首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Changes in MAO and antioxidative enzymes copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD) and catalase (CAT) activities were examined in the hypothalamus and the hippocampus of Wistar rats exposed to cold stress (6 °C) for 180 min and heat stress (38 °C) for 60 min.

2. Extreme environmental temperatures caused stressor-specific changes in the hypothalamic and hippocampal MAO and antioxidative enzyme activities, being dependent on the stressor applied (cold or heat) but not on the brain region studied (the hypothalamus or hippocampus).

Keywords: Catalase; Cold stress; Heat stress; Hippocampus; Hypothalamus; Monoamine oxidase; Superoxide dismutase  相似文献   


2.
It is shown that gamma-irradiation of albino rats with a dose of 30 Gy leads to pronounced phase changes in monoaminoxidase activity and serotonin content in rat brain at early times after whole-body exposure. There is a similar direction of changes in the activity of the enzyme and in the content of the substrate adequate to the latter.  相似文献   

3.
Cold stress and cold adaptation were studied for their effect on the activity and substrate specificity of the monoamine oxidase A and B and on the Km of serotonin deamination in the rat brain mitochondria and supernatant. Mitochondrial monoamine oxidase Km with serotonin is established to increase more than twice under cold stress and decrease considerably in cold adapted rats. The lowering of the mitochondrial monoamine oxidase A activity is accompanied by the appearance of serotonin and the glucosamine deaminating activity in supernatant. The data suggest that decrease in the monoamine oxidase activity under cold stress may be caused by both release of the enzyme from mitochondrial membrane and changes in its catalytic property alteration.  相似文献   

4.
《Journal of thermal biology》1999,24(5-6):379-383
The exposure of Wistar male rats (200±20 g) to high ambient temperature (38°C) for 20 and 60 min induced an equal decrease in hypothalamic, brain stem and hippocampal monoamine oxidase activity when compared to controls. The interscapular brown adipose tissue monoamine oxidase activity, as well as oxygen consumption and rectal temperature were increased only after a 60 min heat exposure. The adrenal function, assessed by dopamine-beta-hydroxylase activity and cholesterol concentration, was enhanced both after 20 and 60 min. In conclusion, heat induced the increase in adrenal function and interscapular brown adipose tissue monoamine oxidase activity, but the decrease in that of the brain.  相似文献   

5.
The ability of moclobamide and other benzamide derivatives to inhibit the activity of monoamine oxidase in the rat brain was studied. Distinct effects of these compounds on the deamination of serotonin and norepinephrine (MAO-A substrates); 2-phenylethylamine (selective MAO-B substrate); tyramine and dopamine (MAO-A and MAO-B substrates) are shown. It was demonstrated that among all the compounds studied moclobamide appeared to be the most active and selective inhibitor of MAO-A: at a concentration of 100 microM it caused a 100% inhibition of serotonin and norepinephrine deamination, which might be explained by the presence of C1 atom in the para-position of benzene ring in moclobamide molecule. Other benzamide derivatives were less active in inhibiting MAO-A and had but a negligible effect on dopamine- and 2-phenylethylamine deamination.  相似文献   

6.
Neurocatin, a small (about 2,000 Dalton) neuroregulator isolated from mammalian brain, is a powerful effector of monoamine oxidase B in rat brain synaptosomes. Incubation of intact synaptosomes with neurocatin caused an inhibition of the enzyme dependent on the concentration of neurocatin. This inhibition became statistically significant at a neurocatin concentration of 10 ng/200 l and was significant at all higher neurocatin concentrations. At 40 ng/200 l, neurocatin inhibited monoamine oxidase B activity by about 60%. This inhibitory effect was almost completely abolished by breaking the synaptosomal membrane by hypotonic buffer prior to incubation with neurocatin. In addition, incubation of the synaptosomes in calcium free medium almost completely abolished the inhibitory effect of neurocatin on monoamine oxidase B. The inhibition appeared to involve covalent modification of the enzyme mediated by a neurocatin receptor(s). Measurements of the kinetic parameters of the enzyme showed that 20 ng of neurocatin caused a statistically significant decrease in Vmax (by 20%) with no significant change in KM, compared to controls. Inhibition of monoamine oxidase by neurocatin is potentially of great clinical importance because this enzyme plays a major role in catabolism of the biogenic amines and alterations in its activity is believed to contribute to several neurological disorders.  相似文献   

7.
8.
1. The effect of the nootropic drug adafenoxate on monoamine oxidase (MAO) activity in rat brain cortex, striatum, hypothalamus and hippocampus has been studied using the following substrates: tyramine (total MAO), serotonin (MAO A) and beta-phenylethylamine (MAO B). 2. In a series of increased concentrations (from 5 x 10(-4) up to 1 x 10(-5) M) adafenoxate inhibits total MAO, MAO A and MAO B in the brain structures studied. 3. The adafenoxate IC50 values obtained illustrate its inhibitory properties and its lack of selectivity toward MAO in the brain structures isolated. 4. The results of our research prove the participation of MAO in the mechanisms through which adafenoxate affects the brain monoaminergic systems and realises its central effects.  相似文献   

