step PCR and 39% (20/51) after 2-step, non-nested PCR. Of the PL and juvenile/adult shrimp samples tested, 50 and 79% were positive for WSSV, respectively. By Western blot, only 6 of the 51 (12%) PCR-positive samples tested positive for WSSV. Of the 20 samples negative for WSSV by PCR, all tested negative for WSSV by Western blot assay. This is the first report of the occurrence of WSSV in the Philippines. 相似文献
14.
White spot syndrome virus (WSSV) is the causative agent of a severe disease of cultivated shrimp. Using purified WSSV virions, VP53A encoded by open reading frame wssv067 was identified as a structural protein by SDS-PAGE and proteomics. Immunoelectron microscopy with a gold-labeled secondary antibody revealed that VP53A was distributed on the viral envelope. In order to further explore the link between WSSV067 and host proteins, we performed a yeast 2-hybrid screening of a Penaeus monodon cDNA library, using WSSV067C as bait. One of the molecules that specifically interacted with WSSV067C was the P. monodon chitin-binding protein (PmCBP). An in vitro binding assay showed that c-myc-WSSV067C was capable of co-precipitating HA-PmCBP-C. Furthermore, PmCBP was expressed in almost all organs but appeared to be up-regulated at the late stage of WSSV infection. 相似文献
15.
White spot syndrome virus (WSSV) infects specific hemocytes of the shrimp Penaeus merguiensis 总被引:5,自引:0,他引:5
Wang YT Liu W Seah JN Lam CS Xiang JH Korzh V Kwang J 《Diseases of aquatic organisms》2002,52(3):249-259
White spot syndrome virus (WSSV) was specifically detected by PCR in Penaeus merguiensis hemocytes, hemolymph and plasma. This suggested a close association between the shrimp hemolymph and the virus. Three types of hemocyte from shrimp were isolated using flow cytometry. Dynamic changes of the hemocyte subpopulations in P. merguiensis at different times after infection were observed, indicating that the WSSV infection selectively affected specific subpopulations. Immunofluorescence assay (IFA) and a Wright-Giemsa double staining study of hemocyte types further confirmed the cellular localization of the virus in the infected hemocytes. Electron microscopy revealed virus particles in both vacuoles and the nucleus of the semigranular cells (SGC), as well as in the vacuoles of the granular cells (GC). However, no virus could be detected in the hyaline cells (HC). Our results suggest that the virus infects 2 types of shrimp hemocytes--GCs and SGCs. The SGC type contains higher virus loads and exhibits faster infection rates, and is apparently more susceptible to WSSV infection. 相似文献
16.
Jiann-Horng Leu Shin-Jen Lin Jiun-Yan Huang Tsan-Chi Chen Chu-Fang Lo 《Fish & shellfish immunology》2013,34(4):1011-1017
White spot syndrome virus (WSSV) is an enveloped, large dsDNA virus that mainly infects penaeid shrimp, causing serious damage to the shrimp aquaculture industry. Like other animal viruses, WSSV infection induces apoptosis. Although this occurs even in by-stander cells that are free of WSSV virions, apoptosis is generally regarded as a kind of antiviral immune response. To counter this response, WSSV has evolved several different strategies. From the presently available literature, we construct a model of how the host and virus both attempt to regulate apoptosis to their respective advantage. The basic sequence of events is as follows: first, when a WSSV infection occurs, cellular sensors detect the invading virus, and activate signaling pathways that lead to (1) the expression of pro-apoptosis proteins, including PmCasp (an effecter caspase), MjCaspase (an initiator caspase) and voltage-dependent anion channel (VDAC); and (2) mitochondrial changes, including the induction of mitochondrial membrane permeabilization and increased oxidative stress. These events initiate the apoptosis program. Meanwhile, WSSV begins to express its genes, including two anti-apoptosis proteins: AAP-1, which is a direct caspase inhibitor, and WSV222, which is an E3 ubiquitin ligase that blocks apoptosis through the ubiquitin-mediated degradation of shrimp TSL protein (an apoptosis inducer). WSSV also induces the expression of a shrimp anti-apoptosis protein, Pm-fortilin, which can act on Bax to inhibit mitochondria-triggered apoptosis. This is a life and death struggle because the virus needs to prevent apoptosis in order to replicate. If WSSV succeeds in replicating in sufficient numbers, this will result in the death of the infected penaeid shrimp host. 相似文献
17.
Wan-gang Gu Jun-fa Yuan Ge-lin Xu Li-juan Li Ni Liu Cong Zhang Jian-hong Zhang Zheng-li Shi 《中国病毒学》2007,22(1):21-25
BALB/c mice were immunized with purified White spot syndrome virus (WSSV). Six monoclonal antibody cell lines were selected
by ELISA with VP28 protein expressed in E. coli. in vitro neutralization experiments showed that 4 of them could inhibit the
virus infection in crayfish. Western-blot suggested that all these monoclonal antibodies were against the conformational structure
of VP28. The monoclonal antibody 7B4 was labeled with colloidal gold particles and used to locate the VP28 on virus envelope
by immunogold labeling. These monoclonal antibodies could be used to develop immunological diagnosis methods for WSSV infection. 相似文献
18.
The core nucleocapsid protein VP15 of White spot syndrome virus (WSSV) was shown to interact with DNA and predicted to be involved in the packaging of the WSSV genome. In the present study, we explored the colocalization of VP15 with several nuclear proteins in insect cells. The results showed that the VP15 completely colocalized with nucleolin and fibrillarin, suggesting that VP15 is a nucleolar localization protein and plays an important role in the life cycle of WSSV in host cells. 相似文献
19.
摘要:【目的】构建携带有受杆状病毒多角体启动子控制的疱疹性口腔炎病毒糖蛋白(vesicular stomatitis virus glycoprotein, VSV G)和受白斑综合症病毒极早期基因(immediately-early gene 1,ie1)启动子控制的绿色荧光蛋白(enhanced green fluorescent protein, EGFP)两个表达阅读框的新型重组病毒vAc-G-EGFP,分析其在无脊椎动物和脊椎动物细胞系中表达报道基因的能力。【方法】 利用Bac-To-Bac 系统构建重组杆状病毒,利用病毒感染或转导实验介导报道基因在待测细胞系中的表达,用荧光显微镜和免疫印迹技术分析报道基因在待测细胞系中的实时表达情况。 【结果】成功构建了分别含VSV G 和 ie1启动子两个阅读框的重组杆状病毒vAc-G-EGFP,发现vAc-G-EGFP可以在无脊椎和脊椎动物细胞系中有效表达报道基因EGFP,免疫印迹实验显示,在不同时间点EGFP于这两类细胞中的表达存在差异。【结论】 基于白斑综合症病毒ie1启动子并携带有VSV G表达框的单一杆状病毒载体可以实现同时在不同种类细胞系中有效表达外源基因。本文构建的新型杆状病毒表达载体有希望普遍应用于基础和应用生物学研究。 相似文献