9.
The effect of the chronic treatment of tricyclic antidepressants like Imipramine on the catecholamine metabolism of rat brain, in normal and hyperglycemic conditions was investigated. Imipramine was found to elevate the catecholamine levels in controls, while chronic treatment of hyperglycemic animals with the drug, failed to cause any change other than seen as a result of hyperglycemia. The activities of Monoamine oxidase on the other hand, decreases significantly as a result of the treatment, both in controls and in the hyperglycemic state. The results suggest that the drug apart from acting as an antidepressant, assumes the role of a monoamine oxidase inhibitor under pathological conditions.  相似文献   

10.
Rats were fed 100 microM aluminum maltolate for one year in their drinking water. Brain aluminum contents have increased 4.2-fold in the aluminum-treated group, whereas no significant changes in the body weight, brain weight, and brain protein content were observed. Long-term aluminum feeding induced apoptosis as assessed by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling method and showed activatory effects on the catalytic efficiency (kcat/KM) of monoamine oxidase-A and monoamine oxidase-B up to 1.9- and 3.8-fold, respectively. The expression level of monoamine oxidase isotypes on the Western blot remained unchanged between the two groups, suggesting a change in post-translational regulation of the activities of monoamine oxidase isotypes by long-term aluminum feeding.  相似文献   

11.
12.
F M Lai  B Berkowitz  S Spector 《Life sciences》1978,22(22):2051-2056
Monoamine oxidase (MAO) activity in brain microvessels and cardiovascular tissues was examined in rats of different age. MAO activity continued to increase with age in the heart, but in contrast, reached maximum activity in three weeks in the aorta, mesenteric artery and mesenteric vein. Between 7 and 60 weeks, there was a small decline in the MAO activity in the testicular artery. The highest MAO activity was found in the cerebral microvessels and increased with age. The half-life of MAO was estimated in the heart and peripheral blood vessels in young and old animals. The half-life of cardiac MAO was increased with age whereas that of the mesenteric vein, mesenteric artery and aorta remained constant between 7 and 112 weeks. Thus an explanation for this increased cardiac MAO activity in old rats was a reduced rate of degredation of this enzyme. The high activity of the enzyme in the brain microvessels suggests that it may participate in regulating the influx and efflux of monoamines in the central nervous system.  相似文献   

13.
14.
15.
The brain concentration of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) increased in rats maintained on restricted volume of low-protein or normal-protein diet, whereas these two agents decreased in rats fed low-protein diet ad libitum. In these two food-restricted groups brain 5-HT and 5-HIAA concentrations were not correlated with brain tryptophan hydroxylase activity, but the concentrations correlated closely with cerebral tryptophan concentrations. The cerebral tryptophan concentration in the two food-restricted groups was not consistent with the total or free tryptophan concentration in plasma. In these restricted rats cerebral tryptophan concentration was elevated, and, unlike the plasma tryptophan, it showed no diurnal variation. These results suggested that tryptophan uptake into the brain from plasma was enhanced by limiting food volume intake. Tryptophan uptake was increased by glucagon injection without changing the plasma tryptophan level, but injection of hydrocortisone or insulin had little or no effect on tryptophan concentration in either the plasma or brain.d-Glucose injection elevated plasma tryptophan concentration but decreased brain tryptophan concentration.  相似文献   

16.
The effect of the ultralow power pulse-modulated electromagnetic radiation (EMR, power density 10 microW/cm2; carrying frequency 915 MHz; modulating pulses with frequency 2, 4, 6, 8, 12, 16 and 20 Hz) on activity of monoamine oxidase (MAO-A), enzyme involved in the oxidative deamination of monoamines, was investigated. It was established that the increase of activity MAO in hypothalamus reached the maximal meaning at modulation frequency of 6 Hz that corresponded 160% (p < 0.01) of the control level; and at modulation frequency of 20 Hz the decrease of enzyme activity up to 74% (p < 0.01) was found. Mainly the action of ultralow power pulse-modulated EMR on activity of MAO in hippocamp was activating; and the maximal increase of enzyme activity up to 174% (p < 0.01) was registered at modulation frequency of 4 Hz.  相似文献   

17.
18.
This study involves the effect of aluminium phosphide exposure on the kinetic characteristics of cytochrome oxidase and the mitochondrial respiratory chain function in rat brain. Mitochondrial preparations from both control and aluminium phosphide-treated rats demonstrated significant decrease in the maximal activity of cytochrome oxidase (approximately 50%) when expressed per unit membrane protein and on a turnover number basis (nmol/min/nmol haem a). The results indicated that there was a decrease in the catalytic efficiency of the active oxidase molecules on aluminium phosphide treatment. Arrhenius plot characteristics differ for cytochrome oxidase activity in mitochondria isolated from treated and control rats, in the break point of the biphasic plot which was shifted to a higher temperature. The decreased activity of cytochrome oxidase along with altered NADH and succinic dehydrogenase activities might have contributed towards a significant decline in state 3 and state 4 respiration. These alterations in the electron transport chain complexes in turn affected the ATP synthesis rate adversely in the mitochondria, isolated from treated rats. The data reflect the interaction of aluminium phosphide with redox chain components leading to the impairment of the electron transfer along the respiratory chain.  相似文献   

19.
The effects of some organophosphate pesticides, e.g. lebaycid, metacid and metasystox on the monoamine oxidase (MAO) activity in rat brain mitochondria have been studied. These pesticides cause significant inhibition of MAO activityin vitro but have negligible effects on its activityin vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号